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AN EXTENSION OF THE FUGLEDE-PUTNAM THEOREM

TO SUBNORMAL OPERATORS USING

A HILBERT-SCHMIDT NORM INEQUALITY

TAKAYUKI FURUTA

Abstract. We prove that if A and B* are subnormal operators acting on a Hubert

space, then for every bounded linear operator X, the Hilbert-Schmidt norm of

AX — XB is greater than or equal to the Hilbert-Schmidt norm of A*X — XB*. In

particular, AX = XB implies A*X = XB*. In addition, if we assume A' is a

Hilbert-Schmidt operator, we can relax the subnormality conditions to hyponor-

mality and still retain the inequality.

1. In this paper an operator means a bounded linear operator on a separable

infinite dimensional Hubert space H. Let B(H) and C2 denote the class of all

bounded linear operators acting on H and the Hilbert-Schmidt class in B(H),

respectively. It is known that C2 forms a two-sided ideal in the algebra B(H) and

C2 is itself a Hubert space for the inner product

(X, Y) = "2,{Xep Yej) = Tr(r*A-) = Tr^y*)

where {t^} is any orthonormal basis of H and Tr( ) denotes the trace. In what

follows, || ||2 denotes the Hilbert-Schmidt norm.

An operator T is called subnormal if T has a normal extension and hyponormal if

T*T > TT*. The inclusion relation of these classes of nonnormal operators is as

follows:

Normal § Subnormal § Hyponormal.

The above inclusions are all proper [5, Problem 160, p. 101].

Theorem A [9]. If A and B are normal, then

\\AX - XB\\2 = \\A*X - XB*\\2

for every X G B(H).

Theorem B [3]. If A and B* are subnormal operators and if X is an operator such

that AX = XB, then A*X = XB*.

In this paper we integrate Theorem A and Theorem B in order to prove a slightly

stronger Theorem 1. Moreover in our Theorem 2 we have an extension of Weiss [8,

Theorem 3] and Berberian [2, Theorem]. Finally we shall pose an open problem

with respect to Theorem 1.
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2.

Theorem I. If A and B* are subnormal, then the following inequality holds:

\\AX - XB\\2> \\A*X - XB*\\2 (*)

for every X G B(H). The equality holds for every X G B(H) when A and B are both

normal.

Proof. Since A is subnormal, there exists a normal extension NA of A on the

Hubert space H © H whose restriction to H © {0} is A [4], that is, NA is given by

*;(í £)

on H © H. Also a normal extension NB. of B* on H © H is given by

M» a
on 7/ © #. Put X on // © H as follows:

Mi .)■
since N¡. is also normal, Theorem A easily implies

||Ar,* -XÑ$.\\2 = \\NZX -XÑB.W2,

that is,

lAX-XB    0\\\={A*X-XB*     ~XBn\\
I        0 0/||2      \       v4f2A- 0    )\

so that

HiUT - *R||2 = \\a*x - xb*w\ + \\Ayc\\l + \\xb12\\1 (i)

The equation (1) yields

ll^Jf - *R||2 > \\A*X - XB*W2 (.)

which is the desired norm inequality. When A and B are both normal, then A X2 = 0

and Bx2 = 0 in (1), so that the equality holds in (*), so the proof is complete.

The following corollary follows by Theorem 1.

Corollary 1 [3]. If A and B* are subnormal and X is an operator such that

AX = XB, then A*X = XB*.

Corollary 1 is some extension of the Fuglede-Putnam theorem [1], [5] and [7].

Remark 1. As stated in the proof of the equality in Theorem 1, ||/i*2A'||2 +

II^R^Hl in (1) is considered as the perturbed term of the difference between

normality and subnormality.

3. In this section, we relax the hypotheses on A and B* in Theorem 1 to

hyponormality and strengthen the hypothesis on A" to be in the Hilbert-Schmidt

class.
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Theorem 2. If A and B* are hyponormal, then the following inequality holds:

WAX - XB\\2 > \\A*X - XB*W2

for every X in Hilbert-Schmidt class. The equality holds when A and B are both

normal.

Proof. Define an operator 9" on C2 as follows: 'öX = AX - XB. Then, if we

view C2 as an underlying Hubert space, then 9"* exists and is easily verified to be

given by 9"** = A*X - XB*. Also

(9"*9" - 9"9"*)* = A*(AX - XB) - (AX - XB)B*
- {A(A*X - XB*) - (A*X - XB*)B)

= (A*A - AA*)X + X(BB* - B*B). (2)

Left and right multiplication acting on C2 as the Hilbert space by a positive

operator is itself a positive operator. Since ii*'ö — 9"^* is the sum of two positive

operators by the hyponormality of A and B*, 9" is hyponormal. Therefore ||9^Af||2

> ||9"*Ar||2thatis,

\\AX-XB\\2>\\A*X-XB*\\2. (3)

The proof of equality follows by (2) and (3).

Remark 2. Berberian [2, Theorem] shows that if A and B* are hyponormal, then

AX = XB implies A*X = XB* for an operator X in Hilbert-Schmidt class and this

is just the case of the equality for an operator X in Theorem 2. Weiss [8, Theorem

3] shows the case of the equality in Theorem 2 when A = B is normal, by a

different method.

Remark 3. It is of interest to remark that Theorem 1, Theorem 2 and Corollary 1

do not involve symmetric hypotheses on A and B, but rather on A and B*. In view

of this point, it is natural and reasonable in Theorem A to interpret the hypothesis

of normality of A and B as that of normality of A and B*.

Open problem. Can the subnormality be relaxed by the hyponormality in Theo-

rem 1? This is an open problem.

We would like to express our thanks to the referee for his kind advice.
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