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AN EXTENSION OF THE KANTOROVICH METHOD1

ARNOLD D. KERR
New York University

Summary. An extension of the Kantorovich method is discussed. The suggested
method is demonstrated on the torsion problem of a beam of rectangular cross section.
It is found that even when the solution is restricted to a one-term approximation, the
method generates very good results also for stresses which are obtained as derivatives
of the solution. It is shown that the final form of the generated solution is unique and
that the convergence of the iterative process is very rapid. The obtained results indicate
that the proposed method is a convenient tool to generate close approximate solutions,
thus eliminating the arbitrariness in the choice of coordinate functions, which is a
serious shortcoming inherent in the Ritz and Galerkin methods.

Introduction and statement of problem. When applying the Ritz or Galerkin methods
to variational problems involving a functional I[w{xx , , • • • , xr)], an approximate
solution is usually assumed in the form

wm = an(f„(xi , x2 , • • • ,xr) (1)
»= 1

where <pn are a priori chosen functions and the a„'s are unknown constants. These con-
stants are determined from the condition that I[w] has to assume a stationary value,
which leads, in each of the two methods, to a system of m algebraic equations for the
determination of the a„'s.

The main shortcoming of these methods, from a practical point of view, is that
the obtained results depend very strongly upon the assumed approximating functions.

As a step in the direction to eliminate this arbitrariness, L. V. Kantorovich suggested
an approximate solution of the form

m

W„, = a»(zi)f»(z 1 , X2 , ■ ■ ■ , Xr) (2)
n= 1

where </»„ are also here a priori chosen functions but an(xi) are 110 longer constants
but unknown functions of one of the independent variables. With (2), I[w\ turns into
a functional which depends on m functions of the independent variable Xi

I = IJa^Xi), a2(xt), ■ ■ ■ , am(x1)].

The condition that the an's have to make /„, stationary leads now to m ordinary dif-
ferential equations for the an(xi)'s. Thus part of each term in (2) is obtained from dif-
ferential equations which are closely related to the problem under consideration [1], [2].
From a practical point of view it is advisable, in general, not to choose the iA„'s also
as functions of x, , since otherwise the resulting differential equations will have variable
coefficients.
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It seems that the above procedure generates a solution which, regardless of the
arbitrariness of the assumed \pn's, tends to the exact solution w along the xx direction.
This interpretation suggests that the obtained solution can in a similar manner be
further improved in the directions of the remaining independent variables. This is
accomplished by substituting the determined an{xj) into (2) as anl(x,), then expressing
\pn as \pn = ano(x2)1/^(3-3 ,Xi, • • ■ ,xr) where \p'n are a priori chosen functions, and proceeding
as before determine the an2(x2) functions from a resulting set of m ordinary differential
equations.

This procedure is continued until for each xt a set of a„k(xic) functions is determined
and wm becomes

m

wL" = a„1(x1)an2(x2)an3(x3) • • • a„r(xr). (3)
n= 1

After completion of the first cycle, which yielded w"\ this procedure can be continued
by assuming that in (3) the a„1(x1) are unknown functions, determining them as described
above, substitute the new functions into (3) as a"' , then assuming that an-.(x2) are
unknown functions, determining them as described above, and continuing like this
until after r steps the second cycle is completed and wm becomes

m

w«n = E alWxMlSix-^ix,) ■ ■ ■ a™{xr). (4)
n= 1

It is conjectured that this procedure, if continued indefinitely, should not only
yield an Im value which will be very close to I but, what is more significant, should
also yield a function wm which will, in the domain under consideration, very closely
approximate the exact solution w.

Since the method suggested above is based 011 an intuitive argument, it is important
to find out if, with an increasing number of cycles, the solution wm really converges
to a final form and if so, how closely it approximates the exact solution for a fixed rn.
From the computational point of view, it is also of interest to find out how rapidly
the iterative procedure converges.

In the following section, the suggested method will be demonstrated on the torsion
problem of a beam of rectangular cross section. The convergence problem will be studied.
In order to study the degree of approximation of the generated solution, the obtained
results will be compared with the corresponding values obtained from the exact solution
presented iri the literature.

After completion of the present paper, a publication by T. E. Schunck [3] came to
the attention of the writer in which a similar iterative procedure was used to determine
eigenvalues in connection with the buckling of a cylindrical panel. It is of interest to
note that although the paper by Schunck was published quite some time ago it went
unnoticed to the extent that it is not even referenced in the standard books on the
subject.

Application of the suggested method to a torsion problem. We consider a cylin-
drical bar of rectangular cross section as shown in Fig. 1. The bar is assumed weightless,
free from external forces on its lateral surfaces, and twisted at its ends, at z = 0 and
z = L, by torques of magnitude M, .

According to Saint-Vcnant's theory of torsion [4] all stresses are zero except aXM
and <rzv . The problem may be solved by assuming

& zx = +n8(d$/dy), a,v = — n6(d$/dx) (5)
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Fig. 1

where 8 is angle of twist per unit length of bar, n is a material constant, and $ is Prandtl's
stress function, and determining the function $ from the differential equation

d2$/dx2 + d2$/d*/2 = — 2 in R (6)

and the boundary condition

$ = 0 along the circumference of R. (7)

The corresponding variational formulation is

57w " 8 //, [(f) + (f) -4*]dx dv" °- (8)

Let us start this investigation by considering only a one-term approximation for
<£, i.e. let us extend, in the manner suggested above, the problem presented by L. V.
Kantorovich and V. I. Krylov [1] who used a one-term approximating function

$1(3, V) = i(x)(b2 - y2) (9)

which automatically satisfies the boundary condition (7) along y = ±6. Substitution
of into (8) yields, after performing the integrations with respect to y,

u- p f" [V(-jf)' + l'T(» - 2l"/f-r)] dx - 0. (10)
The corresponding Euler equation is

d2f/dx2 - 5/(2b2)I = —5/(2b2). (11)

The general solution of differential equation (11) is

f(x) — Ci cosh (\iX/a) + C2 sinh (X^'/a) + 1 (12)

where

M2
a J 2b2 (13)
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From the boundary condition (7) along x = zLa, it follows that

c- - -drs;; "0 (14)
and thus

1
cosh Xi cosh \i — cosh (At - (fr2 - y'). (15)

According to the Kantorovich method, in order to obtain a better approximation,
more terms have to bo used, for example (see [1, p. 317])

$ = a^Q)2 — y~) + a2(x)(b2 - y2)y2.

In the following we will proceed with the iteration procedure described before.
For this purpose $i presented in (9) is denoted by

$io = fi(x)g0(y) (9a)

where

fx(x) = j(x), g0(y) = b2[ 1 - (y/b)2] (16)

and Eq. (15) becomes

jr J10
$io = — cosh X, — cosh (A, 1 — (j^j (15a)cosh

where

A. = b2. (17)

As next approximating function we choose, according to (15a),

$n = cosh Xi — cosh
(>■; 9i(y)- (18)

It is to be noted that $u(x, y) automatically satisfies the boundary condition along
x = ±a. Substituting $n into (8), performing the integrations with respect to x, and
the variation with respect to g^y), we obtain as Euler equation

d'2gt/d.y2 - {yi/b)2gl = Au (19)

where

=  Xi(sinh 2Xi - 2X,)  ^

4 a

and

2^cosh2 X, — sinh 2Xt + ^

t 2(X, cosh X, — sinh X,) ,n^s
11_ / o -,\

Xj^cosh2 X, — sinh 2X, +
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The general solution of (19) is

9i(y) = Bn cosh (j, '~j + Il2l sinh (y, + g10 (22)

where

8a2(X] cosh X, — sinh X,) . .
9,0 ~ X?(sinh 2Xi - 2X0 C j

From the boundary condition along y = ±b it follows that

fin = ~ (Jio/cosh 7i ; B2l = 0 (24)

and hence

= -S^~ cosh X! — cosh (\Y cosh y1 — cosh ^yicosh 7,

The next approximating function is

$21 = /2(x)£cosh 7, - cosh ^

(25)

(26)

$21 automatically satisfies the boundary condition along y = ±6. Substituting 3>21
into (8) and proceeding as above we obtain as Euler equation

d%/dx2 - (X2/a)2/2 = A 21 (27)

where

=  7t(sinh 27, — 27O

4fr2( cosh2 7, — sinh 27, +_3_
47,

(28)

and

A21 = 2(7, cosh 7, - sinh 7O ^

7,^cosh2 71 — sinh 27! + |)

The general solution of (27) is

j2(x) = C,2 cosh (x2 ^ + C'22 sinh (\2 + /20 (30)

where

, _ 8b2(y 1 cosh 7, - sinh 7O .
ho 7?(sinh 2Tl - 27i) ^'
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From the boundary condition along x = ±a it follows that

C12 = — /20/cosh X2 ; C,2 = 0. (32)

Thus

/20

$21 ~ cosh X2

The next approximation is

cosh X2 — cosh (\2 cosh 7, — cosh (y, (33)

$22 = cosh X2 — cosh (X2 - <72(2/) (34)

and the above procedure may be continued indefinitely.
By comparing the obtained $,,• expressions (15a), (25), and (33) it can be seen that

the iteration procedure reduces to the following recurrence formulae with n = 1 as
starting index:

— cosh X„ — cosh (X„ -cosh t„ I \ a cosh y„ — cosh

$(n+1)„ = CQg^+^'n fcosh X„+, - cosh (x„+1 cosh y„ - cosh (y„

where

j X„(sinh 2X„ — 2X„) 

(cosh2 X„ - sinh 2X„ + |

7„(sinh 27n — 27„) 1'

_3^ '
47L cosh2 7„ — 77- sinh 27„ +

(35)

(36)

(37)

(38)

_ 8a2(\n cosh X„ — sinh X„) . .
9n0 ~ X2(sinh 2X„ - 2X„) { )

and

_ 8b'(y„ cosh yn - sinh y„)
f(n+,)0 7„2(sinh 27n - 2T„) (40)

From (35) and (36) it is concluded that the convergence of the generated solution
will depend upon the convergence of X„, y„, /„0 and gn0. In order to study the convergence
of the iterative process equations (37) to (40) were evaluated for a/b — 1, 1/2, 1/4 and
the values obtained after each iteration are presented in the following tables.
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a/b = 1

Kantorovich Method
0

7» 1.605212 1.606112 1.606114 1.606114

Qno/ ® 0.622232 0.598259 0.598227 0.598227

^n+l (f)I/2 = 1.581139 1.606081 1.606114 1.606114 1.606114

/(n + l)o/fr 1.000000 0.599073 0.598229 0.598227 0.59S227

a/b = 1/2

n
Kantorovich Method

0

7» 3.172462 3.174272 3.174256 3.174256

/~2
QuO/d 3.005640 2.562176 2.561680

^n+ 1 id)1/2 = 0.790570 0.851932 0.852009 0.852009

2.5616S0

0.S52009

/(n + 1) d/b 1.000000 0.074253 0.074090 0.074092 0.074092

a/b = 1/4

n
Kantorovich Method

0

7» 6.3300 6.3323 6.3322 6.3324

Qua/® 12.6012 7.5178 7.5159 7.5160

^n + l
HI)1/2 = 0.3953 0.5091 0.5092 0.5092 0.5092

/<»+!)(>/& 1.0000 0.001896 0.001892 0.001892 0.001892

It can be seen that A„ , yn , fn0 and gn0 converge for each a/b to specific values and
that in each case the convergence is extremely rapid. For practical purposes it seems
justified, for the problem under consideration, to assume

Xco ~ X3 , /too ~ /30 ,

~ 73, g*0 ~ g30 •
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In order to check how closely the generated solution does approximate the stresses,
we form according to (5)

= a = AtflTcsffcon
a" ^ dy b cosh 7„

a-,„ = —n6 -r— = + f— sinh Xo, -dx a cosh 7 v

cosh X„ — cosh (a,, sinh ^7„ , (41)

cosh 7„ — cosh 17„ j (42)

These expressions were evaluated numerically for a/b = 1/2 and the results are presented
in Fig. 2. In this figure the corresponding stresses obtained from the exact solution
[4, p. 27G],

= —

& zu

15^5 £ j, (_i).-)/.pi°h c« (fg) , (43)
ir .-i.aTs,...« Lcosh (nirb/2a)J \2a /

_ cosh (niry/2a) ~| (W\
cosh (nirb/2a)j \2a )

16 nda 1 ( i\(»-d/2(-D(
are also shown. The graphs exhibit a very close agreement between these two sets
of curves.

Another quantity of interest is the torsional rigidity

$ dx dy. (45)

Substituting into (45) and performing the integrations we obtain

.D,'"' = coo— ̂ ^ cosh A„ cosh 7„ — X„ cosh X„ sinh 7.,
X„7„ cosh 7„

— 7„ sinh X„, cosh 7„ + sinh X^ sinh 7„). (46)

•Dj"0 was evaluated for a/b = 1, 1/2, 1/4 and the results are compared with the corre-
sponding values obtained from the exact solution [4, p. 277]:

a/b

D(r/nab3
D(r*°"/»ab3

2.247

2.250

0.914

0.916

0.281

0.281

It can be seen that for the considered range of a/b values, the torsional rigidities obtained
from the generated one-term approximation agree very closely with those of the exact
solution.

On the uniqueness of the final form of the solution. The generated solution given
in (35) and (36) was obtained by assuming for g0 the special form given in (16), namely g0
= (b2 — y2). In the following it will be shown that the final form of $,,■ is independent of
the choice of g0 .

For this purpose Eq. (8) is written in its expanded form

i!'M ~ 5II [(1) + (0 ~4t]dx

V + 2]8*— • J n dn= ~2 IL [a? + ̂ 5 + 21dx dy + $ § ds = °- (47)
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Fig.2 Shear Stresses
  Exact solution,  Extended Kantorovich Method, one
term approximation.

Because of B.C. (7) the boundary integral vanishes and the above equation reduces,
for the problem under consideration, to

£"£' (f?+9+2)dxd«'°- «8)
Assuming that

$0, y) = $.-,•(*, y) = 1,(x)gi(y) (49)
it can be seen that when /, is prescribed

5$ = /, dg, (50)
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and when <7,- is prescribed
5$ = g, 5/,- • (51)

Substituting (49) into (48) we obtain, when g:- is prescribed a priori,

L {[/.» + [/- (1/ »') + [2 /_, »'^ 6/,- dx = 0 (52)

dy = 0. (53)

2

das, (54)

and when /{ is prescribed a priori

€ {DM ♦[£■(§,) 4- [«0
Noting that

L (ws') *= [ff- L (S1)% (55)
and that because of B.C. (7) and Eq. (49)

/,(±a) = 0; ^,(±6) = 0 (56)
and that hence the first terms on the right hand side of (54) and (55) vanish, we see that
Eq. (52) is satisfied (according to the fundamental lemma) when

[/.. '■ <*"] $ - [I. (tr) *»}• - -2 L* dy
and Eq. (53) is satisfied when

(57)

/.. '■dx] dfr ~ [/.. (i) **\« ' ~2 L '•ix-if
Since for any ft(x) and g,(y) which satisfy (56)

/>>*

f\u,> 0; f"{f)'dy> 0,

(58)

(59)

it follows from Eqs. (57) and (58) that the final form of will be unique, that is,
independent of the initial choice of g0 .

It should be pointed out that Eqs. (57) and (58) may be used as basis for the iterative
procedure presented above. So, for example, the substitution of g0 = (62 — y2) and
i = 1 into Eq. (57) yields (11), and so on.

It is of interest to find out how another choice of the initial function gn will affect
the rate of convergence of the iterative procedure. It can be shown that for

gQ = b2 cos (iry/2b), (60)

which satisfies the boundary conditions along y = ±b, h is of the same form as the one
presented in (15a) and

A, = tt/2 = 1.57 [1.58],
jjb2 = 32/ir2 = 1.03 fl.00], (61)
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It can be seen that the convergence is so rapid that the value of the obtained parameters
hardly differ from the ones obtained previously (shown in brackets).

Whereas g<,(y) as assumed in (16) or (60) are of similar shape, a more drastic test
is to assume

9o = ol

where a = const ^ 0. This assumption, in addition to its different shape, also violates
the boundary condition (7) along y = dtb. The corresponding /, is found to be

u = (a - x2)/a.

It is of the same form as the g0 assumed in (16). Thus the assumption that g0 is a non-
zero constant delays the iteration procedure by only one step.

The above examples seem to indicate that the convergence is so rapid that the
assumption for the starting function g0(y) will have, in general, no significant effect
upon the convergence of the iterations.

For situations for which a one-term approximation will not yield the necessary
accuracy, for example when close approximations of higher derivatives are needed,
more terms than one could be included in (2). For the torsion problem treated above
one may use the form suggested in [1, p. 317]:

$ = aL(x)(b2 - y2) + a2{x){b2 - y2)y2

where the first step of the iteration procedure is presented in conjunction with the
demonstration of the Kantorovich method. The remaining steps are the same as those
described above.

The independence of the final form of the generated solution from its initial choice,
the rapid convergence of the iterative procedure, and the close agreement obtained,
even for stresses, when only a one-term approximation is used indicate that the proposed
extension of the Kantorovich method is a convenient tool to generate close approximate
solutions, thus eliminating the arbitrariness in the choice of coordinate functions which
is a serious shortcoming inherent in the Ritz and Galerkin methods.
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