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In this contribution we are going to discuss the extension of the method of 

feasible directions [I], [2], [3] to programming problems involving an infinite num- 

ber of constraints. Problems of this type arise frequently in applications. We shall 

be working with arbitrary convex approximations instead of with linearizations, simp- 

ly to emphasize the fact that the feasible direction method belongs to that class of 

methods where not differentiability but rather convex-likeness of the functions in- 

volved is the essential property. 

Our programming problem has the following form: 

(P) min {F(x) IxEC,f(t,x) ~ 0 vtEr} . 

With S = {xlxEC,f(t,x ) ~ 0 VtET} the admissible domain of (P) we introduce for all 

xES approximations ~(x,~),~(t,x,~) for the functions F(~),f(t,$). We assume that 

C is a compact convex set of some normed (metrizable) linear space, that T is a com- 

pact metric space, and that the functions F($),f(t,~),~(x,$),~(t,x,$) are jointly 

continuous in all their arguments, with ~EC, xES, tET. 

We shall be particularly interested in certain elements of S, henceforth denoted 

by x, which will be limit points of our iterative procedure. Concerning these points 

xES we require in addition that the functions ~ and ~ are "good" approximations 

in the sense that 

I#(~,~) - F(~)I~ o(~-x),i~(t,~,$) - f(t,~)l~ o($-x) 

uniformly for all t6T. Moreover ~(x,~) and ~(t,x,~) have to be convex with re- 

gard to ~. 

For x6S let us define the set of binding constraints 

T = {t6Tif(t,x) = O} , 

and consider the following system in $: 

(]) ~EC,~(x,$) - F(x) < O,~(t,x,~) < O VtET . 

Under the assumptions made it is not difficult ~o prove the following 

Lemma I: Let ~ be a solution of (]). Then there exists xC[x,~] satisfying 

xEC,F(x) - F(x) < O,f(t,x) < O VtET . 

From this lemma one obtains immediately the following necessary optimality criterion 

which may be considered as a generalization of Kolmogorov's criterion for best 

Chebyshev-approximations. 

Theorem I: If xES is an optimal solution for the programming problem (P), 

then system (I) is inconsistent. 
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We note that the inconsistency of (1) is also a sufficient condition for optimality, 

if F(~) and f(t,$) are convex with regard to $, and if Slater's assumption is 

satisfied: there exists ~EC satisfying f(t,~) < 0 VtCT. 

Any limit point x of the approximation procedure to be described is a station- 

ary point in the sense that it meets the necessary optimality condition of Theorem ]. 

Let us now describe the iterative scheme. We choose a positive number ~ > O, 

and sequences O k ~ O,p k ~ O such that O k ~ O,~kp k < + ~. x°ES is arbitrary. 

Given xkEs we define x k+! according to the following rules: Let 

T k = {tgT]f(t,x k) ~ - ~} , 

Hk($) = max{~(xk,~) - F(xk),~(t,xk,~): tET k} . 

be such that Let skEc 

(2) 

and define 

(3) 

Obviously 

Hk(~ k) < min {Hk($)I~Ec} + O k , 

k+l [xk,~k] x E n S such that 

F(xk+l) _< min {F(x) IxE[xk,~k] N S} + P k • 

k+] 
x is well defined, and is again in S. Since S is compact, the se- 

quence {x k} has a cluster point xES. 

^ { x k Theorem 2: If x is a cluster point of the sequence } , then x satisfies 

the necessary optimality criterion of Theorem 1. 

Proof: In addition to Hk($) let us define the continuous functions 

H~(x,~) = max {~(x,~) - F(x),~(t,x,~): teT} , 

H(x,~) = max {~(x,~) - F(x),~(t,x,~): tET} . 

Since C is compact we can choose a subsequence x such that 

x *x, ~ *~EC . 

From (2) follows 

Hk(~ k) ~ Hk(~) + O k V~EC . 

The continuity of f(t,x) over T x C, the compactness of T, and the convergence 

of x ~ to x imply that T = T ~ for all sufficiently large k. Also T~c r. 

Therefore 

H(xk,~ k) ~ H~(xk,~) + 0~ V~EC 

for all sufficiently large k. Passing to the limit we obtain 

(4) 

From (3) follows 

thus afortiori 

~ ( ~ , ~ )  ~ H~(~,~) v~cc  . 

F(x k+1) ~ F(x k) + O k , 
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Again by (3) 

F(x k+l) < F(x) + 

m w co 

F(xk+l) < F(xk+1) + L P~ " 
~=k+ 1 

co 

0 for all  ati fyin  max f tx <O 
~=k+ l tET 

Passing to the limit we obtain by continuity 

F(x) < F(x) for all x~[x ~] satisfying [,j max f(t,x) < O . 
t~T 

This means that the system 

(5) x~!x,~] F(x)-F(x) < O, f(t,x) < 0 VtET [ j' 

is inconsistent. Assume now that (l) has a solution. A slight variant of the proof 

of Lemma ! shows that (I) has still a solution if we replace T by T. This means 

there exists ~EC satisfying H~(~,~) < O. By (4) then H(x,~) < O. eemma I gives 

then the existence of x satisfying (5), a contradiction. Thus (1) is inconsistent. 

q.e.d. 

We may study the rate of convergence of F(x k) if we require in addition: 

F($),f(t,~),¢(x,~),¢(t,x,~) are convex with respect to ~ ; 

#(x,x) = F(x),¢(t,x,x) = f(t,x) VxES ; the set 

S = {x6Clf(t,x) ~ O Vt6T, F<x) ~ F(x°)} 
o 

is bounded; 3~EC: ft(x ~) < O VtET; O k = O and O k 

We use the abbreviations 

k 6k T = Hk(~k), = F(xk)-F , 

where F is the optimal value of (P). Then 

k k 6k ~k 
T ~ O, ~ O; ~ O, ~ O . 

=OVk . 

We obtain the following results. 

Lemma 2: If there exist constants ~ ~ O, O < m ~ I, such that (i)~(x,~)-~I~-xl 2 

is convex with respect to ~, (ii) ¢(t,x,~)-~l~-xl 2 N f(t,~), (iii)~(x,$)-(l-m)BI~-xl 2 

F(~), then T k N p(-6 k) for some p > O. 

Lemma 3: (a) If F($) ~ ~(x,$) + Ml~-xl 2, f(t,~) ~ ¢(t,x,$) + MI~-x[ 2, then 

~k+l _ ~k ~ _ y(Tk)2 for some y > O. (b) If, in addition, there exists ~ > O 

such that ~(x,$) - ~]$-xl 2 and ¢(t,x,~) - ~l~-xl 2 are convex with regard to $, 

then ~k+l _ ~k ~ yTk for some y > O. 

From these follows 

Theorem 3: If the assumptions of Lenmaa 2 and Lemma 3(a) hold, then ~k+l 

(I - p~k) 6k for some p > O. If the assumptions of Lemma 2 and Lemma 3(b) hold, 

then 6 k+l ~ (l - P) ~k for some p > O. 
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This extends some results of Pironneau - Polak [4]. Proofs are too lengthy to 

be given here; they will be reproduced elsewhere. 
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