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Abstract. We develop a generalized version of the Hardy-Ramanujan “circle method” in
order to derive asymptotic series expansions for the products of modular forms and mock
theta functions. Classical asymptotic methods (including the circle method) do not work in
this situation because such products are not modular, and in fact, the “error integrals” that
occur in the transformations of the mock theta functions can (and often do) make a significant
contribution to the asymptotic series. The resulting series include principal part integrals of
Bessel functions, whereby the main asymptotic term can also be identified.

To illustrate the application of our method, we calculate the asymptotic series expansion for
the number of partitions without sequences. Andrews showed that the generating function for
such partitions is the product of the third order mock theta function χ and a (modular) infinite
product series. The resulting asymptotic expansion for this example is particularly interesting
because the error integrals in the modular transformation of the mock theta function component
appear in the exponential main term.

1. Introduction

1.1. Partition functions and asymptotics for harmonic Maass forms. We begin with
a general discussion of the history of the study of asymptotics for combinatorial generating
functions and q-series before stating our main results in Section 1.2. Recall that an integer
partition is a decomposition of a positive integer into the sum of weakly decreasing nonnegative
integers, and that an overpartition is a partition in which the first occurrence of a part may also
be overlined. Denote the number of integer partitions of n by p(n), the number of partitions
into distinct parts by Q(n), and the number of overpartitions by p(n) (see [2] and [14] for more

2000 Mathematics Subject Classification. 11P82, 05A17, 33C10.
The first author was partially supported by NSF grant DMS-0757907 and by the Alfried Krupp prize. The

second author was partially supported by NSA Grant 6917958.
1



2 KATHRIN BRINGMANN AND KARL MAHLBURG

combinatorial background). The corresponding generating functions are∑
n≥0

p(n)qn =
∏
n≥0

1

1− qn
=

1

(q; q)∞
,(1.1)

∑
n≥0

Q(n)qn =
∏
n≥0

(1 + qn) = (−q; q)∞,

∑
n≥0

p(n)qn =
∏
n≥0

1 + qn

1− qn
=

(−q; q)∞
(q; q)∞

,

where we use standard notation for the rising q-factorials (a)n = (a; q)n :=
∏n−1

i=0 (1 − aqi).
In particular, the overpartitions are a convolution product of ordinary partitions and distinct
parts partitions, so

(1.2) p(n) =
n∑

k=0

p(k)Q(n− k).

An important question in the theory of partitions is to determine exact formulas or asymp-
totics for functions such as p(n) and its relatives. Indeed, since the generating functions in (1.1)
are (essentially) meromorphic modular forms, these are special cases of the general question
of determining the coefficients of modular forms. In fact, since many partition functions also
have coefficients that grow monotonically, the Hardy-Ramanujan Tauberian Theorem [17] for
eta-quotients shows that as n→∞, the following asymptotics hold:

p(n) ∼ 1

4n
√
3
eπ
√

2n
3 ,(1.3)

Q(n) ∼ 1

4 4
√
3n3/4

eπ
√

n
3 ,

p(n) ∼ 1

8n
eπ
√
n.

A key implication of Hardy and Ramanujan’s result [17] is that the coefficients in a convolution
product of modular forms such as the overpartition function will satisfy a logarithmic asymptotic
of the form

(1.4) (log p(n))2 ∼ (log p(n))2 + (logQ(n))2,

so that both summands from (1.2) make a predictable contribution to the overall asymptotic.
Building on Hardy and Ramanujan’s earlier developments, Rademacher and Zuckerman later

proved much more precise results about the coefficients of modular forms using the circle
method, culminating in exact asymptotic series expansions for functions like p(n) [21]. Such
expansions look much like the one seen in Theorem 1.1, although the series for modular forms
involve only Bessel functions rather than principal part integrals.
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Another important example in the study of coefficients of hypergeometric series and auto-
morphic forms is Ramanujan’s third order mock theta function

(1.5) f(q) =
∑
n≥0

α(n)qn := 1 +
∑
n≥1

qn
2

(−q; q)2n
,

which is famously not a modular form [22]. Instead, recent works of the first author, Ono, and
Zwegers [10, 12, 24] show that f(q) is best understood as the holomorphic part of a harmonic
Maass form of half-integral weight. In terms of the practical application of the circle method,
this means that the modular transformations of f(q) yield another automorphic q=series object
plus a Mordell-type integral (see Section 2); these integrals were absorbed into the error terms
of the asymptotic series expansion for α(n) obtained by Dragonette [15] and Andrews [1].

Recent work of the first author and Ono essentially allows one to calculate exact series
expansions for all of the above examples, and indeed for any harmonic Maass form of weight at
most 1/2 without using the circle method (although there are technical convergence issues in
the case of weight equal to 1/2) [11]. The series are derived from real analytic Maass-Poincaré
series that are uniquely determined by the automorphic transformations and principal parts of
the Maass forms. For example, this allowed the first author and Ono to completely prove the
Andrews-Dragonnette conjecture, giving an exact formula for the coefficients α(n) in [10].

However, these very precise results do not apply to products of harmonic Maass forms (as the
space of such automorphic forms is not closed under multiplication), and there has been recent
interest in many functions of this type that arise in the study of probability, mathematical
physics, and partition theory. Our main result uses calculations based on the circle method to
find the asymptotic series expansion for such functions. Since our current state of knowledge
does not include Poincaré series for functions in the space of harmonic Maass forms tensored
with modular forms (and one should not necessarily even expect that such a basis exists),
our method yields the best known asymptotics in this situation. In particular, we will use the
important example of “partitions without sequences” to illustrate the application of our general
results throughout the rest of the paper, but we emphasize that our approach of identifying
principal part integrals in Sections 3 and 4 is widely applicable to other products of mock
modular forms and modular forms.

1.2. Partitions without sequences and the statement of the main results. In [3],
Andrews considered partitions that do not contain any consecutive integers as parts, which had
recently arisen in connection with certain probability models as well as in the study of threshold
growth in cellular automata [18] (also see [6]). Adopting his notation, let p2(n) be the number
of such partitions of size n. He derived the generating function

(1.6) G2(q) :=
∑
n≥0

p2(n)q
n =

(−q3; q3)∞
(q2; q2)∞

χ(q),
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where

χ(q) :=
∑
n≥0

qn
2
(−q; q)n

(−q3; q3)n
is another of Ramanujan’s third-order mock theta functions [22].

Holroyd, Liggett and Romik [18] used clever combinatorial arguments to show that

(1.7) r(n)� p2(n)� nr(n),

where r(n) are the coefficients of the infinite product from (1.6), namely

ξ(q) :=
∑
n≥0

r(n)qn =
(−q3; q3)∞
(q2; q2)∞

.

This means that in the convolution product G2(q) = ξ(q)χ(q), the exponential growth of the
coefficients p2(n) is entirely due to the ξ(q) factor, despite the fact that χ(q) (like any of the
mock-theta functions) also has coefficients that grow exponentially. In other words, there must
be a great deal of cancellation when these two series are multiplied.

Holroyd et al. also identified the main exponential growth factor, using Tauberian-type
estimates to show that log r(n) ∼ 2π

3

√
n. In fact, the circle method (or a Maass-Poincaré series

decomposition as in [11]) applied to the weight −1/2 eta-quotient ξ(q) would give the more

precise estimate r(n) ∼ c · 1
n
e

2π
3

√
n for some (explicit) constant c (as in Section 4).

Andrews [3] improved upon Holroyd et al’s results by determining the cusp expansion of
G2(q) as q → 1. He rewrote the function by using a mock theta identity, replacing ξ(q) by
the sum of an eta-quotient and a different mock theta function. In particular, he obtained the
decomposition

G2(q) =
(q6; q6)∞

4(q2; q2)∞(q3; q3)∞
f(q) +

3(q3; q3)3∞
4(q; q)∞(q2; q2)∞(q6; q6)∞

,(1.8)

where f(q) is as previously defined in (1.5). We denote the two terms on the right-side of
equation (1.8) by

g1(q) :=
(q6; q6)∞

4(q2; q2)∞(q3; q3)∞
f(q), g2(q) :=

3(q3; q3)3∞
4(q; q)∞(q2; q2)∞(q6; q6)∞

.

If q = e−s, Andrews proved that as s ↓ 0, G2(q) has the asymptotic behavior

(1.9) G2(q) ∼
√
s

6π
· eπ2

9s +
1

2
· eπ2

9s ,

where the two terms come from g1(q) and g2(q), respectively.
However, it requires more than the cuspidal estimate of (1.9) to determine p2(n) precisely

(and it would not be enough to merely consider the other cusps). The chief technical issue is
that although G2(q) essentially has weight zero modular transformation properties, it is not an
automorphic form (or a holomorphic part thereof). Therefore it does not lie in the standard
framework of of the circle method and/or Poincaré series, in which a modular or harmonic Maass
form is determined by its “principal part”, or cusp expansions. In fact, the theory developed
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by the first author, Ono, and Zwegers explains that χ(q) has an associated non-holomorphic
part that is necessary to construct a “completed” harmonic Maass form. The principal part
integrals that arise in our main theorem should be viewed as arising from the intermixing of
the non-holomorphic part of χ(q) with the principal part of the eta-quotient.
We assume the definition of ωh,k from Section 2. For positive integers h, h′, n, k, and ν, with

hh′ ≡ −1 (mod k), define the roots of unity

ζ(h, n, k, ν) := (−1)νeπi
k
(−2hn+h′(−3ν2+(−1)kν))

and

αr(h, k) :=
ωh,kω 2h

(2,r)
, k
(2,r)

ω 3h
(3,r)

, k
(3,r)

ω 6h
(6,r)

, k
(6,r)

.

Furthermore, for any b > 0, define the integral

Ib,k,ν(n) :=
1∫

−1

√
1− x2

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) I1

(
2π

k

√
2bn(1− x2)

)
dx,

where I1(x) is a modified Bessel function of the first kind, which can be defined by the integral
representation (3.12). We have the following asymptotic expansion.

Theorem 1.1. Let N := [n1/2]. The asymptotic expansion for p2(n) is given by

p2(n) =
π

6
√
6n

∑
0≤h<k≤N
(h,k)=1
(6,k)=3

α3(h, k)

k2

∑
ν (mod k)

ζ(h, n, k, ν)I 1
6
,k,ν(n)

+
5π

36
√
6n

∑
0≤h<k≤N
(h,k)=1
(6,k)=2

α2(h, k)

k2

∑
ν (mod k)

ζ(h, n, k, ν)I 5
36

,k,ν(n)

+
π

18
√
6n

∑
0≤h<k≤N
(h,k)=1
(6,k)=1

α1(h, k)

k2

∑
ν (mod k)

ζ(h, n, k, ν)I 1
18

,k,ν(n)

+
π

6
√
n

∑
0≤h<k≤N
(h,k)=1
(6,k)=1

ωh,kω2h,kω6h,k

kω3
3h,k

e−
2πihn

k I1

(
2π

3k

√
n

)
+O(log n).

We can also isolate part of the leading exponential term to obtain the leading terms of the
asymptotic expansion for p2(n) explicity.
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Theorem 1.2. For any 0 < c < 1/8, as n→∞ we have

p2(n) =

(
1

4
√
3n3/4

+
1

18
√
2n

)
e

2π
3

√
n +O

(
e

2π
3

√
n

n1+c

)
.

Remark. Recalling (1.7) and the subsequent discussion, this asymptotic is equivalent to p2(n) ∼
C · n 1

4 r(n) (up to a constant scaling). This is markedly different from the behavior of modular
partition functions seen in (1.3) and (1.4); although the coefficients of χ(q) grow asymptotically
with some exponential factor eC

√
n (the same is true for any mock theta function due to their

nontrivial principal parts [13, 24]), the exponential growth of p2(n) is the same as that of r(n).

Remark. The second asymptotic term for p2(n) arises from one of the principal part integrals
in Theorem 1.1, and the proof in Section 4 shows that there are also products of modular
forms and mock theta functions in which the dominant exponential term in the coefficient
asymptotics arises from such an integral (and thus from the non-holomorphic part of the mock
theta function).

Although Theorem 1.2 is a consequence of Theorem 1.1 (the two terms correspond to the
terms k = 1 in the two sums with (6, k) = 1), it is not an immediate corollary, as it requires
some analysis to identify the principal part of the integrals Ib,k,ν(n).
We now describe the structure of the paper. In Section 2, we record the modular transfor-

mation laws for G2(q). Section 3 contains the proofs of several technical integral estimates. We
then apply the circle method in Section 4 and prove the asymptotic expansion of Theorem 1.1.
In Section 5 we analyze the exponentially dominant terms in the expansion to prove Theorem
1.2.

Acknowledgments
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over they thank the referee for many helpful comments.

2. Modular transformation properties

In this section we determine the modular transformations for G2(q). First, adopt the notation

P (q) := (q; q)−1∞ .

If h and k are coprime positive integers, then define h′ so that hh′ ≡ −1 (mod k) (if k is even,
we can assume this congruence holds modulo 4k and if k is odd we may assume that 8|h′).
Furthermore, we introduce a complex variable z with Re(z) > 0 such that q = e

2πi
k

(h+iz), and

define q1 := e
2πi
k

(h′+iz−1). The classical modular transformation for P (q) can then be written as

(2.1) P (q) = ωh,kz
1/2e

π(z−1−z)
12k P (q1),

where ωh,k := eπis(h,k), and s(h, k) is the standard Dedekind sum [2].
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If r is a positive integer, the transformation for P (qr) follows from (2.1). To compactly write

the formula, we first let gr := (r, k) and define ρr :=
r
gr
, kr :=

k
gr
.We also set qr := e

2πi
kr

(h′r+iz−1/ρr)

with h′r defined so that h′rρr ≡ h′ (mod kr). The transformation law is then

(2.2) P (qr) = ωhρr,kr(ρrz)
1/2e

π
12kr

(
z−1

ρr
−ρrz

)
P (qr).

We write qr only when it is clear that h and k are fixed. This nonstandard notation is appealing
because we can (and will) always select h′ such that ρr | h′ (since (ρr, kr) = 1), and thus

qr = q
gr/ρr
1 .

The eta-quotient component of g1(q) is ξ(q) :=
P (q2)P (q3)

P (q6)
. Since ξ(q) is an eta-quotient that

is essentially modular with respect to a congruence subgroup of level 6, we need only consider
the different transformations for all possible values of (6, k). We begin with the case 6 | k; we
have

(2.3) ξ(q) =
ωh, k

2
ωh, k

3

ωh,k/6

· z1/2e −π
12k

(z−1−z) · ξ(q1).

Next, if (6, k) = 2, then

(2.4) ξ(q) =
ωh, k

2
ω3h,k

ω3h, k
2

· z1/2e πz
12k

+ 5π
36kz ·

P (q21)P
(
q
1/3
1

)
P
(
q
2/3
1

) .

Similarly, if (6, k) = 3, then

(2.5) ξ(q) =
ω2h,kωh, k

3

ω2h, k
3

· z1/2e πz
12k

+ π
6kz ·

P
(
q
1/2
1

)
P (q31)

P
(
q
3/2
1

) .

Finally, if (6, k) = 1,

(2.6) ξ(q) =
ω2h,kω3h,k

ω6h,k

· z1/2e πz
12k

+ π
18kz ·

P
(
q
1/2
1

)
P
(
q
1/3
1

)
P
(
q
1/6
1

) .

Now we turn to f(q), whose transformation law was studied by Andrews [1], and is essentially
of level 2. If k is even we have

f(q) =(−1) k
2
+1e

πi
(

h′
2
− 3h′k

4

)
ωh,kz

− 1
2 e

π(z−1−z)
12k f(q1)(2.7)

+
2ωh,k

k
z

1
2 e−

πz
12k

∑
ν (mod k)

(−1)νeπih′(−3ν2+ν)
k Ik,ν(z),

where

(2.8) Ik,ν(z) :=

∫
R

e−
3πzx2

k

cosh
(

πi(ν− 1
6
)

k
− πzx

k

) dx.
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We note that there is a typo regarding the term e
π(z−1−z)

12k in this transformation as it is stated
in Andrews’ Theorem 2.2 (although the correct formula is stated in the proof); we have also
replaced his 2k by an even k. Throughout we will use the residues 1 ≤ ν ≤ k in all of our
calculations.

If k is odd, then we have

f(q) = 2(−1) 1
2
(k−1)e

3πih′
4k ωh,kz

− 1
2 e−

2π
3kz
− πz

12kω
(
q

1
2
1

)
(2.9)

+
2
√
z

k
e−

πz
12kωh,k

∑
ν (mod k)

(−1)νe− 3πih′ν2
k

−πih′ν
k Ik,ν(z),

where

ω(q) :=
∞∑
n=0

q2n(n+1)

(q; q2)2n+1

is another one of Ramanujan’s third-order mock theta functions.
If 6 | k, then the transformation law of g2 is given by

(2.10) g2(q) =
3P (q)P (q2)P (q6)

4P 3(q3)
=

ωh,k ωh, k
2
ωh, k

6

ω3
h, k

3

· g2(q1).

If (6, k) = 2, then

(2.11) g2(q) =
1

4

ωh,k ωh, k
2
ω3h, k

2

ω3
3h,k

e
2π
9kz

P (q1)P (q21)P
(
q
2/3
1

)
P 3
(
q
1/3
1

) .

If (6, k) = 3, then

(2.12) g2(q) =
3

2

ωh,k ω2h,k ω2h, k
3

ω3
h, k

3

e−
π

2kz

P (q1)P
(
q

1
2
1

)
P
(
q
3/2
1

)
P 3 (q31)

.

Finally, if (6, k) = 1, then

(2.13) g2(q) =
1

2

ωh,k ω2h,k ω6h,k

ω3
3h,k

e
π

18kz

P (q1)P
(
q

1
2
1

)
P
(
q

1
6
1

)
P 3
(
q

1
3
1

) .

3. Integral estimates

In this section we prove some of the technical bounds that we will need in order to apply the
circle method and prove Theorem 1.1. Specifically, we show that integrating the transformation
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laws from Section 2 naturally leads to Bessel functions and our Ib,k,ν . Throughout we let
0 ≤ h < k ≤ N with (h, k) = 1, and z = k (N−2 − iΦ) with −ϑ′h,k ≤ Φ ≤ ϑ′′h,k. Here

ϑ′h,k :=
1

k(k1 + k)
, ϑ′′h,k :=

1

k(k2 + k)
,

where h1

k1
< h

k
< h2

k2
are adjacent Farey fractions in the Farey sequence of order N . ¿From the

theory of Farey fractions it is known that

1

k + kj
≤ 1

N + 1
(j = 1, 2).(3.1)

Lemma 3.1. If b ∈ R, ν ∈ Z, with 0 < ν ≤ k, let Jb,k,ν(z) := ze
πb
kz Ik,ν(z), and define the

principal part truncation of Jb,k,ν as

J ′b,k,ν(z) :=
√

b

3

∫ 1

−1

e
πb
kz

(1−x2)

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) dx.

As z → 0, we have the following asymptotic behavior:

(1) If b ≤ 0, then |Jb,k,ν(z)| �
∣∣∣π2 − π(ν−1/6)

k

∣∣∣−1 .
(2) If b > 0, then Jb,k,ν(z) = J ′b,k,ν(z) + Eb,k,ν , where the error term satisfies for 0 < ν ≤ k

|Eb,k,ν | �
∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1

.

Here all of the implied constants are allowed to depend on b.

Remark. We use the terminology “principal part truncation” for the integral defining J ′b,k,ν as
it is indeed a principal part integral, whose distribution is concentrated around x = 0. The
phrase also serves as a reminder that we will view these integrals as a continuous analogue of
the principal part of a q-series in the circle method.

Proof. We begin by making the substitution x �→ x/(az) in Ik,ν(z), where a is some undeter-
mined real constant which we will select later. This means that

(3.2) Jb,k,ν(z) =
1

a
e

πb
kz

∫
S

e−
3πx2

a2kz

cosh
(

πi(ν−1/6)
k

− πx
ak

) dx =
1

a
e

πb
kz

∫
R

e−
3πx2

a2kz

cosh
(

πi(ν−1/6)
k

− πx
ak

) dx,

where S is the line through the origin defined by arg(±x) = arg(z). The last equality follows
from the facts that es is entire and cosh(s)−1 has poles only at imaginary values of s. We also
need the simple observation that for a fixed z the magnitude of the integrand can be bounded
by e−Cx2

as |x| → ∞ for some constant C > 0. Thus the integral along a circular path of radius
R that joins S and R vanishes as R → ∞, and Cauchy’s Theorem then allows us to shift S
back to the real line.
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We next require the bound

(3.3) Re(z−1) =
N−2

kN−4 + kΦ2
≥ N2

k +N2k−1
≥ k

2
,

which grows as k → ∞. This means that the asymptotic behavior of |ebz−1 | as k → ∞ (and
therefore |Jb,k,ν(z)| as well) depends on the sign of b.
If b ≤ 0, then we may take a = 1 for simplicity and proceed similarly as in [1, 8]. If α ≥ 0

and β ∈ R, we use the simple bound

| cosh(α + iβ)| = | cosh(α) cos(β) + i sinh(α) sin(β)| ≥ | cos(β)| ≥
∣∣∣sin(π

2
− β

)∣∣∣ .(3.4)

For 0 < β < π, this yields a simple uniform bound throughout the range 1 ≤ ν < k, namely
that

(3.5)

∣∣∣∣cosh
(
πi(ν − 1/6)

k
− πx

k

)∣∣∣∣ ≥
∣∣∣∣sin

(
π

2
− π(ν − 1/6)

k

)∣∣∣∣
∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣ .
Combing a simple bound for the Gaussian error function with (3.3) and (3.5) then completes
the proof of (1), giving

|Jb,k,ν(z)| ≤
∣∣∣∣∣∣
∫
R

e−
3πx2

kz

cosh
(

πi(ν−1/6)
k

− πx
k

) dx

∣∣∣∣∣∣�
∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1
√(

Re(z−1)
k

)−1
(3.6)

�
∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1

.

In the case that b > 0, we follow (3.2) and write

(3.7) Jb,k,ν(z) =
1

a

∫
R

e
π
kz

(
b− 3x2

a2

)

cosh
(

πi(ν−1/6)
k

− πx
ak

) dx.

The asymptotic behavior of z−1 (recall (3.3)) implies that the integral in (3.7) naturally splits

at b = 3x2

a2
. We therefore set a =

√
3
b
for convenience, which gives

Jb,k,ν(z) = J ′b,k,ν(z) + Eb,k,ν(z),
where

Eb,k,ν(z) :=
√

b

3

∫
|x|>1

e
πb
kz

(1−x2)

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) dx.

One easily sees that

(3.8) |Eb,k,ν(z)| ≤ 2 ·
∣∣∣∣∣∣
√

b

3

∞∫
1

e
πb
kz

(1−x2)

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) dx

∣∣∣∣∣∣ .
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Making the substitution x �→ x+ 1 and mimicking the arguments that led to (3.6) gives

(3.9) |Eb,k,ν(z)| �
∣∣∣∣∣∣
√

b

3

∞∫
0

e
πb
kz

(−2x−x2)

cosh
(

πi(ν−1/6)
k

− π(x+1)
√
b

k
√
3

) dx

∣∣∣∣∣∣�
∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1

,

which completes the proof of (2). �
Proposition 3.2. If b > 0 and n ∈ N, then

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k J ′b,k,ν(z) dΦ =
2πb

k
√
6n

1∫
−1

√
1− x2

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) I1

(
2π

k

√
2bn(1− x2)

)
dx+ E ′b,k,ν

=
2πb

k
√
6n
· Ib,k,ν(n) + E ′b,k,ν ,

with |E ′b,k,ν | �
1

kN

∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1

. Here all the implied constants may depend on b.

Proof. We begin by symmetrizing the outer integral, writing

(3.10)

∫ ϑ′′h,k

−ϑ′h,k
=

∫ 1
kN

− 1
kN

−
∫ −ϑ′h,k

− 1
kN

−
∫ 1

kN

ϑ′′h,k

.

In the second and third integrals of (3.10) (the “boundary errors”), the range is bounded away

from zero as Φ  1
kN

. In this range, (3.3) implies that Re(z−1) � k and thus |eπb
kz | = Ob(1).

This means that even though b is positive, the bound from Lemma 3.1 part (1) still applies.
The integrals are over an interval of length at most 1

kN
, so the overall boundary contribution is

Ob

(
1
kN

∣∣∣π2 − π(ν−1/6)
k

∣∣∣−1) .

Now we expand the integral for J ′, recalling that Φ = i
(
z
k
− 1

N2

)
and switching to the

variable z:
1

kN∫
− 1

kN

e
2πnz

k J ′b,k,ν(z) dΦ =

1
kN∫

− 1
kN

e
2πnz

k

√
b

3

1∫
−1

e
πb
kz

(1−x2)

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) dx dΦ(3.11)

=

√
b

ik
√
3

k
N2+

i
N∫

k
N2− i

N

1∫
−1

e
πb
k
(1−x2)z−1+ 2πn

k
z

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) dx dz.

Next, we utilize a standard contour shift in the complex z-plane in order to better recognize
the main term as a Bessel function. Let Γ be the counterclockwise circle that passes through
the points k

N2 ± i
N

and is tangent to the imaginary axis at the origin. The radius of this circle
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is c = 1
2
( k
N2 + 1

k
), and if z = u + iv, then the circle’s equation is u2 + v2 = 2cu. This implies

that Re(z−1) = u
u2+v2

= 1
2c

< k for all nonzero points of Γ.
In (3.11), the integrand’s only pole in the z-variable is at z = 0, and thus Cauchy’s theorem

allows us to shift the original straight-line path to Γ2, which is the portion of Γ that is to the
right of Re(z) = k

N2 . Let Γ1 denote the arc of Γ to the left of this line. Along Γ1, both z and
z−1 have bounded real parts, and the numerator of the integrand is Ob(1). Therefore (3.4) and
(3.5) imply that

√
b

k
√
3

∣∣∣∣∣∣
∫
Γ1

1∫
−1

e
πb
k
(1−x2)z−1+ 2πn

k
z

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) dx dz

∣∣∣∣∣∣
� 1

k

∫
Γ1

1∫
−1

∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1

dx dz � 1

kN

∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1

.

Excluding the error terms, we have now replaced the integral of J ′ by
√
b

ik
√
3

∫
Γ

1∫
−1

e
πb
k
(1−x2)z−1+ 2πn

k
z

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) dx dz

=

√
b

ik
√
3

1∫
−1

1

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) ∫
Γ

e
πb
k
(1−x2)z−1+ 2πn

k
z dz dx.

The change of variables Z = πb
k
(1−x2)z−1 takes Γ to the vertical line Re(z) = γ = πb

2ck
(1−x2) > 0

and gives

πb
√
b

ik2
√
3

1∫
−1

(1− x2)

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

)
γ+i∞∫

γ−i∞

Z−2eZ+ 2π2nb
k2

(1−x2)Z−1

dZ dx.

Finally, we obtain the claimed formula by applying the integral representation for the modified
Bessel functions Iσ (here σ = 2π2nb

k2
(1− x2)), namely

(3.12)
1

2πi

γ+i∞∫
γ−i∞

t−reσt
−1+t dt = σ

1−r
2 Ir−1(2

√
σ).

�

We next turn to the contribution of the non-holomorphic part.
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Proposition 3.3. Assuming the notation above, we have for r > 0 and as n→∞:∫ ϑ′′h,k

−ϑ′h,k
e

2π
k (nz+

r
z ) dΦ =

2π
√
r

k
√
n
I1

(
4π

k

√
nr

)
+O

(
1

Nk

)
.

Proof sketch. The proof follows as in the work of Rademacher and Zuckerman [21, 20]; their
setup was also used in the preceding proof of Proposition 3.2. Note that the integral in this
result comes from the holomorphic part of the harmonic Maass form and has the same shape
as in the case of classical modular forms. We skip the details proof here as it is essentially
a known result, and is significantly easier than the above proof of Proposition 3.2 due to the
absence of the ν-parameter and the J ′ function. �

4. The circle method and the proof of Theorem 1.1

4.1. Set up. To prove Theorem 1.1, we use the Hardy-Ramanujan method. By Cauchy’s
Theorem we have for n > 0

p2(n) =
1

2πi

∫
C

G2(q)

qn+1
dq,

where C is an arbitrary path inside the unit circle that loops around 0 in the counterclock-
wise direction. We chose the circle with radius r = e−2π/N

2
with N := �n1/2�, and use the

parametrization q = e−2π/N
2+2πit with 0 ≤ t ≤ 1. This gives

p2(n) =

∫ 1

0

G2

(
e−

2π
N2+2πit

)
· e 2πn

N2 −2πint dt.

We let h, k, ϑ′h,k, ϑ
′′
h,k be defined as in Section 3.

We decompose the path of integration into paths along the Farey arcs −ϑ′h,k ≤ Φ ≤ ϑ′′h,k,
where Φ = t− h

k
. Thus

p2(n) =
∑

0≤h<k≤N
(h,k)=1

e−
2πihn

k

∫ ϑ′′h,k

−ϑ′h,k
G2

(
e

2πi
k

(h+iz)
)
· e 2πnz

k dΦ(4.1)

=
∑

0≤h<k≤N
(h,k)=1

e−
2πihn

k

∫ ϑ′′h,k

−ϑ′h,k

[
g1

(
e

2πi
k

(h+iz)
)
+ g2

(
e

2πi
k

(h+iz)
)]
· e 2πnz

k dΦ,

where z = k(N−2 − iΦ) as before.
For notational convenience we group the terms based on the divisibility properties of k,

writing

p2(n) =
∑

6 +
∑

3 +
∑

2 +
∑

1,

where
∑

d denotes the sum over all terms 0 ≤ h < k ≤ N with (h, k) = 1 and (6, k) = d.
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4.2. Estimation of
∑

6. Our strategy for estimating
∑

6, as well as the other sums, is inspired
by the classical circle method, where the asymptotic contributions are largely determined by the
leading powers of q1. Specifically, since |q1| = e−

2π
k
Re(z−1) and we are considering z → 0, positive

exponents will be absorbed into the global error. In contrast, negative exponents will lead to
principal part integrals or Bessel functions depending on whether or not the term involves a
Mordell integral (using Proposition 3.3 and Lemma 3.1, respectively).

Combining the transformations (2.3), (2.7), and (2.10), we have∑
6 = S61 + S62 + S63(4.2)

:=
∑
h,k
6|k

ωh,k ωh, k
2
ωh, k

3
(−1) k

2
+1

ωh, k
6

e
πih′
2 (1− 3k

2 )− 2πihn
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k g1(q1) dΦ

+
∑
h,k
6|k

ωh,k ωh, k
2
ωh, k

6

ω3
h, k

3

e−
2πihn

k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k · g2(q1)dΦ

+
1

2

∑
h,k
6|k

ωh,k ωh, k
2
ωh, k

3
e
−2πihn

k

k ωh, k
6

∑
ν (mod k)

(−1)νeπih′(−3ν2+ν)
k

×
ϑ′′h,k∫

−ϑ′h,k

e
2πnz

k z e−
π

12kz ξ(q1)Ik,ν(z)dΦ.

Throughout the remainder of the paper, we write
∑
h,k

as a shorthand for the summation condi-

tions in (4.1).
We now estimate each of the S6i and show that they are part of the error term. Using the

trivial bound for all of the roots of unity we obtain the estimate

(4.3) |S61| ≤
∑
h,k
6|k

ϑ′′h,k∫
−ϑ′h,k

∣∣∣e 2πnz
k

∣∣∣ · |g1(q1)| dΦ =
∑
h,k
6|k

ϑ′′h,k∫
−ϑ′h,k

e
2πn
N2 · |g1(q1)| dΦ.

Furthermore, (3.3) implies that g1(q1) is uniformly bounded over the outer sum. Therefore, by
(4.3) we have

(4.4) |S61| �
∑
h,k
6|k

e
2πn
N2

kN
� e2πn/N

2

= O(1).

The same arguments also imply that |S62| = O(1).
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This leaves S63, which is complicated by the presence of the error integral Ik,ν(z) within the
integrand. Again we use that in the domain of integration ξ is uniformly bounded. We have

|S63| ≤
∑
h,k
6|k

1

2k

∑
ν (mod k)

ϑ′′h,k∫
−ϑ′h,k

∣∣∣e 2πnz
k

∣∣∣ · |ξ(q1)| · ∣∣ze− π
12kz Ik,ν(z)

∣∣ dΦ

� e2πn/N
2
∑
h,k
6|k

1

k

k∑
ν=1

ϑ′′h,k∫
−ϑ′h,k

∣∣∣J− 1
12

,k,ν(z)
∣∣∣ dΦ.

Lemma 3.1 implies that

|S63| � e2πn/N
2
∑
h,k
6|k

1

k

k∑
ν=1

ϑ′′h,k∫
−ϑ′h,k

∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1

dΦ(4.5)

�
∑
h,k
6|k

1

k2N

k∑
ν=1

∣∣∣∣π2 − π(ν − 1/6)

k

∣∣∣∣
−1

dΦ

�
∑
h,k
6|k

1

kN
· log k = O (logN) .

Overall, we have proven that |∑6| = O(logN).
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4.3. Estimation of
∑

2. By (2.4), (2.7), and (2.11), we have∑
2 = S21 + S22 + S23

:=
1

4

∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h,k (−1) k

2
+1

ω3h, k
2

e
πih′
2

(1− 3k
2
)− 2πihn

k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k
+ 2π

9kz

P (q21) P
(
q
1/3
1

)
f(q1)

P
(
q
2/3
1

) dΦ

+
1

4

∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h, k

2

ω3
3h,k

e−
2πihn

k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k
+ 2π

9kz

P (q1)P (q21)P
(
q
2/3
1

)
P 3
(
q
1/3
1

) dΦ

+
∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h,k

2k ω3h, k
2

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2+ν)
k

×
ϑ′′h,k∫

−ϑ′h,k

e
2πnz

k z e
5π

36kz

P (q21) P
(
q
1/3
1

)
P
(
q
2/3
1

) Ik,ν(z)dΦ.

Although S21 and S22 both have eπ/kz to the positive exponent 2/9 (and thus would individually
make a nontrivial asymptotic contribution according to Lemma 3.1), we now show that the
leading term cancels for all h and k in S21 + S22, leaving only negative exponents (which lie in
the asymptotic error term).

For odd h, we use the explicit Dedekind sum evaluation [2]

(4.6) ωh,k =

(−k
h

)
exp

(
−πi

(
1

4
(2− hk − h) +

1

12

(
k − k−1

) (
2h− h′ + h2h′

)))
.

Recalling that at the beginning of Section 2 we chose h′ so that 3|h′, it is not hard to see that

(4.7)
ωh,k ωh, k

2
ω3h,k (−1) k

2
+1

ω3h, k
2

· eπih′
2

(1− 3k
2
) = −

ωh,k ωh, k
2
ω3h, k

2

ω3
3h,k

.

Indeed (4.7) is equivalent to the identity

ω4
3h,k

ω2
3h, k

2

= (−1)k/2eπih′
2 ( 3k

2
−1).

By inserting (4.6) we find that the left-hand side is

ω4
3h,k

ω2
3h, k

2

=
exp

(−4πi (1
4
(2− 3hk − 3h) + 1

12
(k − k−1) (6h− h′/3 + 3h2h′)

))
exp

(−2πi (1
4
(2− 3hk/2− 3h) + 1

12
(k/2− 2k−1) (6h− h′/3 + 3h2h′)

)) = (−1) k
2
+1e

πih
2 ( k

2
+3).

Now (4.7) follows by using the fact that h ≡ −h′ (mod 4) and k is even.



ASYMPTOTICS FOR PARTITIONS WITHOUT SEQUENCES 17

Using (4.7), S21 + S22 simplifies to

(4.8) S21 + S22 =
1

4

∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h, k

2

ω3
3h,k

e−
2πihn

k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k e
2π
9kzP2(q1)dΦ,

where

(4.9) P2(q1) :=
P (q1)P (q21)P

(
q
2/3
1

)
P 3
(
q
1/3
1

) −
P (q21) P

(
q
1/3
1

)
f(q1)

P
(
q
2/3
1

) ∈ O
(∣∣∣q1/31

∣∣∣) .

Since e
2π
9kz = O

(∣∣∣q−1/91

∣∣∣) , the integrand in (4.8) is O
(∣∣∣q2/91

∣∣∣) as a whole, and is thus uniformly

bounded over the sum. In analogy with the bounds for S61 in Section 4.2, we can show that

|S21 + S22| = O(1).

For the term S23, we identify the portion that contributes exponential growth to the asymp-
totic expansion. Write

S23 = Se
23 + S ′23(4.10)

:=
∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h,k

2k ω3h, k
2

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2+ν)
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k z e
5π

36kz

×
⎛
⎝P (q21) P

(
q
1/3
1

)
P
(
q
2/3
1

) − 1

⎞
⎠ Ik,ν(z)dΦ

+
∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h,k

2k ω3h, k
2

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2+ν)
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k z e
5π

36kz Ik,ν(z)dΦ.

Excluding the terms z and Ik,ν , the remaining portion of the integrand in Se
23 is O

(∣∣∣q19/721

∣∣∣),
and thus the integrand as a whole has magnitude bounded by |J− 19

36
,k,ν(z)|. As in (4.5), Lemma

3.1 part (1) implies that |Se
23| = O(logN).
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For S ′23, we apply Lemma 3.1 part (2) and the bounds of Section 4.2 to obtain

S ′23 =
∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h,k

2k ω3h, k
2

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2+ν)
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k J 5
36

,k,ν(z)dΦ

(4.11)

=
∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h,k

2k ω3h, k
2

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2+ν)
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k J ′5
36

,k,ν
(z)dΦ +O(logN).

Proposition 3.2 and the bounds from Section 4.2 give an asymptotic expansion for S ′23 in
Bessel functions,

S23 =
5π

36
√
6n

∑
h,k

(6,k)=2

ωh,k ωh, k
2
ω3h,k

k2 ω3h, k
2

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2+ν)
k(4.12)

×
1∫

−1

√
1− x2

cosh
(

πi(ν−1/6)
k

− πx
√
5

6k
√
3

) I1

(
π
√
10

3k

√
n(1− x2)

)
dx+O(logN).

4.4. Estimation of
∑

3. Once again, we combine the transformations (2.5), (2.9), and (2.12)
to write∑

3 = S31 + S32 + S33

:=
1

2

∑
h,k

(6,k)=3

ωh,k ω2h,k ωh, k
3
(−1) 1

2
(k−1)

ω2h, k
3

e
3πih′
4k

− 2πihn
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k e−
π

2kz

P
(
q
1/2
1

)
P (q31)ω

(
q
1/2
1

)
P
(
q
3/2
1

) dΦ

+
3

2

∑
h,k

(6,k)=3

ωh,k ω2h,k ω2h, k
3

ω3
h, k

3

e−
2πihn

k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k e−
π

2kz

P (q1)P
(
q
1/2
1

)
P
(
q
3/2
1

)
P 3 (q31)

dΦ

+
∑
h,k

(6,k)=3

ωh,k ω2h,k ωh, k
3

2k ω2h, k
3

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2−ν)
k

×
ϑ′′h,k∫

−ϑ′h,k

ze
2πnz

k
+ π

6kz

P
(
q
1/2
1

)
P (q31)

P
(
q
3/2
1

) Ik,ν(z)dΦ.
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Following Section 4.2, both S31 and S32 are both O(1).
For S33, we imitate (4.10), (4.11), and (4.12), using Lemma 3.1 and Proposition 3.2 to find

the asymptotic expansion

S33 =
∑
h,k

(6,k)=3

ωh,k ω2h,k ωh, k
3

2k ω2h, k
3

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2−ν)
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k J ′1
6
,k,ν

(z)dΦ +O(logN)

(4.13)

=
π

6
√
6n

∑
h,k

(6,k)=3

ωh,k ω2h,k ωh, k
3

k2 ω2h, k
3

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2−ν)
k

×
1∫

−1

√
1− x2

cosh
(

πi(ν−1/6)
k

− πx
3
√
2k

) I1

(
2π

k
√
3

√
n(1− x2)

)
dx+O(logN).

4.5. Estimation of
∑

1. Finally, (2.6), (2.9), and (2.13) give∑
1 = S11 + S12 + S13

:=
1

2

∑
h,k

(6,k)=1

ωh,k ω2h,k ω3h,k (−1) 1
2
(k−1)

ω6h,k

· e 3πih′
4k

− 2πihn
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k e−
11π
18kz

P
(
q

1
2
1

)
P
(
q
1/3
1

)
ω
(
q
1/2
1

)
P
(
q
1/6
1

) dΦ

+
1

2

∑
h,k

(6,k)=1

ωh,k ω2h,k ω6h,k

ω3
3h,k

e−
2πihn

k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k e
π

18kz

P (q1)P
(
q
1/2
1

)
P
(
q
1/6
1

)
P 3
(
q
1/3
1

) dΦ

+
∑
h,k

(6,k)=1

ωh,k ω2h,k ω3h,k

2k ω6h,k

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2−ν)
k

×
ϑ′′h,k∫

−ϑ′h,k

e
2πnz

k z e
π

18kz

P
(
q
1/2
1

)
P
(
q
1/3
1

)
P
(
q
1/6
1

) Ik,ν(z)dΦ.

The previous arguments and Lemma 3.1 part (1) again imply that |S11| = O(1). For S12, we
isolate the main term by writing

P (q1)P
(
q
1/2
1

)
P
(
q
1/6
1

)
P 3
(
q
1/3
1

) = 1 +

⎛
⎝P (q1)P

(
q
1/2
1

)
P
(
q
1/6
1

)
P 3
(
q
1/3
1

) − 1

⎞
⎠ .

As in (4.9), the total contribution of the second summand to S12 is O(1).
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Thus we are left with

S12 =
1

2

∑
h,k

(6,k)=1

ωh,k ω2h,k ω6h,k

ω3
3h,k

e−
2πihn

k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k
+ π

18k
z−1

dΦ +O(1).

Using Proposition 3.3 yields

(4.14) S12 =
π

6
√
n

∑
h,k

(6,k)=1

ωh,k ω2h,k ω6h,k

kω3
3h,k

e−
2πihn

k I1

(
2π

3k

√
n

)
+O(1).

Finally, the asymptotic expansion for S13 also follows as before, and has the form

S13 =
∑
h,k

(6,k)=1

ωh,k ω2h,k ω3h,k

2k ω6h,k

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2−ν)
k

ϑ′′h,k∫
−ϑ′h,k

e
2πnz

k J ′1
18

,k,ν
(z)dΦ +O(logN)

(4.15)

=
π

18
√
6n

∑
h,k

(6,k)=1

ωh,k ω2h,k ω3h,k

k2 ω6h,k

e
−2πihn

k

∑
ν (mod k)

(−1)νeπih′(−3ν2−ν)
k

×
1∫

−1

√
1− x2

cosh
(

πi(ν−1/6)
k

− πx
3
√
6k

) I1

(
2π

3k

√
n(1− x2)

)
dx+O(logN).

Altogether, we have shown that p2(n) = S23 + S33 + S12 + S13 +O(logN), and the formulas
in (4.12) – (4.15) finish the proof of Theorem 1.1.

5. Principal part integrals and the proof of Theorem 1.2

Using the approximations from Section 3, we still need to find the asymptotic expansion of the
integrals Ib,k,ν(n) in order to find the asymptotic expansion for p2(n) . As a first simplification,
we will use the Bessel function asymptotic for x→∞ (see (4.12.7) in [5])

(5.1) I�(x) =
ex√
2πx

+O

(
ex

x
3
2

)
.

This implies that
(5.2)

Ib,k,ν(n) =
√
k

2π(2bn)1/4

1∫
−1

(1− x2)1/4

cosh
(

πi(ν−1/6)
k

− πx
√
b

k
√
3

) e
2π
k

√
2bn(1−x2)

(
1 +O

(
k√

n(1− x2)

))
dx.

We will address asymptotics in a more general setting, so we first identify the key properties of
the Ib,k,ν .
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Proposition 5.1. Let g(x) :=
(1− x2)1/4

cosh(ai+ bx)
for a > 0, b ∈ R. Then h(x) = g(x) + g(−x) is a

monotonically decreasing real function for x ∈ [0, 1].

Proof. First, 1 − x2 is monotonically decreasing as |x| increases, so we need only address the
denominators. Basic algebra gives the simplification

1

cosh(ai+ bx)
+

1

cosh(ai− bx)
=

cosh(ai− bx) + cosh(ai+ bx)

cosh(ai+ bx) cosh(ai− bx)
(5.3)

=
2 cos(a) cosh(bx)

cos(2a) + cosh(2bx)
.

Thus we need only show that
cosh(bx)

cos(2a) + cosh(2bx)
is monotonic. The derivative of this function

is
b · sinh(bx)(cos(2a) + cosh(2bx))− cosh(bx) · 2b · sinh(2bx)

(cos(2a) + cosh(2bx))2
.

When x = 0, this is zero, and for x > 0, it is not difficult to show that the numerator is always
negative. Thus the function is monotonically decreasing, as claimed. �
Note that h(x) as in the preceding proposition has a Taylor series in a neighborhood of x = 0.
Furthermore, the function

h(x)√
1− x2

is also monotonically decreasing in a neighborhood of 0, which will be helpful later in bounding
error terms.

To set further notation, let

(5.4) I∗f,a(n) := 2

∫ 1

0

f(x) eaπ
√

n(1−x2) dx.

Proposition 5.2. Suppose that f(x) is a positive function defined on [0, 1] that is bounded,
differentiable, and monotonically decreasing, and that also has a Taylor series on some neigh-
borhood of 0. If a > 0, then we have for all 0 < c < 1

8
as n→∞

I∗f,a(n) =

√
2

a
f(0)n−

1
4 eπa

√
n +O

(
n−

1
4
−ceπa

√
n
)

Proof. To finish the proof it is enough to show that

(5.5) I∗a(n) + J∗a(n) ≤ I∗f,a(n) ≤ I∗a(n)

with

I∗a(n) :=

√
2

a
f(0)n−

1
4 eπa

√
n

and
J∗a(n)� n−

1
4
−ceπa

√
n.
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We first show the upper bound. We have

I∗f,a(n) ≤ 2f(0)eπa
√
n

∫ 1

0

eπa
√
n(
√
1−x2−1)dx.

Using the upper bound
√
1− x2 − 1 ≤ −x2

2
gives

I∗f,a(n) ≤ 2f(0)eπa
√
n

∫ 1

0

e−
πa
√

nx2

2 dx = 2f(0)eπa
√
nn−

1
4

∫ n
1
4

0

e−
πax2

2 dx

≤ 2f(0)eπa
√
nn−

1
4

∫
R

e−
πax2

2 dx =

√
2

a
f(0)eπa

√
nn−

1
4 = I∗a(n).

We next consider the lower bound. We have

I∗f,a(n) = 2eπa
√
nn−

1
4

∫ n
1
4

0

f

(
y

n
1
4

)
e
πa
√
n

(√
1− y2√

n
−1

)
dy(5.6)

≥ 2eπa
√
nn−

1
4

∫ nc

0

f

(
y

n
1
4

)
e
πa
√
n

(√
1− y2√

n
−1

)
dy

for any 0 < c < 1
4
. For |x| < 1√

2
, the Taylor series expansion

√
1− x2 = 1−

∑
n≥1

(2n− 2)!

22n−1(n− 1)!n!
x2n

easily implies the bound

(5.7)
√
1− x2 − 1 ≥ −x2

2
−
∑
n≥2

x2n

2
≥ −x2

2
− x4.

The estimate (5.7) and the monotonicity of f(x) applied to (5.6) then give

I∗f,a(n) ≥ 2eπa
√
nn−

1
4f
(
nc− 1

4

)
e−πan

4c− 1
2

∫ nc

0

e−
πay2

2 dy.(5.8)

We will now use the Taylor series expansion of f(x) to write f(nc−1/4) = f(0)− E1(n), where

E1(n) = O(nc−1/4), and we also write the exponential function e−πan
4c−1/2

= 1 − E2(n), where
E2(n) = O(n4c−1/2). Note that both E1 and E2 are positive functions. Furthermore, we use the
following bound for the error function:∫ ∞

nc

e−
πay2

2 dy ≤
∫ ∞

nc

e−
πay
2 dy =

2

πa
e−

πanc

2 .

Plugging in to (5.8), we obtain

I∗f,a(n) ≥ 2eπa
√
nn−

1
4 (f(0)− E1(n)) (1− E2(n))

(
1√
2a
− 2

πa
e−

πanc

2

)
(5.9)
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In other words, recalling 5.5 we have shown that

J∗a(n)� n−
1
4
−ceπa

√
n

for any 0 < c < 1
8
.

�
Remark. Since f is uniformly bounded, Proposition 5.2 could also be proven through a refor-
mulation in terms of distributions. In particular, similar arguments as those used in the proof
also imply that as N →∞,

(5.10) μN := N
1
4 e

2π
3

√
N(
√
1−x2−1) dx→

√
1

2a
δ0,

where δ0 is the Dirac delta measure at x = 0.

Proof of Theorem 1.2. We prove the expansion for p2(n) by determining the main terms in
Theorem 1.1, and estimating the remainder. First, consider the last sum. The contribution
coming from the term k = 1 is given by

π

6
√
n
I1

(
2π

3

√
n

)
=

1

4
√
3n

3
4

e
2π
√

n
3 +O

(
e

2π
√

n
3

n
5
4

)

by (5.1). Next we estimate, again using (5.1), the terms coming from k > 1 (up to a constant)
against

n−
3
4

∑
5≤k≤N
0≤h<k

1√
k
e

2π
√

n
3k � e

2π
15

√
n,

which is exponentially smaller than the main term. The first and second sums in Theorem 1.1
are estimated in exactly the same way, and also contribute only to the error term.

This leaves the third sum. Again we start with the term k = 1, which by (5.2) can be
estimated against
(5.11)

π

18
√
6n
I 1

18
,1,1(n) =

1

36
√
2n

3
4

1∫
−1

(1− x2)1/4

cosh
(
−πi

6
− πx

3
√
6

) e
2π
3

√
n(1−x2)

(
1 +O

(
1√

n(1− x2)

))
dx.

We first consider the main term in this expression. Using Propositions 5.1 and 5.2 this yields
the bound

1

12
√
6n

1

cosh
(
πi
6

)e 2π
√

n
3 +O

(
e

2π
√
n

3

n1+c

)
=

1

18
√
2n

e
2π
√
n

3 +O

(
e

2π
√
n

3

n1+c

)
.

The big-O term in (5.11) can similarly be estimated against

n−
3
2 e

2π
√

n
3 .
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This follows by recalling that h(x)√
1−x2 is initially decreasing, as well as the fact that (5.11) is a

principal part integral.
Finally we treat the k > 1 terms from the third sum of Theorem 1.1. These may be estimated

against (up to a constant)

(5.12)
1√
n

∑
5≤k<N
0≤h<k

1

k
max
1≤ν≤k

∣∣∣I 1
18

,k,ν(n)
∣∣∣

� 1

n
3
4

∑
5≤k<N
0≤h<k

1√
k

max
1≤ν≤k

∣∣∣∣∣∣∣∣
1∫

−1

(1− x2)1/4

cosh

(
πi(ν− 1

6)
k

− πx
3k
√
6

) e
2π
3k

√
2n(1−x2) dx

∣∣∣∣∣∣∣∣
.

For a given k, Proposition 5.2 again bounds the integrals (up to a constant that is uniform in
ν) by ∣∣∣∣∣∣∣∣

1

cosh

(
πi(ν− 1

6)
k

)
∣∣∣∣∣∣∣∣
n−

1
4 e

2π
3k

√
n � kn−

1
4 e

2π
15

√
n.

This yields that (5.12) may be estimated against

n
1
4 e

2π
15

√
n,

which is again an exponential error, and thus the proof is complete. �
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