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AN EXTENSION OF THE CROUZEIX–RAVIART SPACE
TO GENERAL MESHES WITH APPLICATION

TO QUASI-INCOMPRESSIBLE LINEAR
ELASTICITY AND STOKES FLOW

DANIELE A. DI PIETRO AND SIMON LEMAIRE

Abstract. In this work we introduce a discrete functional space on general
polygonal or polyhedral meshes which mimics two important properties of the
standard Crouzeix–Raviart space, namely the continuity of mean values at in-
terfaces and the existence of an interpolator which preserves the mean value
of the gradient inside each element. The construction borrows ideas from
both Cell Centered Galerkin and Hybrid Finite Volume methods. The dis-
crete function space is defined from cell and face unknowns by introducing a
suitable piecewise affine reconstruction on a (fictitious) pyramidal subdivision
of the original mesh. Two applications are considered in which the discrete
space plays an important role, namely (i) the design of a locking-free primal
(as opposed to mixed) method for quasi-incompressible planar elasticity on
general polygonal meshes; (ii) the design of an inf-sup stable method for the
Stokes equations on general polygonal or polyhedral meshes. In this context,
we also propose a general modification, applicable to any suitable discretiza-
tion, which guarantees that the velocity approximation is unaffected by the
presence of large irrotational body forces provided a Helmholtz decomposition
of the right-hand side is available. The relation between the proposed meth-
ods and classical finite volume and finite element schemes on standard meshes
is investigated. Finally, similar ideas are exploited to mimic key properties
of the lowest-order Raviart–Thomas space on general polygonal or polyhedral
meshes.

1. Introduction

In the context of industrial simulators, lowest-order methods for diffusive prob-
lems on general polygonal or polyhedral meshes have received increasing attention
over the last few years. The reasons are multifold. Using general polyhedral ele-
ments may ease the discretization of complex domains, and disposing of discretiza-
tion methods applicable to general meshes is mandatory whenever the user cannot
adapt the mesh to the needs of the numerical scheme. This is the case, e.g., in
the context of computational geosciences, where the discretization of the subsoil is
developed in a separate stage, and is focused on integrating physical and geometric
data resulting from the seismic analysis. Fairly general meshes can thus be encoun-
tered, featuring, e.g., nonmatching interfaces corresponding to geological faults or
general polyhedral elements resulting from the degeneration of hexahedral cells in
eroded layers. Polyhedral elements may additionally be present in near wellbore
regions, where the use of radial meshes can be prompted by (qualitative) a priori
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knowledge of the solution. Nonconforming h-refinement can also appear at specific
locations where the resolution needs to be increased, or when moving fronts are
present. In this context, the use of lowest-order methods is justified both by the in-
herent uncertainty associated to physical data and the need to keep computational
costs within affordable bounds.

Among the methods that have appeared in recent years, the most directly related
to the present work are the Mimetic Finite Difference (MFD) method of Brezzi,
Lipnikov et al. [11–13], the Hybrid Finite Volume (HFV) method of Eymard, Gal-
louët and Herbin [25], and the Mixed Finite Volume (MFV) method of Droniou
and Eymard [20]. The close relation among these methods has recently been inves-
tigated in [22]. The main result of the present work is the construction of a discrete
space of piecewise affine functions which extends two important properties of the
classical Crouzeix–Raviart space [15] to general meshes, namely,
(CR1) the continuity of mean values at interfaces. Since we deal with piecewise

affine functions, this property is equivalent to the continuity at face barycen-
ters;

(CR2) the existence of an interpolator which preserves the mean value of the gra-
dient inside each element. Such interpolator can play the role of a Fortin
operator [10].

Let Kh denote a general polygonal or polyhedral mesh of the bounded domain Ω
matching the regularity requirements discussed in Section 2. In the spirit of Cell
Centered Galerkin (ccG) methods [16], the discrete space is constructed in three
steps:

(i) We fix the vector space Vh of face- and cell-centered degrees of freedom (DOFs)
on Kh.

(ii) We define a discrete gradient reconstruction operator Gh acting on Vh. The
reconstructed gradient is piecewise constant on a fictitious pyramidal submesh
Ph obtained by subdividing each element using one interior point (the cell
center), and it results from the sum of two terms: a consistent part depending
on face unknowns only, plus a subgrid correction involving both face and cell
unknowns. The continuity of mean values at interfaces is ensured by finely
tuning the latter contribution.

(iii) We define an affine reconstruction operator Rh acting on Vh which maps every
vector of DOFs on a broken affine function on Ph. This function is obtained
by perturbing the (unique) face unknown associated to each pyramid with a
linear correction based on the discrete gradient Gh. The discrete space is then
defined as

CRpKhq :“ RhpVhq Ă P1
d pPhq ,

with P1
d pPhq space of broken affine functions on Ph; cf. (4).

The pyramidal submesh is fictitious in the sense that all the relevant geometric
information can be computed on the primal mesh, which is therefore the only
one that needs to be described and manipulated by the end-user. In Appendix A,
similar ideas are used to construct a Hpdiv; Ωq-conforming discrete space on general
meshes which mimics two key properties of the standard lowest-order Raviart–
Thomas space, namely the (full) continuity of normal values at interfaces and the
approximation of vector-valued fields. We mention at this point the recent work of
Vohraĺık and Wohlmuth [34,35] which proposes efficient implementation strategies
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for classical nonconforming and mixed finite element approximations of diffusive
problems, and addresses general meshes with a different approach.

The first application we consider is linear elasticity, which was also the original
motivation for this work. Our main result is the design of a primal (as opposed to
mixed) method based on the space CRpKhq (and thus applicable to general meshes)
which is locking-free in the quasi-incompressible limit in two space dimensions (the
required regularity estimate for the continuous solution is still an open problem in
higher space dimensions).

It has been long known that the accuracy of lowest-order H1-conforming (La-
grange) finite element approximations deteriorates when quasi-incompressible ma-
terials are considered, i.e., for large values of the first Lamé parameter λ; cf., e.g., [8,
Section 11.3]. This is a consequence of the fact that the convergence estimates are
not uniform in λ, which, in turn, reflects the inability of the discretization space to
accurately represent nontrivial solenoidal fields. One classical way of circumventing
this problem is the use of mixed formulations, resulting in methods which converge
uniformly in λ, but which are often computationally more expensive than primal
methods. Examples include the PEERS method of Arnold, Brezzi and Douglas [2],
the mixed method of Stenberg [31], and the mixed methods of Chavan, Lamichhane
and Wohlmuth [14], and Lamichhane and Stephan [30]. All these methods require
matching triangular or quadrilateral meshes. General meshes similar to the ones
addressed in this work have been recently considered by Beirão da Veiga [3], who
introduces a mixed MFD method which does not lock in the quasi-incompressible
limit.

The problem of locking has also been addressed without resorting to mixed
formulations, and several methods can be found in the literature. On matching
triangular meshes, we can cite, e.g., the p-version method of Vogelius [33], and the
nonconforming methods of Falk [26]. Concerning general meshes, we mention the
very recent work of Beirão da Veiga, Brezzi, and Marini [4] on virtual elements
for linear elasticity. In the MFD framework, we cite the method for the two-
dimensional Stokes problem proposed by Beirão da Veiga, Gyrya et al. [5], whose
analysis and extension to three space dimensions have been considered in [6]. In
both cases the authors consider a (possibly fourth-order) tensor viscosity, which
allows an extension to linear elasticity. We note, moreover, that inf-sup stable mixed
methods for the Stokes problem can be, whenever the pressure is discontinuous,
converted to a locking-free primal method for the pure displacement linear elasticity
problem by static condensation of pressures. This strategy can be applied to the
method of [5, 6]. In the MFV framework, we can cite the work of Droniou and
Eymard [21], where the Stokes problem is also addressed. In this work we take
inspiration from the classical Crouzeix–Raviart method of Brenner and Sung [9].
Here, while property (CR1) ensures adequate conformity properties to the space,
property (CR2) plays an important role in deriving an error estimate uniform in λ.
Another source of inspiration is the work of Hansbo and Larson [28, 29], where a
locking-free Discontinuous Galerkin (dG) method on matching triangular meshes is
analyzed; see also Di Pietro and Nicaise [19] for an extension to composite materials.
Coercivity is here ensured by a least-square penalization of interface jumps. In our
method, a similar device is required in the case of mixed-type boundary conditions
to invoke a discrete Korn’s inequality on broken polynomial spaces [7]. For the pure
displacement problem, the naturally coercive Navier–Cauchy formulation allows us
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to circumvent the use of Korn’s inequality. Up to a suitable treatment of the
right-hand side, it is possible to prove for our scheme a local conservation property
similar to finite volume methods. In this case, the face unknowns act as Lagrange
multipliers associated to the flux continuity constraint. Yet another treatment of
the right-hand side allows us to recover the method of [9] on matching simplicial
meshes.

As a second, closely related application, we propose an inf-sup stable method for
the Stokes problem. Taking inspiration from the recent work of Galvin, Linke et
al. [27], we additionally consider the problem of large irrotational body forces and
pinpoint a strategy to preserve accuracy in the approximation of the velocity field
for the case when a Helmholtz decomposition of volumetric body forces is available.
We emphasize that this strategy is applicable to more general discretizations than
the one considered in this work. Also in this case, suitable modifications of the
right-hand side allow to establish a link with finite volumes, and nonconforming
finite element methods on matching simplicial meshes.

The paper is organized as follows. In Section 2 we introduce the notation and
define the concepts of admissible mesh sequence and pyramidal submesh inspired
by [16,17]. The main novelty of this section is the proof that the pyramidal submesh
inherits the shape- and contact-regularity properties of the original mesh. Section 3
details the construction of the space CRpKhq as well as the proofs of the properties
(CR1) and (CR2). In Section 4 we present two applications of the space CRpKhq,
namely the approximation of the linear elasticity problem for quasi-incompressible
materials and the discretization of the Stokes equations with large irrotational body
forces. Finally, in Appendix A we adapt the ideas of Section 3 to construct a discrete
space which mimics the properties of the lowest-order Raviart–Thomas space on
general polygonal or polyhedral meshes.

2. Admissible mesh sequences

Following [17, Chapter 1] and [16, Section 1], we introduce in this section the
concept of admissible mesh sequence of a bounded connected polygonal or polyhe-
dral domain Ω Ă Rd, d ě 2. For the sake of brevity, we only give the proofs of the
new results, and refer to [16, 17] for further details.

2.1. Shape- and contact-regularity. Let H Ă R`
˚ denote a countable set having

0 as its unique accumulation point. We consider mesh sequences KH :“ pKhqhPH
where, for all h P H, Kh denotes a finite collection of nonempty disjoint open
polyhedra Kh “ tKu such that Ω “

Ť

KPKh
K and h “ maxKPKh

hK (hK denotes
here the diameter of the element K P Kh). We say that a hyperplanar closed
connected subset F of Ω is a mesh face if it has positive pd´1q-dimensional measure
and if either there exist K1, K2 P Kh such that F Ă BK1 X BK2 (and F is called an
interface) or there exists K P Kh such that F Ă BKXBΩ (and F is called a boundary
face). Interfaces are collected in the set F i

Kh
, boundary faces in Fb

Kh
and we let

FKh
:“ F i

Kh
Y Fb

Kh
. The diameter of a face F P FKh

, is denoted by hF . Moreover,
we set, for all K P Kh, FK :“ tF P FKh

| F Ă BKu. According to the context,
the notation |¨| is used for the d- or the pd´1q-dimensional Lebesgue measure. In
the rest of this section, we discuss some fairly general regularity conditions on the
mesh sequence KH that allow us to prove basic results such as trace and inverse
inequalities and polynomial approximation properties.
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Figure 1. Mesh Kh (solid lines) and pyramidal submesh Ph

(dashed lines)

Definition 1 (Shape- and contact-regularity). The mesh sequence KH is shape-
and contact-regular if for all h P H, Kh admits a matching simplicial submesh Th
such that

(i) Shape-regularity. There exists a real �1 ą 0 independent of h such that, for
all h P H and all simplex T P Th of diameter hT and inradius rT , there holds
�1hT ď rT .

(ii) Contact-regularity. There exists a real �2 ą 0 independent of h such that,
for all h P H, all K P Kh, and all T P TK :“ tT P Th | T Ă Ku, there holds
�2hK ď hT .

2.2. Admissible mesh sequences. The discrete space introduced in this work
requires to identify a set of points which play a pivotal role in the construction.

Definition 2 (Cell centers). The mesh sequence KH admits a set of cell centers if,
for all h P H and all K P Kh, there exists a point xK such that K is star-shaped
with respect to xK (the cell center) and, for all F P FK , there holds,

(1) dK,F ě �3hK ,

where dK,F denotes the orthogonal distance between xK and F and �3 ą 0 is
independent of h.

Let KH admit a set of cell centers. We define for all h P H the pyramidal submesh

Ph “ tKF uKPKh, FPFK
,

where, for all K P Kh and all F P FK , KF denotes the open pyramid of apex
xK and base F . An example of mesh Kh and associated pyramidal submesh Ph is
provided in Figure 1. Each element of Ph is associated to a unique element K P Kh

and a unique face F P FK . When this link is irrelevant, the generic element of Ph is
noted P instead of KF . The pyramids tKF uKPKh, FPFK

are nondegenerate owing to
assumption (1). In the two-dimensional case, Ph is matching and simplicial while,
in higher dimension, it is in general not simplicial. Owing to the planarity of faces,
there holds for all K P Kh and all F P FK ,

(2) |KF | “
|F | dK,F

d
.

The set of faces of Ph (including the mesh faces in FKh
as well as the lateral faces

of the pyramids) is denoted by FPh
and we let F i

Ph
:“ FPh

zFb
Kh

and Fb
Ph

:“ Fb
Kh

.
Additionally, for all P P Ph, we introduce the set FP :“ tF P FPh

| F Ă BP u.
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6 DANIELE A. DI PIETRO AND SIMON LEMAIRE

Lemma 3 (Shape- and contact-regularity of the pyramidal submesh). Let KH
admit a set of cell centers. Then, if KH is shape- and contact-regular, the same
holds for PH.

Proof. Let h P H. By assumption, Kh admits a matching simplicial submesh Th. A
matching simplicial submesh Th of the pyramidal submesh Ph can be constructed
as follows: For all K P Kh and all F P FK (i) a pd´1q-simplicial mesh SF of F is
obtained taking the trace of Th on F ; (ii) a d-simplicial mesh TKF

of the pyramid
KF is then obtained connecting the (hyperplanar) elements in SF to the cell center.
A matching simplicial submesh of Ph is obtained by setting

Th :“
ď

KPKh, FPFK

TKF
.

(i) Shape-regularity. We prove that there exists a real �1
1 ą 0 independent of

h such that �1
1hT ď rT for all T P Th. Let KF P Ph and T P TKF

be given.
Denoting by rT the inradius of T , letting AT :“ |BT | and σ :“ BT XF , there holds
d |T | “ rTAT “ |σ| dK,F , hence

(3) rT “
|σ| dK,F

AT
.

Since the pd ´ 1q-dimensional measure of each face of T is bounded by hd´1
K and

T has pd ` 1q faces, there holds AT ď pd ` 1qhd´1
K . Now let S P Th be the unique

simplex such that BS X F “ σ and S Ă K. Denoting by rσ the inradius of σ, and
observing that rσ ě rS by a simple argument based on the Pythagorean theorem,
it is inferred |σ| ě |Bd´1| rd´1

σ ě |Bd´1| rd´1
S ě |Bd´1| p�1�2qd´1hd´1

K owing to the
shape- and contact-regularity of Kh (Bd´1 denotes here the pd´1q-dimensional unit
ball). Plugging these inequalities into (3), it is inferred

rT ě
|Bd´1| p�1�2qd´1

d ` 1
dK,F ě �3

|Bd´1| p�1�2qd´1

d ` 1
hT ,

and the conclusion follows with �1
1 “ �3 |Bd´1| p�1�2qd´1{pd ` 1q.

(ii) Contact-regularity. We prove that there exists a real �1
2 ą 0 independent of

h such that, for all KF P Ph and all T P TKF
, �1

2hKF
ď hT . To this end, we

invoke (1) to infer, for all KF P Ph and all T P TKF
, hT ě dK,F ě �3hK ě �3hKF

,
where hKF

denotes the diameter of KF . The conclusion follows with �1
2 “ �3. �

We close this section with the following definition.

Definition 4 (Admissible mesh sequence). The mesh sequence KH is admissible
if it is shape- and contact-regular and it admits a set of cell centers. For an admis-
sible mesh sequence, the reals �1, �2, and �3, are collectively referred to as mesh
regularity parameters.

2.3. Broken function spaces and polynomial approximation. For Sh P

tKh,Phu and an integer k ě 0, we introduce the broken polynomial space

(4) Pk
d pShq :“ tv P L2

pΩq | @S P Sh, v|S P Pk
d pSqu,

where Pk
d denotes the space of polynomial functions of total degree at most k.

Broken polynomial spaces are a special instance of broken Sobolev spaces: For an
integer l ě 1,

H l
pShq :“ tv P L2

pΩq | @S P Sh, v|S P H l
pSqu.
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We define the broken gradient denoted by ∇h and acting on functions v P H1pShq

such that p∇hvq
|S :“ ∇pv|Sq, for all S P Sh. We also define the broken divergence

of a vector-valued field v P H1pShq
d denoted by ∇h¨v, and the broken symmetric

gradient εhpvq, respectively, as the trace and as the symmetric part of the broken
tensor-gradient ∇hv. The shape- and contact-regularity of the mesh sequences
KH and PH are instrumental to prove the following result; see [17, Lemmata 1.46
and 1.49].

Lemma 5 (Trace inequalities). Let KH be an admissible mesh sequence, and
denote by PH the corresponding sequence of pyramidal submeshes. Then, there
exist two reals Ctr and Ctr,c independent of h such that, for all h P H with
Sh P tKh,Phu,

(5) @vh P Pk
d pPhq , @P P Ph, @F P FP , }vh}L2pF q ď Ctrh

´1{2
F }vh}L2pP q,

(6)

@v P H1
pShq, @S P Sh, @F P FS , }v}L2pF q ď Ctr,c

´

h´1
S }v}

2
L2pSq`hS |v|

2
H1pSq

¯1{2

.

For every interface F P F i
Sh

, Sh P tKh,Phu, we introduce an arbitrary but fixed
ordering of the elements S1 and S2 such that F Ă BS1 XBS2 and let nF :“ nS1,F “

´nS2,F , where nSi,F , i P t1, 2u, denotes the unit normal to F pointing out of Si.
The orientation of the normal remains coherent when F P F i

Kh
is regarded as an

element of F i
Ph

. For all S P Sh, we also introduce the symbol nS to denote the
vector-valued field such that nS |F “ nS,F for all F P FS . On boundary faces
F P Fb

Ph
, nF denotes the unit normal pointing out of Ω.

We next introduce jump and average trace operators that are widely used in
the context of nonconforming finite element methods. For a face F P F i

Ph
with

F Ă BP1 X BP2 and a scalar-valued function v admitting a possibly two-valued
trace on F we set,

�v�F :“ v|P1 ´ v|P2 , tvuF :“ 1
2

`

v|P1 ` v|P2

˘

.

If F P Fb
Ph

with F “ BP X BΩ, we conventionally set �v�F “ tvuF :“ v|P . When
applied to vector-valued functions, both the jump and average operators act com-
ponentwise. Whenever no confusion can arise, we omit the subscript F and simply
write �v�, tvu.

We close this section by considering polynomial approximation on admissible
mesh sequences. It has been proved in [17, Lemma 1.40] that, for a shape- and
contact-regular mesh sequence, the number of simplices from the submesh Th con-
tained in each element K P Kh is bounded uniformly in h. This, together with the
results of Dupont and Scott [23], yields the following.

Lemma 6 (Optimal polynomial approximation). Let KH denote a shape- and
contact-regular mesh sequence. Then, for all h P H, all K P Kh, all polynomial
degree k ě 0, all s P t0, . . . , k`1u and all v P HspKq, there holds with Πk

h denoting
the L2-orthogonal projector onto Pk

d pKhq,

(7) |v ´ Πk
hv|HmpKq

ď Capph
s´m
K |v|HspKq

@m P t0, . . . , su,

where Capp is independent of both K and h.
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8 DANIELE A. DI PIETRO AND SIMON LEMAIRE

We also note the following result, which is an immediate consequence of the
trace inequality (6) with Sh “ Kh and of the approximation properties of the
L2-orthogonal projector.

Proposition 7 (Approximation on mesh faces). For an admissible mesh sequence
KH there holds for all h P H, all K P Kh, all F P FK , all polynomial degree k ě 0,
all s P t0, . . . , k ` 1u, and all v P HspKq,

}v ´ Πk
hv}L2pF q ď Ch

s´1{2
K |v|HspKq,

where C “ Ctr,cCapp with Ctr,c defined as in (6) and Capp as in (7).

3. Mimicking the properties of the lowest-order Crouzeix–Raviart

space on general meshes

In this section we present a piecewise affine functional space obtained in the
spirit of [16] that extends the properties (CR1) and (CR2) of the Crouzeix–Raviart
space [15] to general polygonal or polyhedral meshes.

3.1. Construction. In the spirit of ccG methods, we proceed in three steps by
prescribing: (i) the vector space of degrees of freedom Vh; (ii) a gradient recon-
struction Gh, piecewise constant on Ph; (iii) a piecewise affine reconstruction Rh

on Ph, based on the gradient Gh. As for HFV methods [25], the vector space of
DOFs contains cell and face unknowns and is defined by

Vh :“
!

vh “ ppvK P RqKPKh
, pvF P RqFPFKh

q P RKh ˆ RFKh

)

.

The gradient operator generalizes the one of [25], and is composed of a consistent
contribution piecewise constant on the primal mesh Kh plus a subgrid correction
piecewise constant on the pyramidal submesh Ph. More precisely, Gh : Vh Ñ

P0
d pPhq

d realizes the mapping vh ÞÑ Ghpvhq with

(8) Ghpvhq|KF
“ GKF

pvhq :“ GKpvhq ` RKF
pvhq, @K P Kh, F P FK ,

where, letting xF :“ xxyF (for a function ϕ integrable on F , we define xϕyF :“
ş

F
ϕ{ |F |),

GKpvhq :“ 1
|K|

ÿ

FPFK

|F | vFnK,F ,(9)

RKF
pvhq :“ η

dK,F
pvF ´vK´GKpvhq¨pxF ´ xKqqnK,F ,

and η ą 0 is a user-dependent parameter. With a slight abuse in notation, the
symbols GKF

pvhq, GKpvhq, and RKF
pvhq will also be used to denote the corre-

sponding constant fields on KF , K, and KF , respectively. The reconstruction
operator Rh : Vh Ñ P1

d pPhq realizes the mapping vh ÞÑ Rhpvhq with

(10) Rhpvhq
|KF

pxq “ vF ` Ghpvhq
|KF

¨px ´ xF q, @KF P Ph, @x P KF .

By construction, there holds ∇hRh “ Gh. We emphasize that, in view of Lemma 8
below, the affine reconstruction in KF is obtained by perturbing the face unknown
vF , unlike [16], where the cell unknown vK is used instead. We are now ready to
introduce the discrete space

(11) CRpKhq :“ RhpVhq.
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xF xK
xF1

xF2

KF1

KF2

(a) Element K (solid line),
elementary pyramidal sub-
mesh (dashed line), and
lateral pyramidal face F

shared by the pyramids
KF1 and KF2 (thick dashed
line)

nK,F2

dK,F2

xF

xK

xF2

xF ´xF2
xK´xF2

xF ´xK

(b) Zoom on the pyramid KF2

Figure 2. Notation for the proof of Lemma 8

3.2. Continuity of mean values at interfaces. In this section we prove that the
choice η “ d in (9) yields the continuity of the mean values (or, equivalently, the
barycentric values) of discrete functions across all the interfaces in F i

Ph
(including

lateral pyramidal faces). This is in contrast with the choice η “ d1{2 advocated
in [25] to recover the two-point finite volume scheme on superadmissible meshes.

Lemma 8 (Continuity of mean values at interfaces). Let Kh belong to an admis-
sible mesh sequence and, if Kh is not matching simplicial, assume η “ d in (9).
Then, there holds for all vh P CRpKhq,

@F P F i
Ph

, x�vh�yF “ 0.

Proof. Let F P F i
Ph

, vh P Vh, and set vh :“ Rhpvhq P CRpKhq. We distinguish two
cases.

(i) If F P F i
Kh

is a face of the primal mesh Kh, the fact that x�vh�yF “ 0 is an
immediate consequence of choosing vF as a starting point in (10).

(ii) If F P F i
Ph

zF i
Kh

is a lateral pyramidal face, there exist a unique element
K P Kh and two faces F1, F2 P FK such that F Ă BKF1 X BKF2 (cf. Figure 2a).

There holds for i P t1, 2u (cf. Figure 2b),

pxF ´ xFi
q¨nK,Fi

“ pxF ´ xKq¨nK,Fi
` pxK ´ xFi

q¨nK,Fi

“

ˆ

d ´ 1
d

´ 1
˙

dK,Fi
“ ´

dK,Fi

d
,

where we have used the fact that xF is the barycenter of the pd´1q-simplex F
to treat the term pxF ´xKq¨nK,Fi

. Using the above result together with (9) it is
inferred for i P t1, 2u,

αi :“ RKFi
pvhq¨pxF ´ xFi

q “ ´
η

d
pvFi

´ vK ´ GKpvhq¨pxFi
´ xKqq .
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10 DANIELE A. DI PIETRO AND SIMON LEMAIRE

Using the definition of the jump operator and substituting the expression (10) for
the barycentric values vh|KFi

pxF q, i P t1, 2u, we obtain

(12)

x�vh�yF “ vh|KF1
pxF q ´ vh|KF2

pxF q

“ vF1 ´ vF2 ´ GKpvhq¨pxF1 ´ xF2q ` α1 ´ α2

“

´

1 ´
η

d

¯

pvF1 ´ vF2 ´ GKpvhq¨pxF1 ´ xF2qq .

If Kh is a matching simplicial mesh, GKpvhq coincides by definition with the stan-
dard Crouzeix–Raviart gradient (cf. also Proposition 9), hence the second factor
in (12) vanishes, otherwise the assumption η “ d is needed to infer x�vh�yF “ 0,
thereby concluding the proof. �

The following result establishes a link with the classical Crouzeix–Raviart space
CRpKhq.

Proposition 9 (The matching simplicial case). Assume that Kh is a matching
simplicial mesh. Then, for all η ą 0 in (9) there holds

(13) CRpKhq Ă CRpKhq.

Proof. Let vh P CRpKhq and set vh :“ ppvhpxKqqKPKh
, pvhpxF qqFPFKh

q. By defini-
tion there holds (cf. (9)) GKpvhq “ p∇hvhq|K for all K P Kh. Using the linearity
of vh inside each element it is inferred RKF

pvhq “ 0, hence GKF
pvhq “ GKpvhq “

p∇hvhq|K for all F P FK . As a consequence, we conclude that vh “ Rhpvhq P

CRpKhq. �

3.3. Approximation. In this section we introduce a suitable interpolator on
CRpKhq and study its approximation properties. Let ICR

h : H1pΩq Ñ CRpKhq

be such that, for all v P H1pΩq, ICR
h pvq “ Rhpvhq with

(14) Vh Q vh “ ppΠ1
hvpxKqqKPKh

, pxvyF qFPFKh
q.

When applied to vector-valued fields, ICR
h acts componentwise.

Lemma 10 (Approximation in CRpKhq). For all η ą 0 in (9) and all v P H1pΩq

there holds with vh :“ ICR
h pvq P CRpKhq,

(15) Π0
hp∇hvhq “ Π0

hp∇vq,

where Π0
h denotes the L2-orthogonal projector on P0

d pKhq
d. Moreover, there exists

a real C ą 0 independent of the meshsize such that, for all h P H, all K P Kh, all
v P H1pΩq X H l`1pKhq, l P t0, 1u, there holds, with vh :“ ICR

h pvq,

(16) }v ´ vh}L2pKq ` hK}∇v ´ ∇hvh}L2pKqd ď Chl`1
K |v|Hl`1pKq.

Proof. To avoid naming generic constants, we use the notation a À b for the in-
equality a ď Cb with C ą 0 independent of the meshsize.

(i) Equality (15). For a given v P H1pΩq, let vh be defined as in (14). We start by
noting the following orthogonality relation (cf. [25, eq. (27)]) valid for all wh P Vh

and all K P Kh:

(17)
ÿ

FPFK

|KF |RKF
pwhq “ 0.
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AN EXTENSION OF THE CROUZEIX–RAVIART SPACE 11

As a consequence, for all K P Kh there holds,

Π0
hp∇hvhq

|K “ GKpvhq “
1

|K|

ÿ

FPFK

|F | xvyFnK,F “
1

|K|

ż

BK

vnK “ Π0
hp∇vq

|K ,

where we have used the planarity of faces and Green’s formula. Relation (15)
follows.

(ii) Inequality (16). Let v P H1pΩq X H l`1pKhq and define vh as in (14). We
first estimate }∇v ´ ∇hvh}L2pKqd , K P Kh. Using (8), the previous point, and the
triangular inequality we infer

}∇v ´ ∇hvh}L2pKqd ď }∇v ´ Π0
hp∇vq}L2pKqd

`

˜

ÿ

FPFK

|KF | |RKF
pvhq|

2

¸
1
2

:“ T1 ` T2.

Using the approximation properties of the L2-orthogonal projector it is readily
inferred that T1 À hl

K |v|Hl`1pKq. To estimate the second term, we preliminarily
observe that there holds for all F P FK with wh :“ Π1

hv (Π1
h denotes here the

L2-orthogonal projector on P1
d pKhq),

(18)
RKF

pvhq “
η

dK,F
pxvyF ´ whpxKq ´ GKpvhq¨pxF ´ xKqqnK,F

“
η

dK,F
pαK,F ` βK,F qnK,F ,

where αK,F :“ xvyF ´xwh|Ky
F
, βK,F :“

`

∇wh|K ´ GKpvhq
˘

¨pxF ´xKq, and, since
wh|K is affine in K, whpxKq “ xwh|Ky

F
´ ∇wh|K ¨pxF ´ xKq. There follows from

equation (18),

T2
2 À

ÿ

FPFK

|KF |

d2
K,F

|αK,F |
2

`
ÿ

FPFK

|KF |

d2
K,F

|βK,F |
2 :“ T2,1 ` T2,2.

Using (2), the Cauchy–Schwarz inequality, the mesh regularity assumption (1),
the fact that cardpFKq is bounded uniformly in h (cf. [17, Lemma 1.41]), and
Proposition 7 it is inferred,

T2,1 “
1
d

ÿ

FPFK

1
dK,F |F |

ˆ
ż

F

v ´ wh

˙2

ď
1
d�3

ÿ

FPFK

1
hK

}v ´ wh}
2
L2pF q À h2l

K |v|
2
Hl`1pKq

.

On the other hand, since |xF ´ xK | ď hK and both ∇wh|K and GKpvhq are
constant on K, there holds

T2,2 ď

ÿ

FPFK

|KF |
h2
K

d2
K,F

|∇wh|K ´ GKpvhq|
2

ď
1
�2
3

}∇wh|K ´ Π0
hp∇vq}

2
L2pKqd

À h2l
K |v|

2
Hl`1pKq

,
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12 DANIELE A. DI PIETRO AND SIMON LEMAIRE

where we have used the mesh regularity assumption (1) together with (15), and con-
cluded using the approximation properties of the L2-orthogonal projector. Gather-
ing up the bounds on T1 and T2 it is inferred

(19) }∇v ´ ∇hvh}L2pKqd À hl
K |v|Hl`1pKq.

To complete the proof of inequality (16) it only remains to estimate }v ´ vh}L2pKq.
To this end, letting again wh :“ Π1

hv, we apply the triangular inequality to infer

}v ´ vh}L2pKq ď }v ´ wh}L2pKq ` }wh ´ vh}L2pKq :“ T1 ` T2.

The approximation properties of the L2-orthogonal projector readily yield T1 À

hl`1
K |v|Hl`1pKq. For the second term, we notice that for all F P FK and all x P KF ,

the linearity of both wh|K and vh|KF
yields

wh|Kpxq “ xwh|Ky
F

` ∇wh|K ¨px ´ xF q, vh|KF
pxq “ xvyF ` ∇vh|KF

¨px ´ xF q.

As a consequence,

}wh ´ vh}
2
L2pKF q À

ż

KF

pxwh|K ´ vy
F

q
2

`

ż

KF

“

p∇wh|K ´ ∇vh|KF
q¨px ´ xF q

‰2

:“ T2,1 ` T2,2.

Using (2), the Cauchy–Schwarz inequality, and Proposition 7 it is inferred that

T2,1 “
|F | dK,F

d
pxwh|K ´ vy

F
q
2

ď
dK,F

d
}wh|K ´ v}

2
L2pF q À h

2pl`1q

K |v|
2
Hl`1pKq

.

Since |x ´ xF | ď hK for all x P KF and both ∇wh|K and ∇vh|KF
are constant on

KF , the estimate (19) yields

T2,2 ď h2
K}∇wh|K ´ ∇vh|KF

}
2
L2pKF qd

À h
2pl`1q

K |v|
2
Hl`1pKq.

Summing over F P FK , using the bounds for T2,1 and T2,2 together with the fact
that cardpFKq is bounded uniformly in h, it is inferred that T2 À hl`1

K |v|Hl`1pKq,
thereby yielding }v ´ vh}L2pKq À hl`1

K |v|Hl`1pKq, and therefore concluding the
proof. �

Remark 11 (The matching simplicial case). When Kh is matching simplicial, the
proof of Lemma 10 can be simplified exploiting the result of Proposition 9 to infer

inf
vhPCRpKhq

}v ´ vh}H1pKq ď inf
vhPCRpKhq

}v ´ vh}H1pKq,

and conclude using the approximation properties of the standard Crouzeix–Raviart
space.

For all w P Hpdiv;Phq :“ tv P L2pΩq
d

| @P P Ph,∇¨pv|P q P L2pP qu let

(20) Dhpwq :“ Π0
hp∇h¨wq.

An immediate consequence of the first point in Lemma 10 is that the discrete vector
space CRpKhqd possesses the following approximation property.

Corollary 12 (Divergence approximation). Let v P H1pΩq
d and vh :“ ICR

h pvq.
There holds

Dhpvhq “ Π0
hp∇¨vq.
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AN EXTENSION OF THE CROUZEIX–RAVIART SPACE 13

Moreover, there exists a real C ą 0 independent of the meshsize such that, for all
h P H, all K P Kh, and all v P H1pΩq

d
X H1

pdiv;Khq with

H1
pdiv;Khq :“ tv P Hpdiv; Ωq | ∇h¨v P H1

pKhqu

and vh :“ ICR
h pvq,

}∇¨v ´ Dhpvhq}L2pKq ` hK |∇¨v ´ Dhpvhq|H1pKq ď ChK |∇¨v|H1pKq.

Thus, according to Corollary 12 and Lemma 10 (which gives an H1-stability prop-
erty), ICR

h can play the role of a Fortin operator [10] for the Stokes problem; see
the proof of Lemma 26.

4. Applications

In this section we present two applications where the properties of the dis-
crete space (11) are instrumental in designing a suitable numerical approximation,
namely linear elasticity for quasi-incompressible materials and the Stokes problem.

4.1. Discrete H1
0 -norm. For problems naturally set in H1

0 pΩq, boundary condi-
tions can be accounted for in a strong manner by introducing the following subspace
of CRpKhq:

(21) CR0pKhq :“ RhpVh,0q, Vh,0 “ tvh P Vh | vF “ 0, @F P Fb
Kh

u.

In the following proposition we show that the L2-norm of the broken gradient is
a norm on CR0pKhq by proving uniform discrete equivalence with the usual dG
norm; cf. [17, Section 5.1]:

(22) }vh}
2
dG :“ }∇hvh}

2
L2pΩqd

` |vh|
2
J, |vh|

2
J :“

ÿ

FPFPh

1
hF

}�vh�}
2
L2pF q.

Proposition 13 (Discrete norm). Assume η “ d in (9). Then, there exists a real
C ą 0 independent of the meshsize such that, for all vh P CR0pKhq,

}∇hvh}L2pΩqd ď }vh}dG ď C}∇hvh}L2pΩqd .

Proof. The notation a À b stands for a ď Cb with C ą 0 independent of the
meshsize. Clearly, }∇hvh}L2pΩqd ď }vh}dG for all vh P CR0pKhq. To prove that
}vh}dG À }∇hvh}L2pΩqd for all vh P CR0pKhq, it suffices to show that |vh|J À

}∇hvh}L2pΩqd . Let P P Ph and F P FP . Owing to the linearity of vh inside P there
holds for all x P P , vh|P pxq “ xvh|P y

F
` ∇vh|P ¨ px ´ xF q. This together with

Lemma 8 and the discrete trace inequality (5) yields

(23)
}�vh�}L2pF q “ }�vh� ´ x�vh�yF }L2pF q ď hF }�∇hvh�}L2pF qd

À h
1{2
F

ÿ

PPPF

}∇vh|P }L2pP qd ,

where we have set PF :“ tP P Ph | F Ă BP u. Using (22) together with (23) and
the Cauchy–Schwarz inequality it is inferred that

(24)

|vh|
2
J “

ÿ

FPFPh

1
hF

}�vh� ´ x�vh�yF }
2
L2pF q

À

ÿ

FPFPh

ÿ

PPPF

}∇vh|P }
2
L2pP qd

À }∇hvh}
2
L2pΩqd

,
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14 DANIELE A. DI PIETRO AND SIMON LEMAIRE

where the last bound is a consequence of the fact that the maximum number of
faces of a pyramid is bounded uniformly in h since Ph is shape- and contact-regular;
cf. [17, Lemma 1.41]. �

4.2. Quasi-incompressible linear elasticity. We tackle here the question of the
accurate approximation of the linear elasticity equations in the quasi-incompressible
limit on general polygonal or polyhedral meshes. The main sources of inspiration
are the classical works of Brenner and Sung [9], and Hansbo and Larson [28, 29].

4.2.1. Setting. We consider a homogeneous elastic material occupying the polyg-
onal/polyhedral domain Ω Ă Rd, and whose mechanical properties are described
by the real Lamé parameters λ and μ with 0 ă μ ă `8 and 0 ă λ ď `8. The
mechanical behavior of the material is governed by the linear elasticity equations,

(25)
´∇¨σpuq “ f in Ω,

u “ 0 on BΩ,

where u denotes the vector-valued displacement field, f P L2pΩq
d the forcing term,

and the Cauchy stress tensor is defined for all v P H1pΩq
d by Hooke’s law,

σpvq :“ 2μεpvq ` λ∇¨vId, εpvq :“ 1
2

p∇v ` ∇vT
q.

Setting U :“ H1
0 pΩq

d, the weak formulation of problem (25) reads: Find u P U
such that

(26) ãpu,vq “ pf ,vqL2pΩqd @v P U ,

where ãpu,vq :“ pσpuq, εpvqqL2pΩqd,d . The well-posedness of the weak formula-
tion (26) relies on Korn’s inequality in U (cf., e.g., [1, Lemma 5.3.2]),

(27) }∇v}L2pΩqd,d ď
?

2}εpvq}L2pΩqd,d @v P U .

The use of Korn’s inequality can be circumvented for the pure displacement problem
using the following alternative Navier–Cauchy formulation: Find u P U such that
(28)
apu,vq :“ pμ∇u,∇vqL2pΩqd,d `ppμ ` λq∇¨u,∇¨vqL2pΩq “ pf ,vqL2pΩqd @v P U .

This naturally coercive formulation is equivalent to (26) for homogeneous materials
and pure Dirichlet boundary conditions. Throughout the rest of this section we
focus on this alternative form. The treatment of mixed-type boundary conditions
is addressed in Section 4.2.5. We recall the following regularity result valid in d “ 2;
cf., e.g., [9, Lemma 2.2].

Lemma 14 (Regularity). Let d “ 2 and assume that Ω is convex. Then, prob-
lem (25) has a unique solution u P U˚ :“ U X H2pΩq

d. Moreover, there exists
a real Cμ ą 0 only depending on Ω and μ but not on λ, such that, for λ large
enough,

(29) Nelpuq :“ }u}H2pΩqd ` |λ∇¨u|H1pΩq ď Cμ}f}L2pΩqd .

This implies, in particular, that, if λ Ñ `8, the divergence of the displacement
field approaches zero, corresponding to a quasi-incompressible material; cf. [19] for
a generalization to composite materials.
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4.2.2. Discretization. Let Kh belong to an admissible mesh sequence in the sense
of Definition 4. We consider an approximation of the displacement field in the space

Uh :“ CR0pKhq
d
,

with CR0pKhq defined by (21). Henceforth we assume the choice η “ d in (9),
so that the continuity of mean values stated in Lemma 8 holds. Lowest-order,
locking-free discretizations of (25) satisfy an estimate of the form

(30) }u ´ uh}el ď Ch}f}L2pΩqd ,

where }¨}el is a (discrete) energy norm and C ą 0 is a constant possibly depending
on μ and on the mesh regularity parameters but independent of h, λ, and u. The
key point is here that the multiplicative constant in the right-hand side of (30)
does not blow up in the limit λ Ñ `8, i.e., the method converges uniformly in λ.
To obtain (30) we prove that in general space dimension there holds with Nelpuq

defined by (29),
}u ´ uh}el ď CelhNelpuq,

where Cel ą 0 has the same dependencies as C, and then invoke the regularity
estimate in Lemma 14 to conclude in d “ 2. The discrete problem reads: Find
uh P Uh such that

(31) ahpuh,vhq “ pf ,vhqL2pΩqd @vh P Uh,

with discrete bilinear form ah such that

(32)
ahpw,vq :“pμ∇hw,∇hvqL2pΩqd,d ` pμ∇h¨w,∇h¨vqL2pΩq

` pλDhpwq, DhpvqqL2pΩq.

The last term in the right-hand side is treated using the discrete divergence Dh

defined in Corollary 12 since the approximation properties of Dh are instrumental
to ensure that λ only appears in terms of the form |λ∇¨u|H1pΩq in the right-hand
side of the error estimate (cf., in particular, the bound for the consistency term in
the proof of Theorem 18).

Remark 15 (Implementation). In (31), cell-centered unknowns for a given element
K P Kh are only linked with the face unknowns located on the boundary of K.
As a result, they can be locally eliminated by taking the Schur complement of
the corresponding block in the local matrix. This requires, in general, to inverse
a d ˆ d matrix. However, this cost can be further reduced by replacing in (32)
the term pμ∇h¨uh,∇h¨vhqL2pΩq by pμDhpuhq, DhpvhqqL2pΩq. This choice avoids,
without jeopardizing the approximation, the interaction of the cell unknowns for
the different components of the displacement, hence the corresponding block of the
local matrix is diagonal and trivial to invert.

The energy norm associated to the bilinear form ah is

(33) }v}
2
el :“ ahpv,vq “ }μ

1{2∇hv}
2
L2pΩqd,d

` }μ
1{2∇h¨v}

2
L2pΩq ` }λ

1{2Dhpvq}
2
L2pΩq.

Lemma 16 (Coercivity). There holds for all vh P Uh,

ahpvh,vhq “ }vh}
2
el ě μ}∇hvh}

2
L2pΩqd,d

.
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16 DANIELE A. DI PIETRO AND SIMON LEMAIRE

The well-posedness of the discrete problem (31) then follows from the Lax–
Milgram Lemma and Proposition 13. Now let U˚h :“ U˚ ` Uh with U˚ defined
in Lemma 14, and extend the bilinear form ah to U˚h ˆ U˚h. Assuming u P U˚

ensures that the boundary terms in the expression of the consistency error are
well-defined; cf. Lemma 17. This additional regularity is verified, e.g., under the
assumptions of Lemma 14.

Lemma 17 (Weak consistency). Let u P U denote the solution to (28) and addi-
tionally assume u P U˚. Then, there holds for all vh P Uh,

ahpu,vhq “ pf ,vhqL2pΩqd ` Ehpvhq,

where, letting τpuq :“ μ∇u ` pμ ` λqp∇¨uqId,

(34) Ehpvhq :“
ÿ

FPFPh

pτpuqnF , �vh�qL2pF qd ` pλpDhpuq ´ ∇¨uq,∇h¨vhqL2pΩq.

Proof. Observing that pλDhpuq, DhpvhqqL2pΩq “ pλDhpuq,∇h¨vhqqL2pΩq, and sum-
ming and subtracting pλ∇¨u,∇h¨vhqL2pΩq from the right-hand side of (32) with
pw,vq “ pu,vhq yields

ahpu,vhq “ pτpuq,∇hvhqL2pΩqd,d ` pλpDhpuq ´ ∇¨uq,∇h¨vhqL2pΩq.

Integrating by parts the first term elementwise, rearranging the boundary contri-
butions, and using �τpuq�FnF “ 0 and tτpuquFnF “ τpuqnF for all F P F i

Ph
, it

is inferred that

pτpuq,∇hvhqL2pΩqd,d “ ´p∇¨τpuq,vhqL2pΩqd `

ÿ

PPPh

pτpuqnP ,vh|P qL2pBP qd

“ pf ,vhqL2pΩqd `

ÿ

FPF i
Ph

p�τpuq�nF , tvhuqL2pF qd

`

ÿ

FPFPh

ptτpuqunF , �vh�qL2pF qd

“ pf ,vhqL2pΩqd `

ÿ

FPFPh

pτpuqnF , �vh�qL2pF qd ,

where we have used ´∇¨τ puq “ f a.e. in Ω in the second line (cf. (28)). This
concludes the proof. �

In the following theorem the continuity of mean values at interfaces plays an
important role in estimating the boundary contribution in the consistency error.

Theorem 18 (Error estimate for (31)). Let u P U denote the solution to (28)
and additionally assume u P U˚. Then, there exists Cel ą 0 independent of the
meshsize, of λ, and of u such that, denoting by uh P Uh the solution to (31),
there holds

(35) }u ´ uh}el ď CelhNelpuq.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN EXTENSION OF THE CROUZEIX–RAVIART SPACE 17

Proof. We note a À b the inequality a ď Cb where C ą 0 has the same dependence
as the constant Cel in (35). The Cauchy–Schwarz inequality yields boundedness in
the form ahpw,vq ď }w}el}v}el for all pw,vq P U˚h ˆ U˚h. This, together with
Lemmas 16 and 17 and the Second Strang Lemma [32] (cf. also [24, Lemma 2.25]),
yields:

(36) }u ´ uh}el À inf
vhPUh

}u ´ vh}el ` sup
vhPUhzt0u

|Ehpvhq|

}vh}el
:“ T1 ` T2.

The first term in the right-hand side depends on the approximation properties of the
discrete space in the }¨}el-norm, while the second is linked to the consistency error.
Let wh :“ ICR

h puq P Uh. Using Lemma 10 twice and Corollary 12 respectively to
treat the three terms in the right-hand side of (33) with v “ u ´ wh we infer,

(37) T1 ď }u ´ wh}el À h}u}H2pΩqd ` h|λ
1{2∇¨u|H1pΩq.

To treat the consistency error, denote by T2,1 and T2,2 the two terms in the right-
hand side of (34). Let

φμ :“ μp∇u ´ Π0
hp∇uqq, ψs :“ sp∇¨u ´ Π0

hp∇¨uqq, with s P tμ, λu.

Clearly, ψμ “ trpφμq. Using the continuity of mean values at interfaces together

with the fact that both tμΠ0
hp∇uquF and tsΠ0

hp∇¨uquF , s P tμ, λu, are constant
on every F P FPh

, it is inferred that

T2,1 “

ÿ

FPFPh

ptτpuq ´ Π0
hpτpuqqunF , �vh� ´ x�vh�yF qL2pF qd

“

ÿ

FPFPh

ptφμ ` ψμIdunF , �vh� ´ x�vh�yF qL2pF qd

`

ÿ

FPFPh

ptψλunF , �vh� ´ x�vh�yF qL2pF qd .

The Cauchy–Schwarz inequality followed by the trace inequality (6) with Sh “ Ph,
the fact that the maximum number of faces of a pyramid is bounded uniformly in
h, the approximation properties of the L2-orthogonal projection, and (24) yield

(38)

T2,1 À

#

ÿ

PPPh

h

ˆ

}φμ|P }
2
L2pBP qd,d

` }ψλ|P }
2
L2pBP q

˙

+
1
2

ˆ

#

ÿ

FPFPh

h´1
F }�vh� ´ x�vh�yF }

2
L2pF qd

+
1
2

À hNelpuq}vh}el,

where the bound }∇hvh}L2pΩqd,d À }vh}el is a consequence of Lemma 16. Finally,
using the Cauchy–Schwarz inequality together with the approximation properties
of the L2-orthogonal projection and Lemma 16 it is inferred that

(39) T2,2 ď }λpΠ0
hp∇¨uq ´ ∇¨uq}L2pΩq}∇h¨vh}L2pΩq À h|λ∇¨u|H1pΩq}vh}el.

Using inequalities (37), (38), and (39) to bound the right-hand side of (36) the
conclusion follows. �
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(a) Triangular (b) Kershaw (c) Trapezoidal (d) Hexagonal

Figure 3. Members of the mesh families for the numerical test of Section 4.2.3.

Corollary 19 (Uniform convergence with respect to λ in d “ 2). If d “ 2 the
locking-free error estimate (30) holds with C “ CelCμ.

Remark 20 (Use of Lemma 14). In the proof of Theorem 18, the a priori bound on
|λ∇¨u|H1pΩq is only required to bound T2. For T1, the weaker regularity estimate
}u}H2pΩqd ` |λ1{2∇¨u|H1pΩq À }f}L2pΩqd is sufficient.

Remark 21 (L2-error estimate). Optimal error estimates for the L2-error on the
displacement can be derived using the Aubin–Nitsche trick based on the symmetry
of the method.

4.2.3. A numerical example: the closed cavity problem. To assess the robustness
of the method (31) in the quasi-incompressible limit, we consider the closed cavity
problem of Hansbo and Larson [29]. Although this problem does not exhibit the
regularity required by Theorem 18, it is included as it is one of the simplest bench-
marks for numerical locking. The implementation relies on the general framework
recently introduced in [18], to which we refer for further details.

We let Ω :“ p0, 1q
2, f ” 0, and prescribe a horizontal displacement u “ p1, 0q

on the upper side and u “ p0, 0q on the remaining three. The elastic modulus and
Poisson’s ratio are chosen as E “ 1000 and ν “ 0.4999 respectively. The Lamé
parameters can be derived from the relations λ “

νE
p1`νqp1´2νq

, μ “
E

2p1`νq
, which

show, in particular, that λ Ñ `8 as ν Ñ 1{2. The discrete problem (31) is solved on
the four mesh sequences depicted in Figure 3. From each mesh family, a coarse and
a fine mesh are selected featuring roughly the same number of elements. Figure 4
depicts the values of the horizontal displacement uh,1 along the vertical centerline
x1 “ 1{2 as well as the values of the vertical displacement uh,2 along the horizontal
centerline x2 “ 1{2. The results of the (more expensive) dG method of [19] on the
matching triangular mesh are also included for comparison. As predicted, no sign
of numerical locking is observed.

4.2.4. Variations and links with finite volume and finite element methods.

Flux formulation and local conservation. Following [25, Section 2.4] it is pos-
sible to reformulate the discrete bilinear form (32) in terms of numerical fluxes.
More specifically, introducing Uh :“ Vd

h,0 where Vh,0 is defined by (21), let wh, vh P

Uh be two discrete functions and denote by wh “ pwh,iq1ďiďd P Uh and vh “

pvh,iq1ďiďd P Uh the corresponding vectors of DOFs, where, for all i P t1, . . . , du,
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dG [19] Triangular Kershaw Trapezoidal Hexagonal
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(a) Coarse meshes
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(b) Fine meshes

Figure 4. Results for the closed cavity problem on a coarse and a
fine mesh extracted from the mesh families of Figure 3. Solid lines:
horizontal displacement uh,1 along the vertical centerline. Dashed
lines: vertical displacement uh,2 along the horizontal centerline.

wh,i and vh,i are the vectors of DOFs associated to the ith components of wh and
vh respectively. Our goal is to show that there exists a family of numerical fluxes
pΦK,F pwhqqKPKh, FPFK

with ΦK,F pwhq “ pΦK,F,ipwhqq1ďiďd such that

(40) ahpwh,vhq “

d
ÿ

i“1

ÿ

KPKh

ÿ

FPFK

ΦK,F,ipwhqpvF,i ´ vK,iq,

with ah defined by (32). The main interest of this alternative formulation is that
it allows us to prove a local conservation property similar to those encountered
in standard finite volume methods. Recalling the expression (40) for the bilinear
form ah and using the cell center as a quadrature node to approximate the right-
hand side in each element, the discrete problem (31) in algebraic form reads: Find
uh P Uh such that for all vh P Uh there holds,

(41)
d

ÿ

i“1

ÿ

KPKh

ÿ

FPFK

ΦK,F,ipuhqpvF,i ´ vK,iq “

d
ÿ

i“1

ÿ

KPKh

|K| fipxKqvK,i.

Consider now an interface F P F i
Kh

such that F Ă BK1 X BK2, and let vh,i be such
that vF,i “ 1, vF 1,i “ 0 for all F 1 P FKh

ztF u, and vK,i “ 0 for all K P Kh. There
follows from (41),

(42) ΦK1,F,ipuhq “ ´ΦK2,F,ipuhq,

i.e., the method is locally conservative. An important remark is that the loading
term does not appear in (42) since its approximation in (41) only involves cell
DOFs.
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20 DANIELE A. DI PIETRO AND SIMON LEMAIRE

Proposition 22 (Flux formulation). For all wh, vh P Uh, the flux formula-
tion (40) is obtained setting for all K P Kh, F P FK , and i P t1, . . . , du,

ΦK,F,ipwhq:“
ÿ

F 1PFK

|KF 1 |

«

μGKF 1 pwh,iq¨yK
F 1,F

`

˜

d
ÿ

j“1
μGKF 1 pwh,jq`λGKpwh,jq

¸

¨ej
`

yK
F 1,F ¨ei

˘

ff

,

where wh, vh P Uh are the vectors of DOFs associated to wh and vh, respectively,
peiq1ďiďd denotes the canonical basis of Rd, and

(43) yK
F 1,F :“

$

&

%

|F |

|K|
nK,F `

η
dK,F

´

1 ´
|F |

|K|
nK,F ¨pxF ´ xKq

¯

nK,F if F “ F 1,
|F |

|K|
nK,F ´

η
dK,F 1 |K|

|F |nK,F ¨pxF 1 ´ xKqnK,F 1 otherwise.

Proof. For all vh P Vh, all K P Kh, and all F 1 P FK there holds with GKF 1 pvhq

defined by (8) (cf. [25, eq. (26) et seq.]),

(44) GKF 1 pvhq “

ÿ

FPFK

yK
F 1,F pvF ´ vKq .

Using (8) and (10), and observing that
pλDhpwhq, DhpvhqqL2pΩq “ pλDhpwhq,∇h¨vhqL2pΩq

owing to (20) together with the properties of the L2-orthogonal projector, it is
inferred that

ahpwh,vhq “

d
ÿ

i“1

ÿ

KPKh

ÿ

F 1PFK

|KF 1 |

«

μGKF 1 pwh,iq

`

˜

d
ÿ

j“1
μGKF 1 pwh,jq¨ej ` λGKpwh,jq¨ej

¸

ei

ff

¨GKF 1 pvh,iq.

The conclusion follows using the expression (44) for GKF 1 pvh,iq and exchanging the
sums of indices F and F 1. �
Link with the Crouzeix–Raviart solution on matching simplicial meshes.
Assume that Kh is a matching simplicial mesh and let

CR0pKhq :“ tvh P CRpKhq | vhpxF q “ 0, @F P Fb
Kh

u,

and Ûh :“ CR0pKhqd. We show in this section that a suitable modification of the
right-hand side allows us to recover the Crouzeix–Raviart solution ûh P Ûh such
that (cf. [9]),

(45) ahpûh,vhq “ pf ,vhqL2pΩqd @vh P Ûh.

Let W pPhq :“ tv P H1pPhq | x�v�yF “ 0 for all F P F i
Ph

u, and denote by ICR
h :

W pPhq Ñ CRpKhq the interpolator that maps a function v P W pPhq on the function
vh :“ ICR

h pvq P CRpKhq such that vhpxF q “ xvyF for all F P FKh
. We consider the

following variation of (31): Find uh P Uh such that
(46) ahpuh,vhq “ pf , ICR

h pvhqqL2pΩqd @vh P Uh,

where the sole difference with respect to (31) lies in the treatment of the right-hand
side.
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Lemma 23 (Relation between (45) and (46)). There holds uh “ ûh.

Proof. Let Uh Q ûh “ pûh,iq1ďiďd be such that, for i P t1, . . . , du,

ûh,i “ ppûh,ipxKqqKPKh
, pûh,ipxF qqFPFKh

q P Vh,0.

Clearly, for all K P Kh, all F P FK , and all i P t1, . . . , du, RKF
pûh,iq “ 0, hence

GKF
pûh,iq “ GKpûh,iq “ p∇hûh,iq|K . As a consequence, ûh “ Rhpûhq. Accounting

for this fact, there holds for all vh P Uh such that vh “ Rhpvhq with vh P Uh,

ahpûh,vhq “

d
ÿ

i“1

ÿ

KPKh

ÿ

FPFK

|KF |

!

μGKpûh,iq¨GKF
pvh,iq ` μGKpûh,iq¨eiDKF

pvhq

` λGKpûh,iq¨eiDKpvhq

)

“

d
ÿ

i“1

ÿ

KPKh

|K|

!

μGKpûh,iq¨GKpvh,iq ` pμ ` λqGKpûh,iq¨eiDKpvhq

)

“ ahpûh, ICR
h pvhqq “ pf , ICR

h pvhqqL2pΩqd ,

where the first passage is a consequence of (17) and we have let, for the sake of con-
ciseness DKpvhq :“

řd
j“1 GKpvh,jq¨ej and DKF

pvhq :“
řd

j“1 GKF
pvh,jq¨ej . Owing

to the coercivity of ah, problem (46) admits a unique solution and we therefore
conclude that ûh “ uh. �

4.2.5. Mixed-type boundary conditions. We describe here a possible modification
of the method that allows us to account for homogeneous mixed-type boundary
conditions (the generalization to the nonhomogeneous case is straightforward). The
continuous problem reads

(47)

´∇¨σpuq “ f in Ω,

u “ 0 on BΩD,

σpuqn “ 0 on BΩN,

where BΩD and BΩN are such that BΩD ‰ ∅, BΩDXBΩN “ ∅, and BΩDYBΩN “ BΩ.
Let U :“ H1

DpΩq
d with H1

DpΩq :“ tv P H1pΩq | v|BΩD “ 0u. In this case, the weak
formulation (28) is no longer equivalent to the continuous problem (47), and (26)
must be used instead: Find u P U such that

(48) ãpu,vq “ pf ,vqL2pΩqd @v P U .

The well-posedness of the weak formulation (48) relies on Korn’s inequality (27),
which is still valid on the space H1

DpΩq
d (up to a multiplicative constant depending

on BΩD). Likewise, the regularity estimate of Lemma 14 holds for problem (47) in
the case of a convex polygonal domain with the above definition of U and U˚ :“
U XH2pΩq

d. We introduce the following H1
D-like discrete space to approximate the

displacement field:

CRDpKhq :“ RhpVh,Dq, Vh,D “ tvh P Vh | vF “ 0, @F P Fb,D
Kh

u,

where Fb,D
Kh

:“ tF P Fb
Kh

| F Ă BΩDu. We also introduce the set Fb,N
Kh

:“
Fb

Kh
zFb,D

Kh
. We first note that }∇hvh}L2pΩqd is still a norm on CRDpKhq. Owing
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22 DANIELE A. DI PIETRO AND SIMON LEMAIRE

to the nonconformity of the space we consider, Korn’s inequality only holds in the
following generalized sense (cf. [7, eq. (1.12)]):

}∇hv}L2pΩqd,d ď CK

ˆ

}εhpvq}
2
L2pΩqd,d

` |v|
2
J,D

˙
1
2

,

for any v “ pviq1ďiďd P H1pPhq
d, where CK ą 0 is independent of the meshsize (but

depends on Ω and on the mesh regularity parameters), and |v|2J,D :“
řd

i“1 |vi|
2
J,D

with |v|2J,D :“
ř

FPFPh
zFb,N

Kh

h´1
F }�v�}2

L2pF q
. A completely analogous difficulty arises

for the standard Crouzeix–Raviart space. To overcome this problem, we take in-
spiration from [29] and consider a discrete version of the bilinear form ã which
incorporates a least-square penalization of jumps. More specifically, letting Uh :“
CRDpKhq

d, the discrete problem reads: Find uh P Uh such that
(49) ãhpuh,vhq “ pf ,vhqL2pΩqd @vh P Uh,

where the discrete bilinear form ãh is given by

(50)

ãhpw,vq :“ p2μεhpwq, εhpvqqL2pΩqd,d ` pλDhpwq, DhpvqqL2pΩq

`

ÿ

FPFPh
zFb,N

Kh

h´1
F p2μ�w�, �v�qL2pF qd .

It is worth observing that, while the idea of penalizing jumps to recover a discrete
Korn’s inequality appears natural in the present approach, this is not the case in
other related frameworks for which the notion of affine reconstruction does not
necessarily make sense.

Remark 24 (Implementation). We stress that in this case it is not possible to inte-
grate the penalty term in (50) using the face barycenter as a quadrature point, since
this would yield a vanishing contribution. A quadrature rule exact for polynomials
of degree at least 2 must be used instead. We shall also stress that it is possible to
reformulate the method in terms of face unknowns only as for the pure displacement
problem (cf. Remark 15), since, actually, the penalty term does not establish any
link between neighboring cell unknowns. However, note that this jump’s penaliza-
tion highly increases the stencil of the method in terms of connections between face
unknowns.

The energy norm associated to the bilinear form ãh is

(51) }v}
2
el :“ ãhpv,vq “ }p2μq

1{2εhpvq}
2
L2pΩqd,d

` }λ
1{2Dhpvq}

2
L2pΩq ` |p2μq

1{2v|
2
J,D.

Lemma 25 (Coercivity). There holds for all vh P Uh,
ãhpvh,vhq “ }vh}

2
el ě 2μC´2

K }∇hvh}
2
L2pΩqd,d

.

The well-posedness of problem (49) is now straightforward. Defining U˚h :“
U˚ `Uh and extending ãh to U˚h ˆU˚h, the convergence analysis can be carried
out in a similar way as in Section 4.2.2. Assuming u P U˚, the consistency error
becomes, for all vh P Uh,

Ehpvhq :“
ÿ

FPFPh
zFb,N

Kh

pσpuqnF , �vh�qL2pF qd ` pλpDhpuq ´ ∇¨uq,∇h¨vhqL2pΩq.
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Using the same notation as in the proof of Theorem 18, with wh :“ ICR
h puq P Uh,

the term T1 can be handled as

T1 ď }u ´ wh}el À h}u}H2pΩqd ` h|λ
1{2∇¨u|H1pΩq,

using Lemma 10, Corollary 12, and the trace inequality (6) with Sh “ Ph combined
with Lemma 10, respectively, to treat the three terms in the right-hand side of (51)
with v “ u ´ wh. The remaining terms can be treated by using exactly the same
arguments as in the proof of Theorem 18. As a result, if d “ 2, we again obtain a
locking-free error estimate of the form (30).

4.3. Stokes: inf-sup stability and large irrotational body forces. In this
section we briefly discuss an inf-sup stable method for the Stokes problem with
velocity components in CRpKhq and piecewise constant pressure. We also pinpoint
a general strategy for the treatment of large irrotational forces and apply it to the
proposed method.

4.3.1. Setting and discretization. The link between locking-free approximations of
linear elasticity and inf-sup stable approximations of the Stokes problem is well-
known; cf., e.g., the discussion in [10, Section VI.3]. We consider here a Newtonian
fluid of constant unit viscosity whose motion is governed by the Stokes equations,

(52)

´�u ` ∇p “ f in Ω,
∇¨u “ 0 in Ω,

u “ 0 on BΩ,
ż

Ω
p “ 0,

where f P L2pΩq
d represents the volumetric body force acting on the fluid. Let

U :“ H1
0 pΩq

d, and P :“ L2
0pΩq with L2

0pΩq :“ tq P L2pΩq |
ş

Ω q “ 0u. The weak
formulation of problem (52) reads: Find pu, pq P U ˆ P such that

(53) apu,vq ` bpv, pq ´ bpu, qq “ pf ,vqL2pΩqd @pv, qq P U ˆ P,

where apu,vq :“ p∇u,∇vqL2pΩqd,d and bpv, pq :“ ´p∇¨v, pqL2pΩq. To approxi-
mate (53), let Kh belong to an admissible mesh sequence and define the following
discrete spaces:

Uh :“ CR0pKhq
d
, Ph :“ P0

d pKhq X L2
0pΩq.

We equip Uh with the norm }v}U :“ }∇hv}L2pΩqd,d (see Proposition 13), and Ph

with the norm }q}P :“ }q}L2pΩq. We assume in the following η “ d in (9), so that
the continuity of mean values stated in Lemma 8 holds, and consider the following
discrete problem: Find puh, phq P Uh ˆ Ph such that

(54) ahpuh,vhq ` bhpvh, phq ´ bhpuh, qhq “ pf ,vhqL2pΩqd @pvh, qhq P Uh ˆPh,

where ahpw,vq :“ p∇hw,∇hvqL2pΩqd,d and bhpv, qq :“ ´p∇h¨v, qqL2pΩq. For all
pvh, qhq P Uh ˆ Ph there holds

(55) bhpvh, qhq “ ´pDhpvhq, qhqL2pΩq.
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24 DANIELE A. DI PIETRO AND SIMON LEMAIRE

Lemma 26 (inf-sup stability for bh). There exists β ą 0 independent of the
meshsize, such that, for all qh P Ph,

(56) β}qh}P ď sup
whPUhzt0u

bhpwh, qhq

}wh}U
.

Proof. We sketch the proof for the sake of completeness. Let v P U and vh :“
ICR
h pvq P Uh. Using the triangular inequality followed by (16) with l “ 0, it is

inferred with C independent of the meshsize, }vh}U ď }∇v ´ ∇hvh}L2pΩqd,d `

}∇v}L2pΩqd,d ď C}v}H1pΩqd . This H1-stability property together with Corollary 12
and (55) show that ICR

h can play the role of a Fortin operator, and (56) results
from an application of [10, Proposition II.8]. �

The well-posedness of the discrete problem (54) follows from Lemma 26 together
with the coercivity of ah (an immediate consequence of Proposition 13). Moreover,
as pointed out in [10, Section IV.3], the inf-sup condition proved in Lemma 26 is inti-
mately linked to the good behavior of the method (31) in the quasi-incompressible
limit. In fact, for inf-sup stable approximations of the Stokes problem with dis-
continuous pressures, one can obtain a locking-free primal method for the pure
displacement problem of elasticity by performing static condensation of pressures,
which is equivalent to introducing a projection on divergence terms (this strategy
can, e.g., be pursued for the method of [5, 6]).

Using classical arguments, one can prove the following result, which is invoked
in the discussion of Section 4.3.3. As in Theorem 18, the continuity of mean values
at interfaces is used to bound the consistency error. Optimal error estimates for
the L2-error on the velocity can also be derived using the Aubin–Nitsche trick.

Theorem 27 (Error estimate for (54)). Assume u P U X H2pΩq
d and p P P X

H1pΩq. Then, there holds with Cą0 independent of the meshsize, of u, and of p,

}pu ´ uh, p ´ phq}sto ď ChNstopu, pq,

where

}pv, qq}
2
sto :“ }v}

2
U ` }q}

2
P and Nstopu, pq :“ }u}H2pΩqd ` }p}H1pΩq.

4.3.2. Variations and links with finite volume and finite element methods.

Flux formulation and local conservation. Let pwh, rhq, pvh, qhq P Uh ˆ Ph

be two discrete functions, and denote by pwh, rhq, pvh, qhq P Uh ˆ Ph the cor-
responding vectors of DOFs, where we have set Uh :“ Vd

h,0 and Ph :“ tqh P

RKh |
ř

KPKh
|K| qK “ 0u. Then, proceeding as in Section 4.2.4, one can show

that for the two families of fluxes pΦK,F pwh, rhqqKPKh, FPFK
with ΦK,F pwh, rhq “

pΦK,F,ipwh, rhqq1ďiďd and pφF pwhqqFPFKh
such that (the expression for the vectors

yK
F 1,F is provided in Proposition 22)

ΦK,F,ipwh, rhq :“
ÿ

F 1PFK

|KF 1 |
`

GKF 1 pwh,iq ` rKei
˘

¨yK
F 1,F ,

φF pwhq :“ |F |

d
ÿ

j“1
wF,jnF,j ,
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there holds,

(57)
ahpwh,vhq ` bhpvh, rhq “

d
ÿ

i“1

ÿ

KPKh

ÿ

FPFK

ΦK,F,ipwh, rhqpvF,i ´ vK,iq,

´bhpwh, qhq “

ÿ

FPFKh

φF pwhq�qh�F ,

where ah and bh are defined as in Section 4.3.1 and, with a slight abuse in nota-
tion, we have set for all F P FKh

, �qh�F :“ �qh�F . Approximating the right-hand
side as

řd
i“1

ř

KPKh
|K| fipxKqvK,i in (54), and proceeding as in Section 4.2.4, one

can prove that for every interface F P F i
Kh

such that F Ă BK1 X BK2 there holds
ΦK1,F puh,phq “ ´ΦK2,F puh,phq, where uh,ph are such that uh :“ Rhpuhq and
ph :“ Rhpphq with puh, phq P Uh ˆ Ph solution of (54). Moreover, the mass flux
φF puhq is single-valued, and therefore conservative.

Link with the Crouzeix–Raviart solution on matching simplicial meshes.
Assume Kh matching simplicial. The classical Crouzeix–Raviart/P0

d method con-
sists in finding pûh, p̂hq P Ûh ˆ Ph with Ûh :“ CR0pKhqd such that

(58) ahpûh,vhq ` bhpvh, p̂hq ´ bhpûh, qhq “ pf ,vhqL2pΩqd @pvh, qhq P Ûh ˆPh.

Then, proceeding as in Section 4.2.4, one can easily show that the solution to (58)
can be recovered replacing the right-hand side of (54) by pf , ICR

h pvhqqL2pΩqd .

4.3.3. Large irrotational body forces. We close this section by discussing a general
modification applicable to any suitable discretization of the Stokes equations that
allows a proper treatment of large irrotational body forces, and we apply it to the
method (54). We assume here that the following Helmholtz decomposition of the
volumetric body forces in (52) is available:

(59) f “ Ψ ´ ∇ϕ,

where Ψ P H0pdiv; Ωq :“ tv P Hpdiv; Ωq | ∇¨v “ 0u is a solenoidal vector field
and ϕ P H1pΩq X L2

0pΩq is a scalar potential. It has to be noted that the decom-
position (59) is not always easy to obtain. The weak formulation of problem (52)
with right-hand side given by (59) reads: Find pu, pq P U ˆ P such that

(60) apu,vq ` bpv, pq ´ bpu, qq “ lpvq @pv, qq P U ˆ P,

with bilinear forms a and b defined as in Section 4.3.1 and lpvq :“ pΨ,vqL2pΩqd ´

bpv, ϕq. Denoting by puΨ, pΨq the solution to (60) with ϕ ” 0 (no irrotational body
forces), there holds

(61) u “ uΨ, p “ pΨ ´ ϕ.

As pointed out in [27], mimicking or approaching property (61) at the discrete level
is a key ingredient to obtain an accurate approximation of the velocity field for
large values of }ϕ}H1pΩq. We hence consider the following approximation to (60):
Find puh, phq P Uh ˆ Ph such that

(62) ahpuh,vhq ` bhpvh, phq ´ bhpuh, qhq “ lhpvhq @pvh, qhq P Uh ˆ Ph,

with bilinear forms ah and bh defined as in Section 4.3.1 and

lhpvhq :“ pΨ,vhqL2pΩqd ´ bhpvh,Π0
hϕq.
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The sole difference with respect to (54) lies in the treatment of the source term,
which is designed so that the following property holds true.

Proposition 28 (Discrete counterpart of property (61)). Denote by puΨ,h, pΨ,hq

the solution to problem (62) with ϕ ” 0. There holds

uh “ uΨ,h, ph “ pΨ,h ´ Π0
hϕ.

The following result shows that the velocity approximation is not affected by the
irrotational part of the source term.

Theorem 29 (Error estimate for (62)). Assume u P U X H2pΩq
d and p P P X

H1pΩq. Then, there holds with real numbers C1 ą 0 and C2 ą 0 independent of
the meshsize, of u, and of p, but depending on the mesh regularity parameters
and on Ω,

}u ´ uh}U ď C1hNstopuΨ, pΨq, }p ´ ph}P ď C2h
`

NstopuΨ, pΨq ` }ϕ}H1pΩq

˘

.

Proof. Using Theorem 27 for the approximate solution to problem (60) with ϕ ” 0,
we infer }uΨ ´ uΨ,h}U ` }pΨ ´ pΨ,h}P ď ChNstopuΨ, pΨq, where C ą 0 has the
same dependencies as C1 and C2. The estimate for }u ´ uh}U is an immediate
consequence of (61) and Proposition 28. To estimate }p´ph}P we invoke again (61)
and Proposition 28 to infer }p´ ph}P ď }pΨ ´ pΨ,h}P ` }ϕ´ Π0

hϕ}P , and conclude
using the above estimate for }pΨ ´pΨ,h}P and the approximation properties of the
L2-orthogonal projector. �

In practice, one can solve the problem with ϕ ” 0 and then post-process the pres-
sure approximation according to Proposition 28. To check the theoretical results,
we consider a numerical example based on the following manufactured solution on
the unit square domain Ω :“ p0, 1q2:

u1 “ ´ex1px2 cospx2q`sinpx2qq, u2 “ ex1x2 sinpx2q, pΨ “ 2 exppx1q sinpx2q´C,

with C such that pΨ has zero-mean on Ω, Ψ ” 0, and a potential

ϕ “ χ sinp2πx1q sinp2πx2q,

where χ is a positive parameter that allows to adjust its intensity. In Figure 5 we
compare the numerical results obtained with the modified right-hand side (62) to
those obtained with a standard treatment (54) for the triangular and hexagonal
mesh families depicted in Figure 3a and 3d, respectively. The results confirm that
a standard treatment of the right-hand side does not yield satisfactory results.

Appendix A. Mimicking the properties of the lowest-order

Raviart–Thomas space on general meshes

In the spirit of Section 3.1, it is possible to extend two classical properties of
the lowest-order Raviart–Thomas space to general polygonal or polyhedral meshes,
namely: (i) the (full) continuity of normal components of discrete functions at
interfaces and (ii) the existence of an interpolator which preserves the mean value
of the divergence inside each element. Since the construction as well as the proofs
are similar to the ones presented in Section 3, only the main points are detailed.
For a matching simplicial mesh, we introduce the broken polynomial space

(63) RT0
d pKhq :“ P0

d pKhq
d

` xP0
d pKhq .
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Modified χ “ 1 Modified χ “ 10 Modified χ “ 100
Standard χ “ 1 Standard χ “ 10 Standard χ “ 100
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(a) Triangular mesh family
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(b) Hexagonal mesh family

Figure 5. Effect of the treatment of the right-hand side (62)
(Modified, solid lines) vs. (54) (Standard, dashed lines) when large
irrotational volumetric forces are present. For a standard treat-
ment of the right-hand side, the error on the velocity increases
with χ.

The standard lowest-order Raviart–Thomas space is the subspace of Hpdiv; Ωq of
functions belonging to RT0

d pKhq. To perform a similar construction on general
polygonal or polyhedral meshes, we consider the following space of DOFs, com-
posed of vector cell unknowns and scalar face unknowns associated to the normal
component of the discrete vector field:

Vh :“ tvh “ ppvK P Rd
qKPKh

, pvnF P RqFPFKh
qu.

As it is the case for the extension of the Crouzeix–Raviart space discussed in Sec-
tion 3, cell unknowns are used to define a piecewise constant subgrid correction
on the pyramidal submesh. The main difference with respect to the construction
of Section 3 is that we now define an isotropic instead of a full gradient operator.
More specifically, we introduce the operator Gh : Vh Ñ P0

d pPhq which realizes the
mapping vh ÞÑ Ghpvhq with

Ghpvhq
|KF

“ GKpvhq ` RKF
pvhq, @K P Kh, @F P FK ,

where

(64)
GKpvhq :“ 1

d |K|

ÿ

FPFK

|F | vnFnF ¨nK,F ,

RKF
pvhq :“ η

dK,F
pvnFnF ´ vK ´ GKpvhqpxF ´ xKqq¨nK,F ,

and η ą 0 is a user-dependent parameter. Extending the definition (63), we intro-
duce the reconstruction operator Rh : Vh Ñ RT0

d pPhq which realizes the mapping
vh ÞÑ Rhpvhq with

(65) Rhpvhq
|KF

pxq “ vK ` Ghpvhq
|KF

px ´ xKq, @KF P Ph, @x P KF .
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Unlike (10), there holds for all K P Kh, vK “ RhpvhqpxKq, i.e., the cell unknown
can now be interpreted as the value of the reconstruction at the cell center. This is
a consequence of selecting the cell center as a starting point in (65). We consider
the discrete space

RTpKhq :“ RhpVhq.

Lemma 30 (Hpdiv; Ωq-conformity). Assume η “ 1 in (64). Then, for all vh P

RTpKhq and all F P F i
Ph

, there holds for all x P F ,

�vh�F pxq¨nF “ 0.

Proof. Let vh P RTpKhq with vh “ Rhpvhq, F P F i
Ph

, and x P F . We distinguish
two cases.

(i) F P F i
Kh

is an interface of the primal mesh Kh such that F Ă BK1 X BK2.
For i P t1, 2u let, for the sake of brevity, Gi :“ GKi

pvhq, Ri :“ RKiF
pvhq, di :“

dKi,F pnKi,F ¨nF q, and

αi :“ Ripx ´ xKi
q¨nF “ Ridi “ η pvnFnF ´ vKi

´ GipxF ´ xKi
qq ¨nF ,

where we have used the fact that x P F to infer px´xKi
q¨nF “ di and the fact that

nF “ nK1,F “ ´nK2,F to infer pnKi,F ¨nF qnKi,F “ nF . Algebraic manipulations
yield

α1 ´ α2 “ ´η rpvK1 ´ vK2q¨nF ` G1d1 ´ G2d2s .

Using the previous relation in the definition of the jump at x P F it is inferred that

�vh�F pxq¨nF “ vh|K1F pxq¨nF ´ vh|K2F pxq¨nF

“ pvK1 ´ vK2q¨nF ` G1d1 ´ G2d2 ` α1 ´ α2

“ p1 ´ ηq rpvK1 ´ vK2q¨nF ` G1d1 ´ G2d2s .

As a consequence, the jump vanishes provided η “ 1.
(ii) F P F i

Ph
zF i

Kh
is a lateral pyramidal face such that there exist a unique

element K P Kh and two faces F1, F2 P FK such that F Ă BKF1 X BKF2 (cf.
Figure 2a). There holds, letting for the sake of brevity Ri :“ RKFi

pvhq, i P t1, 2u,

�vh�F pxq¨nF “ vh|KF1
pxq¨nF ´ vh|KF2

pxq¨nF “ pR1 ´ R2qpx ´ xKq¨nF “ 0,

since px´xKq and nF are orthogonal by definition. This concludes the proof. �

Remark 31 (Role of η in the proof of Lemma 30). Unlike Lemma 8, the parameter η
is here used to enforce the continuity of the normal component across the interfaces
of the primal mesh rather than across lateral pyramidal faces.

Let IRT
h : HpΩq

d

Ñ RTpKhq be such that IRT
h pvq :“ Rhpvhq with

Vh Q vh “ ppΠ1
hvpxKqqKPKh

, pxvyF ¨nF qFPFKh
q.

The following result summarizes the most relevant approximation properties of
IRT
h . The proof is omitted as it closely resembles that of Lemma 10.

Lemma 32 (Approximation in RTpKhq). For all η ą 0 in (64) and all v P HpΩq
d

there holds with vh :“ IRT
h pvq,

Dhpvhq “ Π0
hp∇¨vq.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN EXTENSION OF THE CROUZEIX–RAVIART SPACE 29

Moreover, there exists a real C ą 0 independent of the meshsize such that, for all
h P H, all K P Kh, and all v P HpΩq

d

X H1
pdiv;Khq with vh :“ IRT

h pvq, there
holds

}v ´ vh}L2pKqd ` }∇¨v ´ Dhpvhq}L2pKq ď ChK

´

|v|H1pKqd ` |∇¨v|H1pKq

¯

.

Remark 33 (The matching simplicial case). When Kh is matching simplicial, in the
spirit of Proposition 9, we can prove that the lowest-order Raviart–Thomas space is
a subspace of RTpKhq. We also emphasize that the assumption η “ 1 in Lemma 30
is mandatory for the continuity of normal values at interfaces also in the matching
simplicial case.
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