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In this work an extension of the Fuzzy Possibilistic C-Means (FPCM) algorithm using Type-2 Fuzzy Logic Techniques is presented,
and this is done in order to improve the e
ciency of FPCM algorithm. With the purpose of observing the performance of
the proposal against the Interval Type-2 Fuzzy C-Means algorithm, several experiments were made using both algorithms with
well-known datasets, such as Wine, WDBC, Iris Flower, Ionosphere, Abalone, and Cover type. In addition some experiments
were performed using another set of test images to observe the behavior of both of the above-mentioned algorithms in image
preprocessing. Some comparisons are performed between the proposed algorithm and the Interval Type-2 Fuzzy C-Means
(IT2FCM) algorithm to observe if the proposed approach has better performance than this algorithm.

1. Introduction

Di�erent areas of research have widely used clustering algo-
rithms for di�erent purposes, such as image segmentation
[1, 2], data mining [3], pattern recognition [4], classication
[5], and modeling [6]. Clustering algorithms arise due to
need to nd data groups that share similar features in a
given dataset; at this time there are several fuzzy clustering
algorithms, such as FCM [4], PCM [7], FPCM [8], and PFCM
[8]. 	e acceptance of these algorithms is due to the fact that
they permit a datum to belong to di�erent data clusters into
a given dataset.

However, the algorithms mentioned above do not have
the capability to handle the uncertainty that lies within a
dataset during the clustering process; because of this, some of
these algorithms (FCM and PCM) have been improved using
Type-2 Fuzzy Logic Techniques [9, 10], and the improvement
of these algorithms has been called Interval Type-2 Fuzzy C-
Means (IT2FCM) [11, 12] and Interval Type-2 Possibilistic C-
Means (IT2PCM) [12, 13], respectively.	ese algorithms have
been used for di�erent purposes, such as modeling [14–17],
creation of membership functions [18, 19], image processing
[20, 21], and classication [22]. In recent years research has
also been performed in the extension of other clustering

algorithms using Type-2 Fuzzy Logic Techniques, such as the
ones proposed in [13, 23–27].

In this work we are presenting the extension of the
FPCM using Type-2 Fuzzy Logic Techniques to provide this
method with the capability of handling a higher degree of
uncertainty in a dataset to solve real world problems where
data clustering is involved. Other clustering algorithms have
been extended using Type-2 Fuzzy Logic Techniques, but
the FPCM algorithm has not been previously extended using
these techniques.

	is paper is organized as follows. Section 2 describes
the extension of the FPCM algorithm presented in this
paper, Section 3 shows the concept of cluster validation index
to measure the performance of the clustering algorithm,
Section 4 shows the results obtained by the IT2FPCM
algorithm and its comparison with the IT2FCM algorithm,
and Section 5 contains the conclusions and future work.

2. Interval Type-2 Fuzzy Possibilistic
C-Means Algorithm

	is is an extension of the FPCM algorithm proposed by N.
R. Pal et al. in 1997, using Type-2 Fuzzy Logic Techniques, and
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in the same way that FPCM algorithm produces membership
and possibilities using the weight exponents � and � for
the fuzziness and possibility, respectively, this may now be
represented by a range rather than a precise value; that is,� = [�1, �2], where �1 and �2 represent the lower and
upper limit of weighting exponent for fuzziness and � = [�1,�2], where �1 and �2 represent the lower and upper limit of
weighting exponent for possibility.

Because the � value is represented by an interval, the
fuzzy partition matrix ��(��) must be calculated for the
interval [�1, �2]; for this reason ��(��) would be given by the
belonging interval [�

�
(��), ��(��)], where �

�
(��) and ��(��)

represent the lower and upper limit of the belonging interval
of datum �� to a clustering V�, and updating the lower and
upper limits of the range of the fuzzymembershipmatrix can
be expressed as

�
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Because the � value is represented by an interval, the pos-
sibilistic partition matrix ��(��) must be calculated for the
interval [�1, �2], and for this reason ��(��) would be given
by the belonging interval [��(��), ��(��)], where ��(��) and��(��) represent the lower and upper limit of the belonging
interval of datum �� to a clustering V�, and the update of the
lower and upper limits of the range of the fuzzy membership
matrix can be expressed as
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Updating the positions of the centroids of clusters should
take into account the degree of belonging interval of the

fuzzy and possibilistic matrices, resulting in a range of
coordinates of the positions of the centroids of the clusters.
	e procedure for updating cluster prototypes in IT2FPCM
requires calculating the centroids for the lower and upper
of the limit of the interval using the fuzzy and possibilistic
membership matrices, and these centroids are given by the
following equations:

V� = ∑��=1 (�
�
(��) + �� (��))�1 ��

∑��=1 (�
�
(��) + �� (��))�1 ,

V� = ∑��=1 (�� (��) + �� (��))�1 ��
∑��=1 (�� (��) + �� (��))�1 .

(3)

	e centroid calculation for the lower and upper limits of the
interval results in an interval of coordinates of positions of the
clusters centroids. Type-reduction and defuzzication use the
type-2 fuzzy operations. 	e centroids matrix and the fuzzy
partitionmatrix are obtained by the type-reduction operation
as shown in the following equations:

V� = V� + V�2 ,
�� (��) = �

�
(��) + �� (��)2 .

(4)

	is extension on the FPCM algorithm is intended to show
that this algorithm is capable of handling uncertainty and
is less susceptible to noise. Figure 3 shows the graphical
representation of the steps FPCM algorithm in a block
diagram where we can appreciate the operation of the Fuzzy
Possibilistic C-Means algorithm step by step.

3. Cluster Validation

Cluster validation is one of the main topics in data clustering;
this problem consists in nding and objective criterion to
determine how good a partition generated by the clustering
algorithm is. Nowadays there exist several index validation
methods mentioned in [28–32], but these indices are pro-
posed for validation of clusters found by Type-1 Fuzzy clus-
tering algorithms. In order to evaluate the lower and upper
bound of the interval of clusters found by the IT2FPCM
and IT2FCM algorithms with some of the these indices
of validation, we need to modify the following indices of
validation to evaluate the partitions found by the Interval
Type-2 Fuzzy clustering proposed in this work:

(i) Partition entropy index,

(ii) Xie-Beni Index,

(iii) MPE-DMFP index.

	e partition entropy was proposed by Bezdek [2, 5, 6] as a
validation index for the Fuzzy C-Means algorithm and was
dened by the following equation:

PE = − 1�
�∑
�=1

�∑
�=1

���log2���. (5)
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In a general we can dene an optimal number of clusters �∗
with the solution min 2 ≤ � ≤ � − 1 for PE to produce a
better performance by grouping the dataset �. To make this
index able to evaluate the lower and upper bounds we need
to compute the following equations to the upper and lower
bounds, respectively:

PElower = − 1�
�∑
�=1

�∑
�=1

���log2���,
PEupper = − 1�

�∑
�=1

�∑
�=1

���log2���.
(6)

Xie and Beni in 1991 proposed a validation index based on
compactness and separation [2, 5, 6], which is dened by the
following equation:

XB = ∑��=1∑��=1 ���� ������� − V�
�����2� ⋅ min ��

� ̸=�

����V� − V�
���� . (7)

In general, an optimal number of clusters �∗ is found by
solving min 2 ≤ � ≤ � − 1 for XB to produce a better
clustering performance for the dataset �. To make this index
able to evaluate the lower and upper bounds we compute
the following equations to the upper and lower bounds,
respectively:

XBlower = ∑��=1∑��=1 ���� ������� − V�
�����2� ⋅ min ��

� ̸=�

����V� − V�
���� ,

XBupper = ∑��=1∑��=1 ���� ������� − V�
�����2� ⋅ min ��

� ̸=�

����V� − V�
���� .

(8)

Elid Rubio et al. proposed the MPD-DFP index, which is
composed of two metrics, the modied partition entropy
index and the sum of the distances between the means of the
fuzzy partitions. 	is validation index is represented by the
following equation:

MPE-DMPF = !MPE + "�, (9)

where themodied partition entropy !MPE that represents the
variation of the data in clusters of the dataset is represented
by the following equations:

!MPE = − 1�
�∑
�=1

�∑
�=1

�2��log2���. (10)

And the sum of the distances between the means of the fuzzy
partition "�� that represents the separation between clusters
in the dataset

"�� = �∑
�,�=1
� ̸=�

�����#� − #������2 , $ = 1, . . . , �, (11)

where #� is the mean of the fuzzy partitions generated by
the Fuzzy C-Means algorithm. In general, we can dene an
optimal number of clusters �∗ for the solutionmin 2 ≤ � ≤ �−1 !MPE−DMFP to produce a better performance by grouping the
dataset �. To make this index able to evaluate the lower and
upper bounds of the interval clusterwe compute the following
equations to the upper and lower bounds, respectively:

MPE-DMPFlower = !lowerMPE + "lower
� ,

MPE-DMPFupper = !upperMPE + "upper
� , (12)

where !lowerMPE and !upperMPE represent the variation of the data in
clusters of the dataset for the upper and lower bounds of the
interval of clusters, respectively, and are represented by the
following equations:

!lowerMPE = − 1�
�∑
�=1

�∑
�=1

�2��log2���,
!upperMPE = − 1�

�∑
�=1

�∑
�=1

�2��log2���
(13)

and where "lower
� and "upper

� represent the separation
between clusters in the dataset for the upper and lower
bounds of the interval of clusters, respectively, and are
represented by the following equations:

"lower
�� = �∑

�,�=1
� ̸=�

�����#lower
� − #lower

�
�����2 , $ = 1, . . . , �,

"upper
�� = �∑

�,�=1
� ̸=�

�����#upper
� − #upper

�
�����2 , $ = 1, . . . , �.

(14)

4. Results of the Implementation of
the IT2FPCM Algorithm

	e IT2FPCM algorithm was tested with several benchmark
datasets and images, in order to observe if the IT2FPCM
algorithm is better than the IT2FCM algorithm. We per-
form 30 experiments using the Wine, WDBC, Iris Flower,
Ionosphere, Abalone, and Cover type datasets. In order to
observe the performance of the IT2FPCM algorithm against
the IT2FCM algorithm we perform the data clustering of the
datasets mentioned above with both algorithms mentioned
above to compare the results obtained by these algorithms,
and to measure the performance of these algorithms we use
the validation indices mentioned in the previous section.

In Tables 1, 2, and 3, we show the results obtained for the
WDBC dataset with 30 dimensions and 2 clusters with 569
samples; this dataset was tested with 2 to 10 clusters with the
IT2FPCM and IT2FCM algorithms using di�erent validation
indices to evaluate the performance of both algorithms. 	e
results that are shown are the mean of 30 experiments for
each number of clusters tested in both algorithms. We can
observe in Tables 1 and 2 that both algorithms nd the correct
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Table 1: Results of the IT2MPE-DMFP validation index for the WDBC dataset clustering using IT2FPCM and IT2FCM algorithm using �
= [1.5, 2] and � = [1.5, 2.5] as the parameters.

Index of validation IT2MPE-DMFP

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

WDBC

2 0.59497 0.60327 0.58667 0.59374 0.60213 0.58536

3 1.38830 1.37432 1.40228 1.36790 1.35511 1.38069

4 1.57493 1.49703 1.65282 1.57353 1.49646 1.65060

5 2.02818 1.90438 2.15198 2.02736 1.90424 2.15048

6 2.68035 2.48420 2.87650 2.66823 2.47214 2.86432

7 2.85760 2.62283 3.09237 2.84878 2.61268 3.08488

8 3.81363 3.46430 4.16295 3.80316 3.45317 4.15314

9 4.63064 4.18376 5.07752 4.61201 4.16408 5.05994

10 4.80744 4.30470 5.31017 4.75902 4.25342 5.26462

Table 2: Results of the IT2PE validation index for WDBC dataset clustering using IT2FPCM and IT2FCM algorithms with � = [1.5, 2] and� = [1.5, 2.5] as parameters.

Index validation IT2PE

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

WDBC

2 0.12504 0.10470 0.14539 0.12531 0.10476 0.14585

3 0.19601 0.15366 0.23835 0.20312 0.16011 0.24613

4 0.29863 0.24209 0.35517 0.29892 0.24215 0.35569

5 0.34488 0.26872 0.42105 0.34477 0.26853 0.42100

6 0.39213 0.30051 0.48375 0.39355 0.30176 0.48533

7 0.42646 0.32156 0.53137 0.42798 0.32287 0.53310

8 0.43077 0.32277 0.53877 0.43215 0.32387 0.54044

9 0.45241 0.33526 0.56956 0.45486 0.33697 0.57276

10 0.48363 0.35382 0.61344 0.48387 0.35353 0.61421

Table 3: Results of the IT2XB validation index for WDBC dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2] and� = [1.5, 2.5] as parameters.

Index validation IT2XB

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

WDBC

2 0.06048 0.05100 0.06995 0.06137 0.05115 0.07159

3 0.06220 0.05061 0.07378 0.06586 0.05283 0.07889

4 0.17967 0.13465 0.22470 0.18209 0.13502 0.22915

5 0.18247 0.13453 0.23042 0.18533 0.13494 0.23572

6 0.17079 0.12100 0.22059 0.17506 0.12244 0.22768

7 0.22981 0.15569 0.30393 0.23242 0.15547 0.30937

8 0.19547 0.13585 0.25509 0.19844 0.13601 0.26088

9 0.17247 0.12025 0.22468 0.17563 0.12098 0.23028

10 0.18893 0.12504 0.25282 0.19963 0.13171 0.26754

number of clusters for the lower and upper bound of the
interval and its defuzzication using the IT2PE and IT2MPE-
DMFP validation indices. In Table 3 we can observe that with
the IT2XB validation index the IT2FPCM did not nd the
correct number of clusters for the lower bound of the interval,
but for the upper bound and defuzzication of the lower and

upper bound of the interval it found the correct number of
clusters.

In order to observe if there exists signicant di�erence
between the IT2FPCMand IT2FCMalgorithmswe perform a
statistical test with the results obtained with the 3 validation
indices for the results obtained by the clustering algorithms



Advances in Fuzzy Systems 5

Table 4: Hypothesis testing for the IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for the WDBC dataset clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

WDBC

IT2PE
IT2FCM

30
0.125307301 9.45- − 30 −3.35094- + 11 1.645 0

IT2FPCM 0.125044778 8.96- − 30
IT2XB

IT2FCM
30

0.061368738 1.75- − 29 −8.46459- + 11 1.645 0
IT2FPCM 0.060476715 1.58- − 29

IT2MPE-DMFP
IT2FCM

30
0.593744494 1.06- − 27 1.45455- + 11 1.645 1

IT2FPCM 0.594972091 1.08- − 27
Table 5: Results of the IT2MPE-DMFP validation index to Wine dataset clustering using IT2FPCM and IT2FCM algorithm using � = [1.5,
2] and � = [1.5, 2.5] as parameters.

Index of validation IT2MPE-DMFP

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Wine

2 0.40744 0.41801 0.39686 0.40619 0.41684 0.39554

3 0.40225 0.39940 0.40509 0.40445 0.40146 0.40744

4 0.89656 0.87046 0.92267 0.89553 0.86964 0.92141

5 1.08796 1.03901 1.13691 1.08502 1.03721 1.13282

6 1.67907 1.51748 1.84066 1.90199 1.75824 2.04574

7 1.84502 1.67461 2.01543 2.86659 2.63321 3.09998

8 2.81205 2.54975 3.07434 1.68624 1.47369 1.89880

9 3.47078 3.14652 3.79504 3.46131 3.13748 3.78513

10 3.30712 2.92591 3.68834 3.30032 2.92011 3.68053

mentioned above. 	e '-test was used with the following
hypothesis for each validation index:

/0; IT2FPCM ≥ IT2FCM
/1; IT2FPCM < IT2FCM. (15)

	e hypothesis testing is performed for the best number
of clusters found by the mentioned clustering algorithms.
Table 4 shows the results from the hypothesis testing realized
for the defuzzication of Type-2 clusters of the WDBC
dataset.

According to the assumptionsmade in (15), which arise in
order to demonstrate that IT2FPCM algorithm is better than
IT2FCM algorithm, in Table 4 we can observe the results of
the '-test performed to data clustering of the WDBC dataset
using the indices of validation mentioned in Section 4. In
this case we can observe that the '-values of the hypothesis
testing for the IT2PE, IT2XB, and IT2MPE-DMFP indices
of validation are −3.35094- + 11, −8.46459- + 11, and1.45455- + 11, respectively. We can observe that the '-test
shows that the IT2PE and IT2XB indices of validation are
lower than the '-critical value that is equal to −1.645 with
a signicance level > of 0.05, whose '-values conrm the
acceptance of the alternative hypothesis posed in (15) for
these indices of validation. In this way we demonstrate that
the IT2FPCM algorithm is better than IT2FPCM algorithm
for the data clustering of the WDBC dataset using the IT2PE
and IT2XB indices. 	e '-value for hypothesis testing with
the IT2MPE-DMFP index is greater than the '-critical value
that is equal to −1.645 with a signicance level > of 0.05,
whose '-value rejects the alternative hypothesis and accepts

the null hypothesis posed in (15), demonstrating that there is
no signicant di�erence between the IT2FCM and IT2FPCM
algorithms used in the '-test of the defuzzication.

In Tables 5, 6, and 7 we show the results obtained for the
Wine dataset with 13 dimensions and 3 classes with 178 sam-
ples, and this dataset was tested with 2 to 10 clusters with the
IT2FPCM and IT2FCM algorithms using di�erent validation
index to evaluate the performance of both algorithms. 	e
results that are presented are the means of 30 experiments
for each number of clusters used to test both algorithms; we
can observe in Tables 8 and 9 that both algorithms did not
nd the correct number of clusters for the lower and upper
bound of the interval and its defuzzication using the IT2PE
and IT2XB validation index. In Table 7 we can observe that
with the IT2MPE-DMFP validation index the IT2FPCM did
not nd the correct number of clusters for the upper bound of
the interval, but to the lower bound and defuzzication of the
lower and upper bound of the interval it did nd the correct
number of clusters.

According to the assumptions made in (15), which arise
in order to demonstrate that the IT2FPCM algorithm is
better than IT2FCM algorithm, in Table 8 we can observe
the results of the '-test performed for data clustering of the
Wine dataset using the indices of validation mentioned in
Section 4. In this case we can observe that the '-values of the
hypothesis testing for the IT2PE, IT2XB, and IT2MPE-DMFP
indices of validation are −1.01952-+11, −7.83335-+11, and−22812613207, respectively. We can notice that these values
are lower than the '-critical value that is equal to −1.645
with a signicant level > of 0.05, and these '-values conrm
the acceptance of the alternative hypothesis posed in (15) for
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Table 6: Results of the IT2PE validation index to Wine dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2] and � =
[1.5, 2.5] as parameters.

Index of validation IT2PE

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Wine

2 0.14977 0.12509 0.17446 0.15006 0.12522 0.17491

3 0.26280 0.21554 0.31007 0.26287 0.21547 0.31028

4 0.28775 0.22242 0.35308 0.28769 0.22226 0.35311

5 0.33984 0.25551 0.42417 0.34005 0.25549 0.42461

6 0.36657 0.27738 0.45575 0.34110 0.25173 0.43048

7 0.33464 0.24323 0.42605 0.35228 0.25489 0.44966

8 0.34198 0.24496 0.43900 0.37465 0.26445 0.48484

9 0.36397 0.25674 0.47120 0.36531 0.25761 0.47300

10 0.39186 0.27080 0.51292 0.39213 0.27098 0.51328

Table 7: Results of the IT2XB validation index to Wine dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2] and � =
[1.5, 2.5] as parameters.

Index of validation IT2XB

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Wine

2 0.06009 0.05289 0.06730 0.06097 0.05301 0.06893

3 0.13492 0.10564 0.16421 0.13602 0.10573 0.16631

4 0.09865 0.07860 0.11871 0.09966 0.07883 0.12049

5 0.10894 0.08126 0.13661 0.10966 0.08169 0.13762

6 0.10862 0.08197 0.13526 0.08022 0.06075 0.09969

7 0.09032 0.06714 0.11350 0.08072 0.05840 0.10304

8 0.08295 0.06177 0.10414 0.12357 0.09168 0.15546

9 0.11040 0.08227 0.13852 0.11182 0.08301 0.14062

10 0.09347 0.06982 0.11712 0.09389 0.06992 0.11786

Table 8: Hypothesis test for IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for the Wine dataset clustering.

Dataset Validation Index Algorithm % � &2 '-value '-critical value * value

Wine

IT2PE
IT2FCM

30
0.150064427 1.14- − 28 −1.01952- + 11 1.645 0

IT2FPCM 0.149773266 1.31- − 28
IT2XB

IT2FCM
30

0.060970001 1.84- − 29 −7.83335- + 11 1.645 0
IT2FPCM 0.060093276 1.92- − 29

IT2MPE-DMFP
IT2FCM

30
0.404445222 1.37- − 25 −22812613207 1.645 0

IT2FPCM 0.402246542 1.42- − 25
Table 9: Results of the IT2MPE-DMFP validation index to Iris Flower dataset clustering using IT2FPCM and IT2FCM algorithm with � =
[1.5, 2] and � = [1.5, 2.5] as parameters.

Index validation IT2MPE-DMFP

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Iris

2 0.29224 0.30348 0.28101 0.29206 0.30341 0.28071

3 0.27581 0.27769 0.27394 0.27186 0.27371 0.27001

4 0.65772 0.70196 0.61348 0.78895 0.75105 0.82686

5 0.65979 0.59070 0.72888 0.64700 0.57492 0.71908

6 0.92039 0.79450 1.04628 1.66071 1.62370 1.69772

7 1.51645 1.31241 1.72049 0.85814 0.89191 0.82436

8 2.45753 2.32286 2.59220 1.41122 1.36998 1.45246

9 2.25261 2.08606 2.41917 1.90568 1.78587 2.02548

10 2.62804 2.40631 2.84977 2.60432 2.38812 2.82051
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Table 10: Results of the IT2PE validation index to Iris Flower dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2]
and � = [1.5, 2.5] as parameters.

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Iris

2 0.12706 0.10034 0.15378 0.12776 0.10080 0.15472

3 0.27001 0.21982 0.32020 0.27104 0.22074 0.32134

4 0.38333 0.30413 0.46252 0.38442 0.30513 0.46370

5 0.45027 0.34297 0.55758 0.45232 0.34465 0.55999

6 0.54534 0.42762 0.66305 0.54757 0.42954 0.66560

7 0.63092 0.49076 0.77108 0.63321 0.49262 0.77379

8 0.67371 0.51134 0.83607 0.68029 0.51647 0.84411

9 0.74321 0.56287 0.92354 0.73528 0.53285 0.93771

10 0.80024 0.60567 0.99480 0.80718 0.61146 1.00291

Table 11: Results of the IT2XB validation index to Iris Flower dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2]
and � = [1.5, 2.5] as parameters.

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Iris

2 0.05604 0.04877 0.06331 0.05656 0.04870 0.06442

3 0.13410 0.11048 0.15772 0.13778 0.11084 0.16472

4 0.18766 0.14543 0.22990 0.19211 0.14687 0.23736

5 0.22753 0.16904 0.28602 0.23302 0.17094 0.29509

6 0.29483 0.21162 0.37804 0.30525 0.21204 0.39846

7 0.31905 0.23313 0.40497 0.33896 0.23724 0.44067

8 0.23901 0.17431 0.30371 0.24926 0.17482 0.32369

9 0.39515 0.27792 0.51239 0.55028 0.38453 0.71604

10 0.34780 0.23825 0.45735 0.35965 0.24133 0.47796

Table 12: Hypothesis testing for the IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for the Iris Flower dataset clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Iris Flower

IT2PE
IT2FCM

30
0.127758962 2.81- − 24 −1447853758 1.645 0

IT2FPCM 0.127055881 4.27- − 24
IT2XB

IT2FCM
30

0.056558597 9.64- − 28 −38476101768 1.645 0
IT2FPCM 0.056038216 4.52- − 27

IT2MPE-DMFP
IT2FCM

30
0.271858146 5.91- − 21 184969393.7 1.645 1

IT2FPCM 0.275812862 7.80- − 21
all the tested indices of validation, demonstrating that the
IT2FPCM algorithm is better than the IT2FPCM algorithm
for the data clustering of the Wine dataset. In Tables 9, 10,
and 11 we show the results obtained for a Iris Flower dataset
with 4 dimensions and 3 classes with 150 samples, and this
dataset was tested with 2 to 10 clusters with the IT2FPCM
and IT2FCM algorithms using di�erent validation indices to
evaluate the performance of both algorithms and the results
shown are the mean of 30 experiments for each number of
clusters used tested in both algorithms. In Table 9 we can
observe that both algorithms with the IT2MPE-DMFP index
validation did nd the correct number of clusters for the
lower and upper bounds of the limit and its defuzzication.
On the other hand, in Tables 10 and 11 the IT2PE and
IT2XB algorithms did not nd the correct number the
clusters.

In Table 12 we can observe the results of the '-test
performed to the data clustering of the Iris Flower dataset
using the indices of validation mentioned in Section 4. In
this case we can observe that the '-values of the hypothesis
testing for the IT2PE, IT2XB, and IT2MPE-DMFP indices of
validation are −1447853758, −38476101768, and 184969393.7,
respectively. We can observe that '-test shows that the
IT2PE and IT2XB indices of validation are lower than the'-critical value that is equal to −1.645 with a signicance
level > of 0.05, whose '-values conrm the acceptance of
the alternative hypothesis posed in (15) for these indices of
validation, demonstrating that the IT2FPCM algorithm is
better than IT2FPCM algorithm for the data clustering of
the Iris Flower dataset using the IT2PE and IT2XB indices.
However, the '-value for the test with the IT2MPE-DMFP
index is greater than the '-critical value that is equal to−1.645
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Table 13: IT2MPE-DMFP validation index results to Ionosphere dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5,
2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2MPEDFP

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Ionosphere

2 0.37490 0.38189 0.36792 0.37872 0.38264 0.37479

3 0.67283 0.57794 0.76772 0.67487 0.57848 0.77126

4 0.83519 0.69115 0.97923 0.83839 0.69166 0.98511

5 1.01579 0.80954 1.22204 1.01694 0.80933 1.22456

6 1.17398 0.89175 1.45622 1.17490 0.89191 1.45789

7 1.31217 0.95649 1.66785 1.31246 0.95366 1.67126

8 1.47017 1.03109 1.90924 1.46777 1.02669 1.90885

9 1.64906 1.09276 2.20535 1.64527 1.08737 2.20317

10 1.79078 1.15390 2.42766 1.78653 1.14450 2.42856

Table 14: Results of the IT2PE validation index to Ionosphere dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2.5]
and � = [1.5, 2.5] as parameters.

Index of validation IT2PE

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Ionosphere

2 0.46246 0.46354 0.46138 0.46629 0.46478 0.46780

3 0.80424 0.75328 0.85520 0.80622 0.75262 0.85982

4 1.01893 0.92719 1.11067 1.02047 0.92553 1.11541

5 1.20877 1.07092 1.34663 1.20802 1.06779 1.34826

6 1.37426 1.20016 1.54836 1.37065 1.19522 1.54607

7 1.52065 1.31404 1.72727 1.51381 1.30717 1.72044

8 1.65658 1.41618 1.89699 1.64516 1.40690 1.88342

9 1.77473 1.50879 2.04066 1.75803 1.49612 2.01995

10 1.87674 1.58679 2.16670 1.85595 1.57139 2.14051

Table 15: Results of the IT2XB validation index to Ionosphere dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2.5]
and � = [1.5, 2.5] as parameters.

Index of validation IT2XB

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Ionosphere

2 0.62505 0.51872 0.73137 0.62236 0.51799 0.72674

3 2.36442 3.07170 1.65714 2.34434 3.05359 1.63509

4 1.25146 1.18415 1.31877 1.24377 1.18394 1.30359

5 4.05E + 04 5.90E + 04 2.20E + 04 1.93E + 06 2.82E + 06 1.03E + 06

6 5.58E + 03 7.99E + 03 3.17E + 03 6.35E + 06 9.12E + 06 3.58E + 06

7 2.46E + 11 3.52E + 11 1.39E + 11 5.22E + 11 7.51E + 11 2.92E + 11

8 1.98E + 15 2.74E + 15 1.23E + 15 3.38E + 16 4.71E + 16 2.05E + 16

9 1.69E + 14 2.29E + 14 1.08E + 14 1.70E + 14 2.32E + 14 1.08E + 14

10 6.22E + 20 8.71E + 20 3.73E + 20 1.31E + 21 1.85E + 21 7.62E + 20

with a signicance level > of 0.05, whose '-value rejects the
alternative hypothesis and accepts the null hypothesis posed
in (15), demonstrating that there is no signicant di�erence
between IT2FCM and IT2FPCM algorithms used for the '-
test of the defuzzication.

InTables 13, 14, and 15we show the results obtained for the
Ionosphere dataset with 34 dimensions and 2 classes with 351

samples. 	is dataset was tested with 2 to 10 clusters with the
IT2FPCM and IT2FCM algorithms using di�erent validation
indices to evaluate the performance of both algorithms. 	e
results presented are the means of 30 experiments for each
number of clusters used in both algorithms. In Tables 13, 14,
and 15 we can observe that both algorithms nd the correct
number of clusters for the Ionosphere dataset with all the
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Table 16: Hypothesis test for IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for the Ionosphere dataset clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Ionosphere

IT2PE
IT2FCM

30
0.466290024 0.00- + 00 −7.55279- + 13 1.645 0

IT2FPCM 0.462462683 7.70- − 32
IT2XB

IT2FCM
30

0.622362066 1.89- − 31 2.66339- + 13 1.645 1
IT2FPCM 0.625045136 1.16- − 31

IT2MPE-DMFP
IT2FCM

30
0.378715301 7.70- − 32 −3.89081- + 13 1.645 0

IT2FPCM 0.374904357 2.11- − 31
Table 17: IT2MPE-DMFP validation index results to Abalone dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2.5]
and � = [1.5, 2.5] as parameters.

Index validation IT2MPEDFP

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Abalone

2 0.49799 0.51768 0.47829 0.49841 0.51791 0.47891

3 0.81900 0.75233 0.88568 0.81958 0.75242 0.88675

4 1.16915 0.99286 1.34545 1.16989 0.99317 1.34660

5 1.49665 1.18659 1.80671 1.49743 1.18658 1.80828

6 2.02515 1.55638 2.49393 2.00117 1.52847 2.47388

7 2.34757 1.73028 2.96486 2.35907 1.73590 2.98224

8 2.75194 1.97464 3.52923 2.71039 1.96388 3.45690

9 2.89066 2.08773 3.69358 2.91788 2.10701 3.72875

10 3.36064 2.41209 4.30919 3.46894 2.48156 4.45633

Table 18: Results of the IT2PE validation index to Abalone dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2.5] and� = [1.5, 2.5] as parameters.

Index of validation IT2PE

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Abalone

2 0.28046 0.24561 0.31530 0.28088 0.24588 0.31587

3 0.41503 0.33056 0.49950 0.41555 0.33088 0.50022

4 0.51390 0.38126 0.64654 0.51451 0.38167 0.64735

5 0.58848 0.40296 0.77400 0.58910 0.40341 0.77479

6 0.65438 0.42798 0.88077 0.65645 0.42848 0.88441

7 0.72528 0.46266 0.98791 0.72530 0.46222 0.98837

8 0.77107 0.47984 1.06230 0.77356 0.48179 1.06533

9 0.79848 0.48202 1.11494 0.80140 0.48452 1.11828

10 0.81290 0.47804 1.14776 0.81251 0.47777 1.14725

validation indices used to measure the performance of the
both algorithms.

In Table 16 we can observe the results of the '-tests
performed for the clustering of the Ionosphere dataset using
the indices of validation mentioned in Section 4. In this case
we can observe that the '-values of the hypothesis testingwith
the IT2PE, IT2XB, and IT2MPE-DMFP indices of validation
are −7.55279- + 13, 2.66339- + 13, and −3.89081- + 13,
respectively. We can observe that '-test shows that the IT2PE
and IT2MPE-DMFP indices of validation are lower than the'-critical value that is equal to −1.645 with a signicance
level > of 0.05, and these '-values conrm the acceptance
of the alternative hypothesis posed in (15) for these indices
of validation, demonstrating that the IT2FPCM algorithm is

better than the IT2FPCM algorithm for the data clustering of
the Ionosphere dataset using the IT2PE and IT2MPE-DMFP
indices. 	e '-value for the test with the IT2XB index shows
that is greater than the '-critical value that is equal to −1.645
with a signicance level > of 0.05, and this '-value rejects the
alternative hypothesis and accepts the null hypothesis posed
in (15), demonstrating that there is no signicant di�erence
between the IT2FCM and IT2FPCM algorithms used in the'-test of the defuzzication for the IT2XB index.

In Tables 17, 18, and 19 we show the results obtained
for the Abalone dataset with 8 dimensions and 3 classes
according to the sex of the Abalone and with 4177 samples.
	is dataset was testedwith 2 to 10 clusterswith the IT2FPCM
and IT2FCM algorithms using di�erent validation index to
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Table 19: Results of the IT2XB validation index to Abalone dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2.5] and� = [1.5, 2.5] as parameters.

Index of validation IT2XB

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Abalone

2 0.12162 0.08980 0.15344 0.12160 0.08980 0.15340

3 0.15659 0.08965 0.22353 0.15651 0.08964 0.22338

4 0.14604 0.06983 0.22224 0.14592 0.06982 0.22202

5 0.19353 0.08216 0.30489 0.19328 0.08212 0.30445

6 0.18472 0.07469 0.29474 0.18444 0.07514 0.29374

7 0.18783 0.07297 0.30269 0.18551 0.07230 0.29873

8 0.23117 0.08481 0.37753 0.23847 0.08663 0.39030

9 0.34175 0.11190 0.57161 0.34974 0.11459 0.58489

10 0.32883 0.10652 0.55115 0.32309 0.10437 0.54182

Table 20: Hypothesis test for IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for the Abalone dataset clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Abalone

IT2PE
IT2FCM

30
0.280876194 2.77- − 32 −1.30990- + 13 1.645 0

IT2FPCM 0.280456378 3.08- − 33
IT2XB

IT2FCM
30

0.121597213 3.08- − 33 1.78710- + 12 1.645 1
IT2FPCM 0.121619853 1.73- − 33

IT2MPE-DMFP
IT2FCM

30
0.498409184 9.18- − 32 −5.21128- + 12 1.645 0

IT2FPCM 0.497985339 1.07- − 31

evaluate the performance of both algorithms. 	e results
presented in the tables are the means of 30 experiments for
each number of clusters used in both algorithms. In Tables
17, 18, and 19 we can observe that both algorithms fail to nd
the correct number of clusters for the Abalone dataset with
all validation indices used to measure the performance of the
both algorithms.

In Table 20 we can observe the results of the '-test
performed to data clustering for the Abalone dataset using
the indices of validation mentioned in Section 4, where we
can observe that the '-values of the hypothesis test to the
indices of validation IT2PE, IT2XB, and IT2MPE-DMFP
are −1.30990- + 13, 1.78710- + 12, and −5.21128- + 12,
respectively. In this case we can observe that '-test shows
that IT2PE and IT2MPE-DMFP indices of validation are
lower than the '-critical value that is equal to −1.645 with
a signicance level > of 0.05, whose '-values conrm the
acceptance of the alternative hypothesis posed in (15) for
these indices of validation, demonstrating that the IT2FPCM
algorithm is better than the IT2FPCM algorithm for the
data clustering of the Ionosphere dataset using the IT2PE
and IT2MPE-DMFP indices; the '-value for the hypothesis
test of the IT2XB index is greater than the '-critical value
that is equal to −1.645 with a signicant level (>) of 0.05,
whose '-value rejects the alternative hypothesis and accepts
the null hypothesis posed in (15), demonstrating that there
is no signicant di�erence between IT2FCM and IT2FPCM
algorithm used to '-test of the defuzzication for the IT2XB
index.

In Tables 21, 22, and 23 we show the results obtained
for a Cover type dataset with 54 dimensions and 7 classes
with 581012 samples, and this dataset was tested with 2 to
9 clusters with the IT2FPCM and IT2FCM algorithm using
di�erent validation index to evaluate the performance of
both algorithms. 	e results shown are the means of 30
experiments for each number of clusters used tested in both
algorithms. In Tables 21, 22, and 23 we can observe that
both algorithms fail in nding the correct number of clusters
for the Cover type dataset with all validation index used to
measure the performance of the both algorithms.

In Table 24 we can observe the results of the '-test
performed for data clustering of the Cover type dataset using
the indices of validation mentioned in Section 4, where we
can observe that the '-values of the hypothesis testing for
the IT2PE, IT2XB, and IT2MPE-DMFP indices of validation
are −8.15509- + 10, 6.67332- + 02, and −3.12019- + 10,
respectively. In this case we can observe that the '-test shows
that the IT2PE and IT2MPE-DMFP indices of validation
are lower than the '-critical value that is equal to −1.645
with a signicance level > of 0.05, whose '-values conrm
the acceptance of the alternative hypothesis posed in (15)
for these indices of validation tested, demonstrating that the
IT2FPCM algorithm is better than the IT2FPCM algorithm
for the data clustering of the Ionosphere dataset using the
IT2PE and IT2MPE-DMFP indices. 	e '-value for the
hypothesis test for the IT2XB index is greater than the '-
critical value that is equal to −1.645 with a signicance level >
of 0.05, whose '-value rejects the alternative hypothesis and
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Table 21: IT2MPE-DMFP validation index results to Cover type dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5,
2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2MPEDFP

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Cover type

2 0.44077 0.45732 0.42422 0.44077 0.45732 0.42422

3 0.87629 0.82323 0.92935 0.87629 0.82323 0.92936

4 1.04019 0.91650 1.16388 1.04019 0.91650 1.16389

5 1.16102 0.94169 1.38036 1.16102 0.94168 1.38037

6 1.32155 1.01723 1.62587 1.32183 1.01743 1.62623

7 1.66573 1.24415 2.08731 1.67645 1.25221 2.10069

8 1.79403 1.30555 2.28251 1.78721 1.29820 2.27623

9 1.92141 1.34475 2.49807 1.93580 1.35667 2.51492

Table 22: Results of the IT2PE validation index to Cover type dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2.5]
and � = [1.5, 2.5] as parameters.

Index of validation IT2PE

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Cover type

2 0.35587 0.33093 0.38080 0.35587 0.33093 0.38081

3 0.56607 0.47652 0.65563 0.56608 0.47652 0.65563

4 0.73183 0.58434 0.87933 0.73183 0.58434 0.87933

5 0.85155 0.64428 1.05882 0.85155 0.64428 1.05883

6 0.97154 0.70936 1.23372 0.97152 0.70934 1.23370

7 1.05830 0.75102 1.36559 1.05713 0.74991 1.36436

8 1.14555 0.79324 1.49786 1.14611 0.79369 1.49853

9 1.22450 0.83102 1.61797 1.22440 0.83113 1.61766

Table 23: Results of the IT2XB validation index to Cover type dataset clustering using IT2FPCM and IT2FCM algorithm with � = [1.5, 2.5]
and � = [1.5, 2.5] as parameters.

Index of validation IT2XB

Dataset Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Cover Type

2 0.19894 0.14137 0.25651 0.19894 0.14137 0.25651

3 0.19557 0.11641 0.27474 0.19557 0.11641 0.27474

4 0.33846 0.19325 0.48366 0.33845 0.19325 0.48366

5 0.24190 0.11492 0.36887 0.24189 0.11492 0.36886

6 0.24645 0.10625 0.38665 0.24628 0.10618 0.38639

7 0.29318 0.12373 0.46263 0.29165 0.12304 0.46026

8 0.34262 0.14107 0.54418 0.33522 0.13744 0.53301

9 0.28467 0.10933 0.46002 0.28741 0.11148 0.46335

Table 24: Hypothesis test for IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for the Abalone dataset clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Abalone

IT2PE
IT2FCM

30
0.355868292 2.77- − 32 −8.15509- + 10 1.645 0

IT2FPCM 0.355865678 3.08- − 33
IT2XB

IT2FCM
30

0.195572668 5.33- − 17 6.67332- + 02 1.645 1
IT2FPCM 0.195573745 2.49- − 17

IT2MPE-DMFP
IT2FCM

30
0.440773577 1.89- − 31 −3.12019- + 10 1.645 0

IT2FPCM 0.440771083 3.08- − 33
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Table 25: Results of the IT2MPE-DMFP validation index to data clustering of image shown in Figure 2(a) using IT2FPCM and IT2FCM
algorithm with � = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2MPE-DMFP

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(a)

2 0.31330 0.32940 0.29720 0.31331 0.32941 0.29722

3 0.64736 0.61172 0.68301 0.64738 0.61172 0.68304

4 0.87847 0.78421 0.97273 0.87849 0.78421 0.97278

5 1.25053 1.08130 1.41975 1.25056 1.08131 1.41981

6 1.52447 1.27572 1.77322 1.52451 1.27573 1.77329

7 1.80474 1.48249 2.12700 1.80483 1.48250 2.12716

8 2.01639 1.61788 2.41490 2.01654 1.61781 2.41527

9 2.29257 1.81493 2.77020 2.29500 1.81652 2.77349

10 2.60279 2.03320 3.17238 2.60219 2.03318 3.17121

Table 26: Results of the IT2PE validation index to the clustering of image shown in Figure 2(a) using IT2FPCM and IT2FCM algorithms
with � = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2PE

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(a)

2 0.27752 0.24869 0.30635 0.27753 0.24869 0.30637

3 0.38492 0.30127 0.46858 0.38494 0.30128 0.46861

4 0.47242 0.34265 0.60219 0.47244 0.34267 0.60222

5 0.52743 0.36020 0.69467 0.52746 0.36022 0.69470

6 0.56679 0.36941 0.76416 0.56682 0.36943 0.76421

7 0.60220 0.37799 0.82641 0.60223 0.37800 0.82646

8 0.63271 0.38504 0.88037 0.63277 0.38508 0.88045

9 0.66060 0.39199 0.92922 0.66067 0.39201 0.92933

10 0.68623 0.39829 0.97417 0.68643 0.39838 0.97449

Table 27: Results of the IT2XB validation index for data clustering of image shown in Figure 2(a) using IT2FPCM and IT2FCM algorithms
with � = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index validation IT2XB

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(a)

2 0.11253 0.07812 0.14694 0.11253 0.07812 0.14694

3 0.11105 0.06516 0.15695 0.11105 0.06516 0.15694

4 0.11980 0.06082 0.17877 0.11979 0.06082 0.17877

5 0.11078 0.05214 0.16943 0.11078 0.05214 0.16943

6 0.11347 0.04983 0.17711 0.11347 0.04983 0.17711

7 0.11478 0.04732 0.18224 0.11478 0.04732 0.18223

8 0.12419 0.04862 0.19975 0.12418 0.04862 0.19974

9 0.12270 0.04573 0.19967 0.12257 0.04567 0.19946

10 0.12837 0.04641 0.21032 0.12848 0.04643 0.21053

accepts the null hypothesis posed in (15), demonstrating that
there is no signicant di�erence between the IT2FCM and
IT2FPCM algorithms using the '-test for the defuzzication
for the IT2XB index.

Also we test both algorithms using images and perform
30 experiments validating the results with each one of the
validation indices, in order to observe the behavior of the
algorithm performing image segmentation. In this case for

the image segmentation with the IT2FPCM and IT2FCM
algorithms we perform the steps shown in Figure 1. Using
these steps we are capable of making a segmentation of the
image using the mentioned above algorithms. 	e images
used for these experiments are shown in Figure 2.

In Tables 25, 26, and 27 we can observe the averages of
the IT2MPE-DFPM, IT2PE, and IT2XB indices of validation,
respectively, for 2 to 10 clusters, computed with the results



Advances in Fuzzy Systems 13

Begin

Load image

Compute complement of image

Image vectorization

Data clustering of image

Obtain segment per cluster

Image reconstruction

End

Figure 1: Block diagram for segmentation images using clustering algorithms.

(a) (b) (c)

(d) (e)

Figure 2: Images for segmentations using the IT2FPCM and IT2FCM algorithms.

(defuzzication, lower and upper bounds of the interval)
obtained by the IT2FPCM and IT2FCM algorithms of Fig-
ure 2(a). 	ese tables show the number of clusters for the
defuzzication, upper and lower, that each validation index
found as the best one. Table 28 shows the hypothesis test for
the 30 experiments performed in order to know if there exists
signicant di�erence between the algorithms using as null
and alternative hypothesis the assumptions made in (15).

According to the assumptions made in (15), in Table 28,
we can observe for IT2PE and IT2MPE-DMFP indices with
the '-value of −2342856728 and −232549065.42, respectively,
the hypothesis test that these indices are lower than the'-critical value that is equal to −1.645 with a signicance
level > of 0.05, whose '-value conrms the acceptance of
the alternative hypothesis posed in (15), demonstrating that
the IT2FPCM algorithm is better than IT2FCM algorithm
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Table 28: Hypothesis test for IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for Figure 2(a) clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Figure 2(a)

IT2PE
IT2FCM

30
0.27753175 4.39- − 28 −2342856728 1.645 0

IT2FPCM 0.27751942 3.64- − 28
IT2XB

IT2FCM
30

0.11078111 1.76- − 16 361.5239129 1.645 1
IT2FPCM 0.11078219 9.16- − 17

IT2MPE-DMFP
IT2FCM

30
0.31331411 4.92- − 26 −232549065.42 1.645 0

IT2FPCM 0.31330165 3.40- − 26
Original Image defuzzi�cation

Image lower bound Image upper bound

Figure 3: Resulting image clustering performed to Figure 2(a) by the IT2FPCM algorithm.

to '-test of the defuzzication according to IT2MPE-DMFP
and IT2PE indices of validation index for the cluster found
by the algorithms in the image shown in Figure 2(a). Also
we observe that '-value for the IT2XB is 361.5239129 which
is greater than the '-critical value that is equal to −1.645
and with this information the null hypothesis is accepted
demonstrating that the IT2FPCM algorithm is not better
than IT2FCM. Figure 3 shows the resulting image clustering
performed by the IT2FPCM algorithm for 6 clusters for
Figure 2(a) and this is because the gray levels containing the
image.

In Tables 29, 30, and 31 we can observe the averages of
the IT2MPE-DFPM, IT2PE, and IT2XB indices of validation
respectively, for 2 to 10 clusters, computed with the results
(defuzzication, lower and upper bounds of the interval)
obtained by the IT2FPCM and IT2FCM algorithms for
Figure 2(b). 	ese tables show the number of clusters for the
defuzzication, upper and lower, that each validation index
found like better.

Table 32 shows the hypothesis test for the 30 experiments
performed for each index validation mentioned in Section 4,
in order to know if there exists signicant di�erence between

the algorithms by using as the null and alternative hypothesis
the assumptions made in (15).

InTable 32we can observe that '-values for the hypothesis
test of the IT2PE and IT2MPE-DMPF are −10078102681 and−2621392303.80, respectively, which are lower than the '-
critical value that is equal to −1.645 with a signicance level> of 0.05, whose '-value conrms the acceptance of the

alternative hypothesis posed in (15), demonstrating that the
IT2FPCM algorithm is better than the IT2FCM algorithm
for the '-test of the defuzzication according to IT2PE and
IT2MPE-DMFP indices of validation indices for the clusters
found by the algorithms in the image shown in Figure 2(b).
Also we can observe that the '-value for the IT2XB validation
index is 139756984.7, which is greater than the '-critical
value that is equal to −1.645 and with this information the
null hypothesis is accepted demonstrating that the IT2FPCM
algorithm is not better than IT2FCM according to IT2XB
validation index. Figure 4 shows the resulting image cluster-
ing performed by the IT2FPCM algorithm for 5 clusters to
Figure 2(b) and this is because of the gray levels containing
the image.
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Table 29: Results of the IT2MPE-DMFP validation index to data clustering of image shown in Figure 2(b) using IT2FPCM and IT2FCM
algorithm with � = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2MPEDFP

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(b)

2 0.20780 0.22583 0.18978 0.20781 0.22584 0.18979

3 0.35850 0.37345 0.34355 0.35852 0.37346 0.34358

4 0.54660 0.54745 0.54574 0.54662 0.54748 0.54577

5 0.84354 0.81276 0.87432 0.84357 0.81278 0.87436

6 0.76870 0.72207 0.81534 0.76874 0.72208 0.81540

7 0.91927 0.84436 0.99419 0.91977 0.84473 0.99480

8 1.21142 1.07707 1.34578 1.20963 1.07551 1.34375

9 1.16203 1.02427 1.29979 1.16137 1.02366 1.29909

10 1.51477 1.30270 1.72684 1.51163 1.29979 1.72348

Table 30: Results of the IT2PE validation index to the clustering of image shown in Figure 2(b) using IT2FPCM and IT2FCM algorithmwith� = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2PE

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(b)

2 0.22538 0.18895 0.26181 0.22539 0.18895 0.26183

3 0.32425 0.24288 0.40561 0.32427 0.24290 0.40564

4 0.39445 0.27438 0.51452 0.39447 0.27440 0.51455

5 0.44970 0.29589 0.60351 0.44973 0.29591 0.60355

6 0.51026 0.32817 0.69236 0.51030 0.32819 0.69240

7 0.55406 0.34735 0.76078 0.55410 0.34737 0.76083

8 0.58858 0.36076 0.81639 0.58866 0.36084 0.81649

9 0.61605 0.36984 0.86225 0.61608 0.36987 0.86229

10 0.63779 0.37485 0.90074 0.63801 0.37496 0.90107

Table 31: Results of the IT2XB validation index to the clustering of image shown in Figure 2(b) using IT2FPCM and IT2FCM algorithm with� = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2XB

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(b)

2 0.05906 0.04269 0.07544 0.05906 0.04269 0.07544

3 0.06108 0.03734 0.08483 0.06108 0.03734 0.08483

4 0.06307 0.03463 0.09150 0.06307 0.03463 0.09150

5 0.06633 0.03419 0.09846 0.06633 0.03419 0.09846

6 0.10278 0.04910 0.15646 0.10278 0.04910 0.15646

7 0.11868 0.05438 0.18298 0.11862 0.05434 0.18289

8 0.11918 0.05262 0.18574 0.11938 0.05273 0.18604

9 0.14904 0.06355 0.23454 0.14913 0.06358 0.23468

10 0.13597 0.05632 0.21562 0.13620 0.05641 0.21599

In Tables 33, 34, and 35 we can observe the averages
of the IT2MPE-DFPM, IT2PE, and IT2XB indices of val-
idation, respectively, for 2 to 10 clusters, computed with
the results (defuzzication, lower and upper bounds of the
interval) obtained by the IT2FPCM and IT2FCM algorithms
to Figure 2(c). 	ese tables show the number of clusters for

the defuzzication, the upper and lower values that each
validation index found like better.

InTable 36, we can observe that '-values to the hypothesis
test of the IT2PE and IT2MPE-DMPF are −7686717373 and−1117084835.71, respectively, which are less than the '-critical
value that is equal to −1.645 with a signicant level (>) of
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Table 32: Hypothesis test for IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for Figure 2(b) clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Figure 2(b)

IT2PE
IT2FCM

30
0.22539012 4.13- − 29 −10078102681 1.645 0

IT2FPCM 0.2253774 6.51- − 30
IT2XB

IT2FCM
30

0.05906138 7.70- − 30 139756984.7 1.645 1
IT2FPCM 0.05906146 2.49- − 30

IT2MPE-DMFP
IT2FCM

30
0.20781375 3.03- − 28 −2621392303.80 1.645 0

IT2FPCM 0.20780095 4.13- − 28
Original Image defuzzi�cation

Image lower bound Image upper bound

Figure 4: Resulting image clustering performed by the IT2FPCM algorithm for 5 clusters to Figure 2(b) because of the gray levels containing
the image.

0.05, whose '-value conrms the acceptance of the alternative
hypothesis posed in (15), demonstrating that IT2FPCM
algorithm is better than IT2FCM algorithm to '-test of
the defuzzication according to IT2PE and IT2MPE-DMFP
indices of validation index for the cluster found by the algo-
rithms in image shown in Figure 2(c). Also we can observe
that '-value to the IT2XB validation index is 63042445.95,
which is greater than the '-critical value that is equal to−1.645; with this information the null hypothesis is accepted
demonstrating that the IT2FPCM algorithm is not better
than the IT2FCM according to the IT2XB validation index.

Figure 5 shows the resulting image clustering performed by
the IT2FPCM algorithm for 5 clusters to Figure 2(c) because
of the gray levels containing the image.

In Tables 37, 38, and 39 we can observe the averages
of the IT2MPE-DFPM, IT2PE, and IT2XB indices of val-
idation, respectively, for 2 to 10 clusters, computed with
the results (defuzzication, lower and upper bounds of the
interval) obtained by the IT2FPCM and IT2FCM algorithms
to Figure 2(d). 	ese tables show the number of clusters
for the defuzzication, the upper and lower values that each
validation index found like better.
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Original Image defuzzi�cation

Image lower bound Image upper bound

Figure 5: Resulting image clustering performed by the IT2FPCM algorithm for 5 clusters to Figure 2(c) because of the gray levels containing
the image.

Table 33: Results of the IT2MPE-DMFP validation index to data clustering of image shown in Figure 2(c) using IT2FPCM and IT2FCM
algorithm with � = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2MPEDFP

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(c)

2 0.65158 0.66791 0.63526 0.65159 0.66791 0.63528

3 1.19860 1.14601 1.25119 1.19862 1.14601 1.25123

4 1.37171 1.21107 1.53235 1.37174 1.21109 1.53239

5 2.11610 1.87005 2.36214 2.11613 1.87006 2.36219

6 2.55874 2.21054 2.90695 2.55876 2.21054 2.90699

7 2.87029 2.40246 3.33812 2.87033 2.40247 3.33820

8 3.26360 2.68131 3.84588 3.26782 2.68456 3.85108

9 3.67714 2.97374 4.38054 3.62469 2.92623 4.32314

10 4.14291 3.29282 4.99301 4.13626 3.28607 4.98644

InTable 40,we can observe that '-values to the hypothesis
test of the IT2PE and IT2MPE-DMPF are −4.95875- + 13
and −3341752881.89, respectively, which are less than the'-critical value that is equal to −1.645 with a signicant
level (>) of 0.05, whose '-value conrms the acceptance of
the alternative hypothesis posed in (15), demonstrating that
IT2FPCM algorithm is better than IT2FCM algorithm to '-
test of the defuzzication according to IT2PE and IT2MPE-
DMFP indices of validation index for the cluster found by
the algorithms in image shown in Figure 2(d). Also we
can observe that '-value to the IT2XB validation index is
16637443.08, which is greater than the '-critical value that
is equal to −1.645; with this information the null hypothesis
is accepted demonstrating that the IT2FPCM algorithm is

not better than the IT2FCM according to the IT2XB vali-
dation index. Figure 6 shows the resulting image clustering
performed by the IT2FPCM algorithm for 7 clusters to
Figure 2(d) because of the gray levels containing the image.

In Tables 41, 42, and 43 we can observe the averages
of the IT2MPE-DFPM, IT2PE, and IT2XB indices of val-
idation, respectively, for 2 to 10 clusters, computed with
the results (defuzzication, lower and upper bounds of the
interval) obtained by the IT2FPCM and IT2FCM algorithms
to Figure 2(e). 	ese tables show the number of clusters for
the defuzzication, the upper and lower values that each
validation index found like better.

InTable 44,we can observe that '-values to the hypothesis
test of the IT2PE and IT2MPE-DMPF are −23529815362



18 Advances in Fuzzy Systems

Table 34: Results of the IT2PE validation index to the clustering of image shown in Figure 2(c) using IT2FPCM and IT2FCM algorithm with� = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2PE

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(c)

2 0.19464 0.16113 0.22815 0.19465 0.16114 0.22817

3 0.33148 0.25917 0.40380 0.33150 0.25917 0.40383

4 0.43944 0.32977 0.54911 0.43947 0.32978 0.54915

5 0.47479 0.32064 0.62893 0.47481 0.32066 0.62897

6 0.52781 0.34398 0.71165 0.52784 0.34399 0.71169

7 0.55923 0.35528 0.76319 0.55927 0.35530 0.76323

8 0.58906 0.36326 0.81485 0.58911 0.36333 0.81489

9 0.62291 0.37466 0.87116 0.62580 0.37766 0.87394

10 0.64876 0.38289 0.91463 0.64964 0.38373 0.91555

Table 35: Results of the IT2XB validation index to the clustering of image shown in Figure 2(c) using IT2FPCM and IT2FCM algorithmwith� = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2XB

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(c)

2 0.07255 0.04993 0.09517 0.07255 0.04993 0.09517

3 0.12235 0.07282 0.17187 0.12235 0.07282 0.17187

4 0.20659 0.11269 0.30048 0.20658 0.11269 0.30048

5 0.14144 0.07037 0.21252 0.14144 0.07037 0.21252

6 0.14983 0.07128 0.22839 0.14983 0.07128 0.22838

7 0.18642 0.08317 0.28966 0.18641 0.08317 0.28965

8 0.18905 0.08034 0.29777 0.18869 0.08021 0.29718

9 0.18358 0.07500 0.29216 0.18937 0.07724 0.30150

10 0.18118 0.07167 0.29068 0.18252 0.07222 0.29283

Table 36: Statistical test for the IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for Figure 2(c) clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Figure 2(c)

IT2PE
IT2FCM

30
0.19465271 6.95- − 29 −7686717373 1.645 0

IT2FPCM 0.19464102 1.23- − 32
IT2XB

IT2FCM
30

0.07255222 2.29- − 28 63042445.95 1.645 1
IT2FPCM 0.0725524 1.52- − 32

IT2MPE-DMFP
IT2FCM

30
0.65159414 3.67- − 27 −1117084835.71 1.645 0

IT2FPCM 0.65158179 2.23- − 31
Table 37: Results of the IT2MPE-DMFP validation index to data clustering of image shown in Figure 2(d) using IT2FPCM and IT2FCM
algorithm with � = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2MPEDFP

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(d)

2 0.15969 0.17663 0.14274 0.15970 0.17663 0.14276

3 0.52574 0.50323 0.54825 0.52576 0.50324 0.54828

4 0.67185 0.63511 0.70860 0.67188 0.63511 0.70865

5 0.92726 0.82782 1.02669 0.92729 0.82782 1.02675

6 0.98403 0.84965 1.11841 0.98406 0.84964 1.11849

7 1.30797 1.11585 1.50009 1.30804 1.11588 1.50020

8 1.39216 1.12362 1.66071 1.39200 1.12350 1.66050

9 1.75595 1.40758 2.10433 1.76502 1.41523 2.11480

10 1.98371 1.56297 2.40445 1.98233 1.56168 2.40299



Advances in Fuzzy Systems 19

Table 38: Results of the IT2PE validation index to the clustering of image shown in Figure 2(d) using IT2FPCM and IT2FCM algorithmwith� = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2PE

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(d)

2 0.25819 0.22646 0.28993 0.25821 0.22646 0.28995

3 0.36130 0.27685 0.44576 0.36132 0.27686 0.44578

4 0.45157 0.32364 0.57949 0.45159 0.32365 0.57953

5 0.49465 0.33272 0.65658 0.49468 0.33274 0.65662

6 0.54882 0.35591 0.74172 0.54885 0.35593 0.74177

7 0.58437 0.36581 0.80292 0.58441 0.36584 0.80298

8 0.61986 0.37772 0.86200 0.61989 0.37775 0.86203

9 0.64495 0.38357 0.90634 0.64494 0.38355 0.90633

10 0.66579 0.38710 0.94449 0.66588 0.38714 0.94462

Table 39: Results of the IT2XB validation index to the clustering of image shown in Figure 2(d) using IT2FPCM and IT2FCM algorithm
with � = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index validation IT2XB

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(d)

2 0.09227 0.06428 0.12026 0.09227 0.06428 0.12026

3 0.07539 0.04451 0.10626 0.07539 0.04451 0.10626

4 0.09492 0.05034 0.13951 0.09492 0.05034 0.13950

5 0.08523 0.04182 0.12864 0.08523 0.04182 0.12864

6 0.10438 0.04713 0.16164 0.10438 0.04713 0.16164

7 0.09127 0.04010 0.14244 0.09126 0.04010 0.14243

8 0.10893 0.04570 0.17217 0.10897 0.04571 0.17223

9 0.10584 0.04343 0.16825 0.10532 0.04326 0.16738

10 0.10343 0.04109 0.16577 0.10347 0.04111 0.16584

Table 40: Statistical test for the IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for Figure 2(d) clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Figure 2(d)

IT2PE
IT2FCM

30
0.25820712 8.76- − 30 −4.95875- + 13 1.645 0

IT2FPCM 0.2581946 3.35- − 30
IT2XB

IT2FCM
30

0.07538511 6.34- − 27 16637443.08 1.645 1
IT2FPCM 0.07538535 1.30- − 28

IT2MPE-DMFP
IT2FCM

30
0.15969978 3.39- − 30 −3341752881.89 1.645 0

IT2FPCM 0.15968716 4.25- − 28
Table 41: Results of the IT2MPE-DMFP validation index to data clustering of image shown in Figure 2(e) using IT2FPCM and IT2FCM
algorithm with � = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2MPEDFP

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(e)

2 0.39275 0.41011 0.37538 0.39276 0.41011 0.37541

3 0.82005 0.79494 0.84516 0.82007 0.79494 0.84519

4 0.93366 0.85748 1.00984 0.93368 0.85749 1.00988

5 1.46587 1.30791 1.62383 1.46590 1.30792 1.62388

6 1.48807 1.24435 1.73180 1.48811 1.24438 1.73184

7 1.61212 1.33261 1.89163 1.61217 1.33262 1.89171

8 2.20927 1.81935 2.59920 2.20931 1.81917 2.59946

9 2.18831 1.74485 2.63178 2.18867 1.74513 2.63220

10 2.28302 1.78155 2.78449 2.28147 1.78004 2.78291
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Original Image defuzzi�cation

Image lower bound Image upper bound

Figure 6: 	e resulting image clustering performed by the IT2FPCM algorithm for 7 clusters to Figure 2(d) because of the gray levels
containing the image.

Table 42: Results of the IT2PE validation index to the clustering of image shown in Figure 2(e) using IT2FPCM and IT2FCM algorithm with� = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index of validation IT2PE

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(e)

2 0.25722 0.22472 0.28971 0.25723 0.22473 0.28973

3 0.34121 0.25920 0.42321 0.34122 0.25921 0.42324

4 0.42472 0.30360 0.54583 0.42474 0.30362 0.54586

5 0.48178 0.32465 0.63891 0.48181 0.32467 0.63894

6 0.53382 0.34760 0.72005 0.53386 0.34762 0.72010

7 0.55569 0.34695 0.76443 0.55573 0.34698 0.76448

8 0.58706 0.35582 0.81830 0.58706 0.35580 0.81831

9 0.62347 0.37038 0.87656 0.62353 0.37041 0.87665

10 0.65010 0.37895 0.92124 0.65020 0.37899 0.92142

and −2455999372.25, respectively, which are less than the'-critical value that is equal to −1.645 with a signicant
level (>) of 0.05, whose '-value conrms the acceptance of
the alternative hypothesis posed in (15), demonstrating that
IT2FPCM algorithm is better than IT2FCM algorithm to '-
test of the defuzzication according to IT2PE and IT2MPE-
DMFP indices of validation index for the cluster found by
the algorithms in image shown in Figure 2(e). Also we
can observe that '-value to the IT2XB validation index is
305500241.9, which is greater than the '-critical value that
is equal to −1.645; with this information the null hypothesis
is accepted demonstrating that the IT2FPCM algorithm
is not better than the IT2FCM according to the IT2XB
validation index. Figure 7 shows the resulting image clus-
tering performed by the IT2FPCM algorithm for 7 clusters

to Figure 2(e) because of the gray levels containing the
image.

5. Conclusions

IT2FPCM is an extension of the FPCM algorithm based on
Type-2 Fuzzy Logic concepts, in order to enhance its ability
of handling uncertainty and making it less susceptible to
noise. 	is algorithm was tested using the Wine, WDBC,
Iris Flower, Ionosphere, Abalone, and Cover type benchmark
datasets and a set of images shown in Figure 2. In order to
observe if the proposal is better than the IT2FCM algorithm
we performed 30 experiments with each dataset and images
used for a number of clusters from 2 to 10, in order to
make a hypothesis testing with the assumption made in
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Table 43: Results of the IT2XB validation index to the clustering of image shown in Figure 2(e) using IT2FPCM and IT2FCM algorithmwith� = [1.5, 2.5] and � = [1.5, 2.5] as parameters.

Index validation IT2XB

Image Clusters
IT2FPCM IT2FCM

Defuzz Lower Upper Defuzz Lower Upper

Figure 2(e)

2 0.09682 0.06740 0.12625 0.09682 0.06740 0.12625

3 0.08314 0.05171 0.11457 0.08314 0.05171 0.11457

4 0.10315 0.05592 0.15038 0.10315 0.05592 0.15038

5 0.08615 0.04418 0.12812 0.08615 0.04418 0.12811

6 0.11084 0.05313 0.16855 0.11084 0.05313 0.16855

7 0.11129 0.05049 0.17209 0.11129 0.05049 0.17209

8 0.09285 0.04078 0.14492 0.09285 0.04078 0.14491

9 0.10428 0.04261 0.16594 0.10423 0.04261 0.16586

10 0.12035 0.04734 0.19336 0.12045 0.04736 0.19354

Table 44: Statistical test for the IT2PE, IT2XB, and IT2MPE-DMFP indices of validation for Figure 2(e) clustering.

Dataset Validation index Algorithm % � &2 '-value '-critical value * value

Figure 2(e)

IT2PE
IT2FCM

30
0.25722842 8.46- − 31 −23529815362 1.645 0

IT2FPCM 0.2572161 7.37- − 30
IT2XB

IT2FCM
30

0.04078364 1.06- − 06 305500241.9 1.645 1
IT2FPCM 0.04078258 1.05- − 06

IT2MPE-DMFP
IT2FCM

30
0.39275846 9.74- − 30 −2455999372.25 1.645 0

IT2FPCM 0.39274591 7.73- − 28

Original Image defuzzi�cation

Image lower bound Image upper bound

Figure 7: Resulting image clustering performed by the IT2FPCM algorithm for 5 clusters to Figure 2(e) because of the gray levels containing
the image.
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(15), to prove that the proposed method is better with
a signicant di�erence with respect to the other existing
methods. Statistical tests were performed with the number
of clusters that each validation index indicates as the best;
in these statistical tests for the datasets and images we can
observe that 69.45% of the hypothesis tests performed with
the di�erent indices of validation are a
rming the alternative
hypothesis based on (15), and 30.55% of the hypothesis tests
reject the alternative hypothesis.

It is noteworthy that the parameters used in this work
are not the optimal ones for both algorithms, and to nd the
optimal parameters for both algorithms used in this work
we can use optimization algorithms like in [33]. We can use
the PSO, GSA, and GA algorithms among others, in order to
improve the performance and automate the interval type-2
clustering algorithms that were used.
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