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ABSTRACT 

The ICP algorithm is accurate and fast for registration 
between two point sets in a same scale, but it doesn’t handle 
the case with different scales. This paper instead introduces 
a novel approach named the Scaling Iterative Closest Point 
(SICP) algorithm which integrates a scale matrix with 
boundaries into the original ICP algorithm for scaling 
registration. This method uses a simple iterative algorithm 
with the SVD algorithm and the properties of parabola 
incorporated to compute the translation, rotation and scale 
transformations at each iterative step, and its convergence is 
rapid with only a few iterations. The SICP algorithm is 
independent of shape representation and feature extraction; 
thereby it is general for scaling registration. Experimental 
results demonstrate its robustness and fast speed compared 
with the standard ICP algorithm. 

Index Terms—ICP, SVD, parabola, scaling registration

1. INTRODUCTION 

Image registration is a demanding task in computer vision 
and image process. The Iterative Closest Point (ICP) 
algorithm [1, 2, 3] is an advanced approach for this problem 
for its good accuracy and fast speed which has been widely 
used in a variety of fields such as medical images, document 
images, fingerprint images and face images etc. To speed up 
the traditional ICP algorithm, an increasing group of 
scholars have studied it. Jost et al. [4] combined a coarse to 
fine multi-resolution technique with the neighbor search 
algorithm into ICP to improve the registration. Moreover, 
many scholars have introduced other methods into ICP for 
its more robustness. Invariant features were proposed by 
Sharp et al. [5] to decrease the probability of being trapped 
in a local minimum, and genetic algorithms and evaluation 
metric were introduced by Silva et al. [6] into ICP for more 
precise registration. 

The original ICP algorithm doesn’t take scale factor 
into account in the Least Squares (LS) problem, while the 
scale factor always exists in registration. Zha et al. [7] used 
extended signature images to estimate the scale and applied 

it to traditional ICP for registration, while Zinßer et al. [8] 
directly estimated the scale in the ICP algorithm. Obviously 
the scale is a scalar that can only register two isotropic point 
sets, but not anisotropic ones which exists widely in scaling 
registration. To solve it, our approach introduces a scale 
matrix directly into the LS problem with the constraint 
condition that the scale matrix is bounded. The reason for 
adding this constraint condition is to avoid the phenomenon 
happening that points of a set converge to a point of the 
other set. This constraint optimization problem is solved by 
the Scaling Iterative Closest Point (SICP) algorithm which 
is an extension of the ICP algorithm. At each iterative step 
of this new algorithm, the translation, rotation and scale 
transformations are computed through a new and fast 
iterative algorithm. Accordingly, the SICP algorithm has the 
similarly fast speed to the ICP algorithm. This new 
presented algorithm has been tested in experiments and the 
experimental results demonstrate that our presented 
algorithm is a fast and robust technique to solve scaling 
registration problems caused by the scale factor, and it can 
be used widely in practice. 

This paper is organized as follows. In section 2, a 
general LS problem has been stated and the ICP algorithm 
has been reviewed briefly. In section 3, an optimization 
problem is described with a constraint condition that the 
scale matrix is bounded, and a proposed method the 
SICP algorithm is given. Following that is section 4 in 
which the proposed technique is evaluated on the 
experiments and a conclusion is finally drawn in the last 
section. 

2. PROBLEM STATEMENT AND THE ICP 
ALGORITHM 

2.1. Problem Statement 

The registration of m-D point sets is a difficult problem. To 
solve this, a general statement is described first as follows. 
Given two point sets in , one denotes a model shape m

1{ } mN
i iM m  and the other is a data shape 1{ } pN

i iP p
( ). To register between two m-D point sets is to mN N p
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find an transformation , with which  is registered to be 
in the best alignment with 

T P
M , so the formulation is based 

on the following LS problem: 
2

2T, {1,2, , } 1
( T

pN

i

min ( ) )
m

i jj N
p m  (1) 

2.2. The ICP Algorithm 

Let  of (1) be translation and rotation transformations, 
hence the registration between two point sets is 

T

2

2, , {1,2, , } 1
T

min ( ( ) )

. .       ,      det( ) 1

p

m

N

i jt j N i

m

p t m

s t

R
R

R R I R
 (2) 

where  is a rotation matrix,  is a 
translation vector. 

m mR mt

The ICP algorithm [1] achieves registration with good 
accuracy and fast speed, and it mainly has two steps. 

Firstly, build up the set of correspondences: 
2

2{1,2, , }
( ) arg min ( ( ) )

m

k i k j
j N

c i p t mR  (3) 

Secondly, compute the new transformation between 
two point sets  and  by minimizing 
squared distance: 

1{ } pN
k i k ip tR ( ) 1{ } pN

c i im

* * 2

( ) 2, 1
( , ) arg min( ( ) )

pN

k i k c i
t i

t p t t
R

R R R m

* *t

 (4) 

Update  and :1kR 1kt

 (5) *

1 1,       k k k kt tR R R R

3. THE SICP ALGORITHM 

3.1. The SICP Algorithm 

It is known that the ICP algorithm is a fast and accurate 
approach for registration between two point sets. However, 
the scale factor may exist in two point sets. In practice, we 
always need to consider the following LS problem: 

2

2, , 1{1,2, , }

T

1 2

min ( ( ) )

. .  ,    det( ) 1
      ( , , , ),  [ ,  ]

p

m

N

i js t
ij N

m

m j j k j k
k

p t m

s t
diag s s s s a b

R
RS

R R I R
S

 (6) 

where  is a scale factor and its boundaries can be 
estimated by the characteristics of the data sets, such as their 
covariance matrices. 

S

Actually, we can solve this problem in the way the ICP 
algorithm does by iteration. At each iterative step, two steps 
are mainly included: 

Step 1, build up the set of correspondences by the 
current transformation :( , , )k k ktS R

2

2{1,2, , }
( ) arg min ( ( ) )

m

k k i k j
j N

c i p t mR S  (7) 

Step 2, assume 1 2( , , , )mdiag s s sS , compute the 
new transformation :1 1 1( , ,k k ktS R )

2

1 1 1 ( ) 2[ , ], , 1
( , , ) arg min (

p

j jk jk
k

N

k k k i c i
s a b t i

t p
R

S R RS )t m  (8) 

3.2. Computation of Scale, Rotation and Translation  

To compute the scale, rotation and translation 
transformations in step 2, the following Lemma is given: 

Lemma: Given two m-D point sets 1{ }N
i iq  and 1{ }N

i in ,

the function 2

2
1

( )
N

i i
i

F t q t n  has the minimum value 

when
1 1

1 1N N

i i
i i

t n
N N

q .

According to the lemma, if minimizing 
2

( ) 2
1

( , ) ( )
pN

i c
i

F p tS R RS im , we get ( )
1

1 pN

c i
ip

t m
N

1

1 pN

i
ip

p
N

RS . Hence, 

2

( ) ( )
1 1 1 2

1 1( , ) ( )
p p pN N N

i c i i
i i ip p

F p m p
N N

S R RS RS c im

2

( ) ( )
1 1 1 2

1 1           ( ) ( )
p p pN N N

i i c i c i
i i ip p

p p m m
N N

RS

Let
1

1 pN

i i
ip

q p p
N i  and ( ) ( )

1

1 pN

i c i c
ip

n m m
N i ,

therefore,
2

2
1

1

( , )

           ( )

p

p

N

i i
i

N
T T T T T T T T
i i i i i i

i

F q n

q q n q q n n

S R RS

S R RS RS S R i in

2

1 1 1
            2

p p pN N N
T T T
i i i i i i

i i i

q q n q n nS RS  (9) 

To minimize (9), we can recover the following partial 
differential equations for the estimation of registration 
parameters: 

( , ) 0F S R
S

 (10) 

( , ) 0F S R
R

 (11) 

I. Suppose that (0,  ,  0,  1,  0,  ,  0)j diagE , ( j

1,2, , )m is a diagonal matrix where the th element is j
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one, but others are zero. They are the basis of the matrix S ,
and then (10) can be expressed as follows: 

0

1 1

( , ) ( , )( , ) lim

               2 2 0
p p

j

t

N N
T T
i j i i j i

i i

F t FF
t

q q n q

S E R S RS R
S

SE RE

i

 (12) 

From (12), we get: 

1 1
/

p pN N
T T

j i j i i j
i i

s n q qRE E q  (13) 

(1) If js  is any arbitrary number, we obtain the scale of 

SICP with unbounded scale: 
1 1

/
p pN N

T T
j i j i i j i

i i

s n q qRE E

]k

q .

(2) If [ ,  j j k j
k

s a b , according to (9), the function is 

known to be a parabola with respect to js  and its axis 
parallels to vertical, so the minimum can be achieved at the 
point which is nearest to the vertex of this parabola, hence 
we get the scale js  of the SICP algorithm: 

[ , ] 1 1
arg min /

p p

jk jk
k

N N
T T

j i j i i j
s a b i i

is s n q q qRE E

i

n qRS

 (14) 

II. For any given S , the necessary condition of 
minimizing  is (11) which can’t be computed easily, 
but according to (9), minimizing  is equivalent to 

maximizing , which has been solved by Arun [9], 

thus we only give the conclusion here. 

( , )F S R
( , )F S R

1

pN
T
i i

(1) Calculate  matrix and its SVD. m m H

1

1 pN
T

i i
ip

q n
N

H S  (15) 

 (16) H U V
(2) Calculate the rotation matrix .R
1) If det ,  is a rotation: ( ) 1TVU TVU

 (17) TR VU
2) If det ,  is a reflection: ( ) 1TVU TVU
a) If one of the singular values of H  is zero, the 

desired rotation can be calculated as follows: 

 (18) 1 0
0 1
m TI

R V U

b) If none of the singular values of  is zero, we go to 
a RANSAC-like technique. 

H

III. Repeat the above two steps until it converges or a 
maximum number of iteration steps is reached, and then we 
can obtain the solution ( , ).1, 1{ }m

k j js 1kR

IV. According to Lemma, we calculate :1kt

1 ( ) 1
1 1

1 1p pN N

k c i k
i ip p

t m
N N

R S

4. EXPERIMENTAL RESULTS 

To verify the robustness of our presented method, three 
experiments are tested on the following data sets: 1) the 3D 
point sets listed in [1], 2) certain 2D shapes in part B of CE-
Shape-1 [10], 3) the bunny model of the Stanford 3D 
Scanning Repository [11]. The results of ICP and SICP are 
reported as follows in which errors are computed by RMS 
(Root Mean Square). 

In the first experiment, we use two 3D point sets which 
are detailed in [1]. Set 1 has 8 points while Set 2 has 11 
points. The compared results of ICP and SICP are listed in 
Table 1 respectively, and both algorithms converge in 5 
steps.

RMS (mm) Scale
ICP 0.4376 1

SICP ( 0.9 1.1js ) 0.2650 diag(0.9000,0.9722,1.0468)

Table 1. Compared results of ICP and SICP on two 3D 
point sets. 

From the results of Table 1, we find (RMSICP-
RMSSICP)/RMSICP = 39.44%, meaning that SICP can get 
considerably better accuracy than ICP. 

In the second experiment, to show the robustness for 
registration of 2D shapes, we compare ICP and SICP 
( 0.5 2js , 1, 2j ) on two shapes of Part B of CE-
Shape-1, a large 2D shapes database and the results are 
shown in Table 2 and Fig. 1. 

RMS Scale
ICP 8.0546 1

SICP ( 0.5 2js ) 4.0564 diag(0.8484, 1.2461) 

Table 2. Compared results of ICP and SICP on two 2D 
shapes.

(a)                         (b)                        (c) 
Fig. 1. Registration result of SICP ( 0. ,5 2js 1, 2j ).
(a) 2D data shape. (b) 2D model shape. (c) Registration 
result of SICP. 

Table 2 demonstrates SICP is better than ICP in two 2D 
shapes with different scales, and Fig. 1 shows satisfying 
registration result of SICP. 

1k ip  (19) 

In the third experiment, our method is compared with 
ICP on the Stanford Bunny. Two range data, bun000 with 
40256 points and bun045 with 40097 points, are used, in 
which bun045 is to register bun000. The compared results 
are given in Table 3 and Fig. 2. 
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RMS (×10-3 mm) Scale  
ICP 2.0217 1

SICP ( )0.99 1.01js 1.9639 diag(0.9900, 
0.9900, 0.9900)

SICP ( )0.98 1.02js 1.9404 diag(0.9800, 
0.9869, 0.9800)

SICP ( js  is any 
arbitrary number) 

0.6854 diag(0.0033, 
0.3254, 0.0034)

Table 3. Compared results of ICP and SICP on the Stanford 
Bunny. 

0 5 10 15 20 25 30
1.5

2

2.5

3

3.5

4
x 10

-3

Iteration Number

R
M

S

ICP
SICP(0.99 s 1.01)
SICP(0.98 s 1.02)

Fig. 2. The convergence of ICP and SICP on the Stanford 
Bunny 

In Table 3, SICP with bounded scale and ICP are 
similar in accuracy on the Stanford Bunny. Though RMS of 
SICP ( js  is any arbitrary number) is 0.6854, seemingly 
smaller than those of others, its scale S  is close to 3 30 , an 
unreasonable value meaning all points of bun045 converge 
to a very small part of bun000. Hence, the constraint 
condition is necessary for scaling registration problem. 
Moreover, as is shown in Fig. 2, SICP and ICP are quite 
alike in convergence at a similarly fast speed with about 1.2 
sec at each iterative step. 

(a)                           (b)                           (c) 
Fig. 3. Registration result of SICP (1.99 ,2.01js 1,j

) on bun000 and bun045 range data. (a) Bun045 with a 
scale of 0.5. (b) The original range data of bun000. (c) 
Registration result of SICP. 

2,3

To evaluate the convergence of SICP with respect to 
the scale factor, we scale the bun045 range data by a factor 
of 1/ , , then use the scaled range data 
to register bun000 with a constraint condition 

. In the experiment, whatever 
is, the scaled bun045 registers the bun000 quite well, which 
reveals that our method is robust in convergence with 
respect to the scale factor. Fig. 3 shows one fairly fine 
registration result of SICP. 

(0.1 )n ( 1,2, ,50n

5. CONCLUSION 

This paper proposes a new approach for scaling registration 
of two m-D point sets in the way of incorporating a 
bounded scale matrix into the ICP algorithm. A series of 
experiments designed demonstrate our algorithm is more 
accurate in scaling registration between two m-D point sets 
and takes no more time in contrast to the standard ICP 
algorithm. For its stable convergence with respect to the 
scale factor, we will try to extend the framework for 
registration in practical use in the future. 
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