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We consider a class of matrices whose row and column sum vectors are majorized by given
vectors b and c, and whose entries lie in the interval [0, 1]. This class generalizes the class
of doubly stochastic matrices. We investigate the corresponding polytope Ω(b|c) of such ma-
trices. Main results include a generalization of the Birkhoff - von Neumann theorem and a
characterization of the faces, including edges, of Ω(b|c).
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1. Introduction

Let Ωn denote the set of all doubly stochastic matrices of order n, i.e., nonnegative
matrices where each row and column sum is 1. A classical theorem due to Birkhoff
and von Neumann ([1], [9]) says that the extreme points of Ωn are the permuta-
tion matrices. The purpose of this paper is to investigate a more general class of
polytopes Ω(b|c) which contains Ωn as a special case.
The underlying notion for defining Ω(b|c) is majorization. The i’th largest com-

ponent in a vector x = (x1, x2, . . . , xn) ∈ Rn is denoted by x[i]. If x, y ∈ Rn, we
say that x is majorized by y, and write x � y, whenever

∑k
j=1 x[j] ≤

∑k
j=1 y[j] for

k = 1, 2, . . . , n, with equality for k = n. Majorization plays an important role in
e.g. combinatorics, statistics and matrix theory. The book [8] is a comprehensive
study of majorization theory and its applications.
The object we study, Ω(b|c), is the set of all matrices A = [aij ] with 0 ≤ aij ≤ 1

for each i, j and whose row sum vector and column sum vector satisfy a majorization
constraint. The role of majorization in connection with classes of integral matrices
or (0, 1)-matrices is discussed in detail in [4]. A central result is the Gale-Ryser
theorem which characterizes the existence of a (0, 1)-matrix with given row and
column sums in terms of a certain majorization for these given vectors. In [5] one
studies doubly stochastic matrices whose rows and columns satisfy a majorization
constraint, while [6] treats the class of integral matrices with given column sums
and whose rows satisfy majorization constraints.
The paper is organized as follows. Section 2 introduces the main notion, line-

sum majorization and the class Ω(b|c). We relate this object to Ωn and prove a
generalization of the Birkhoff - von Neumann theorem. In Section 3 the goal is to
study the facial structure of the polytope Ω(b|c). A useful connection to so-called
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majorization polyhedra is established. Then we characterize the faces of Ω(b|c) and
determine their dimensions. In particular, we determine all edges of Ω(b|c).

Notation: The jth component of a vector x ∈ Rn is denoted by xj . We let O,
J and I denote the all zeros matrix, the all ones matrix and the identity matrix,
respectively (the dimension will be clear from the context). The ith unit vector
in Rn is denoted by ei. Vectors are normally treated as column vectors and are
identified with the corresponding n-tuples. A real vector x = (x1, x2, . . . , xn) is
called monotone when x1 ≥ x2 ≥ · · · ≥ xn. For an m × n matrix A define its row
sum vector

R(A) = (r1(A), r2(A), . . . , rm(A))

and column sum vector

S(A) = (s1(A), s2(A), . . . , sn(A))

where ri(A) =
∑n

j=1 aij (i ≤ m) and sj(A) =
∑n

i=1 aij (j ≤ n). Finally, let A(R,S)
denote the set of (0, 1)-matrices with row sum vector R and column sum vector S.

2. Line-sum majorization

Let b = (b1, b2, . . . , bm) ∈ Rm and c = (c1, c2, . . . , cn) ∈ Rn be nonnegative mono-
tone integral vectors with

τ =
m∑
i=1

bi =
n∑
j=1

cj .

Let Ω(b|c) be the set of all m× n real matrices A = [aij ] satisfying

0 ≤ aij ≤ 1 (1 ≤ i ≤ m, 1 ≤ j ≤ n)
R(A) � b
S(A) � c.

(1)

If A ∈ Ω(b|c), we say that A is line-sum majorized by (b, c). The m × n matrix
A = [aij ] where aij = τ

mn shows that, provided 0 ≤ τ ≤ mn, Ω(b|c) is always
nonempty and indeed contains a positive matrix when τ > 0. In that which follows,
we always assume that 0 ≤ τ ≤ mn.
A special case is b = c = e where e is the all ones vector of length n. The only

vector x ∈ Rn satisfying x � e is x = e. Therefore R(A) = S(A) = e for each
A ∈ Ω(e|e), and it follows that

Ω(e|e) = Ωn

where Ωn is the Birkhoff polytope consisting of all n×n doubly stochastic matrices.
Similarly, the set of allm×n row-stochastic matrices (i.e., nonnegative matrices with
each row sum being 1) is obtained as Ω(b|c) by letting b = e and c = (m, 0, 0, . . . , 0).
The set of column-stochastic matrices may be constructed in a similar way. We
return to other examples later.
A related, but different, class of matrices was studied in [5]: the n × n matri-

ces whose rows and columns were majorized by a fixed vector d. In contrast, the
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matrices considered here have no such constraints, but they satisfy majorization
constraints on the row sum and column sum vectors. The majorization permuta-
hedron M(v) = {x ∈ RN : x � v} was investigated in [7] and an extension of the
Gale-Ryser theorem was shown. The class of integral matrices with given column
sum vector and whose rows satisfy respective majorization constraints was studied
in [6].
Let x = (x1, x2, . . . , xn) and v = (v1, v2, . . . , vn) be such that v is monotone and∑n
j=1 xj =

∑n
j=1 vj . Then x satisfies the majorization x � v if and only if

∑
j∈T

xj ≤
|T |∑
j=1

vj for each T ⊆ {1, 2, . . . , n}. (2)

This follows from the fact that the maximum of the left hand side of (2), taken
over such sets T with |T | = k, equals

∑k
j=1 x[j]. Thus, the set of solutions of the

inequalities in (2) is precisely the majorization permutahedron M(v) = {x ∈ Rn :
x � v}.

Proposition 2.1: (i) Ω(b|c) is a bounded polyhedron in Rm×n consisting of the
matrices A = [aij ] satisfying

∑
i∈K

∑n
j=1 aij ≤

∑|K|
i=1 bi (K ⊆ {1, 2, . . . ,m})∑

j∈L
∑n

i=1 aij ≤
∑|L|

j=1 cj (L ⊆ {1, 2, . . . , n})
0 ≤ aij ≤ 1 (1 ≤ i ≤ m, 1 ≤ j ≤ n).

(3)

Ω(b|c) is therefore a polytope and, in addition, it is invariant under row and column
permutations.

(ii) If b′ � b and c′ � c, then Ω(b′|c′) ⊆ Ω(b|c).

Proof : (i) The first statement follows from the definition of Ω(b|c) and the in-
equalities (2) applied to the majorizations R(A) � b and S(A) � c. Thus, Ω(b|c)
is the solution set of a (finite) system of linear inequalities, so it is a polyhedron.
Since Ω(b|c) clearly is bounded, polyhedral theory shows that Ω(b|c) is a polytope
(the convex hull of a finite set of points). The second statement follows as row
and column permutations applied to a matrix lead to permuted row and column
sums, but this does not change the majorizations (as majorization is permutation
invariant). Property (ii) follows from the transitivity of the majorization order. �

Since Ω(b|c) is a polytope, it is natural to investigate its extreme points. We first
need some results on majorization.
For monotone vectors x = (x1, x2, . . . , xn) and v = (v1, v2, . . . , vn) in Rn such

that x � v, define the coincidence set

Kx�v = {k ∈ {1, . . . , n} :
k∑
j=1

xj =
k∑
j=1

vj}

and let Kx�v = {k1, k2, . . . , kp} where 1 ≤ k1 < k2 < · · · < kp = n. The notion of
coincidence set was used in [3] to study the doubly stochastic matrices associated
with a given majorization. For T ⊆ {1, 2, . . . , n} we define vT =

∑|T |
j=1 vj (which

only depends on the cardinality of T ). If x is monotone, there are integers 1 ≤ j1 <



December 15, 2011 14:12 Linear and Multilinear Algebra rsmaj

4

j2 < · · · < jq = n for some q ≥ 1 such that

x1 = · · · = xj1 > xj1+1 = · · · = xj2 > · · · > xjq−1 = · · · = xjq .

We call T ⊆ {1, 2, . . . , n} an x-leading subset if, for some s, T consists of 1, 2, . . . , js
plus possibly a subset of {js + 1, . . . , js+1}. The next lemma will be useful later.
Recall that ei denotes the ith unit vector (in Rn).

Lemma 2.2: Let x, v ∈ Rn be monotone vectors with x � v and let Kx�v =
{k1, k2, . . . , kp} be as above.
(i) Let T ⊆ {1, 2, . . . , n} and define k = |T |, ν = max{j : j ∈ T}. Then∑

j∈T
xj = vT

if and only if T is an x-leading subset, xk = xk+1 = · · · = xν and k, k + 1, . . . , ν ∈
Kx�v.
(ii) Assume kt−1 < i ≤ j ≤ kt for some t. Then, for suitably small ε > 0,

x+ ε(ei − ej) � v and x− ε(ei − ej) � v.

Proof : We first prove the following property.
Claim: Assume k ∈ Kx�v and xk+1 = xk. Then k + 1 ∈ Kx�v.
Proof of Claim: We have

∑k
j=1 xj =

∑k
j=1 vj ,

∑k+1
j=1 xj ≤

∑k+1
j=1 vj and

∑k−1
j=1 xj ≤∑k−1

j=1 vj . This gives xk+1 ≤ vk+1 and xk ≥ vk. Thus, as v is monotone,

xk ≥ vk ≥ vk+1 ≥ xk+1

and because xk = xk+1, we obtain xk = vk = vk+1 = xk+1. This gives
∑k+1

j=1 xj =∑k+1
j=1 vj . So k + 1 ∈ Kx�v and the Claim follows.
(i) Now, let T ⊆ {1, 2, . . . , n} and assume that

∑
j∈T xj = vT . Define k = |T |

and ν = max{j : j ∈ T}. As x � v, and both x and v are monotone

(∗) vT =
∑
j∈T

xj ≤
k∑
j=1

xj ≤ vT

and therefore both inequalities in (∗) hold with equality. In particular, k = |T | ∈
Kx�v. Moreover, xν = xk (otherwise the first inequality in (∗) would be strict).
But then xk = xk+1 = · · · = xν . By repeated application of the Claim we conclude
that k, k+ 1, . . . , ν ∈ Kx�v. It also follows from (∗) that T must contain each j for
which xj > xk. We conclude that T is an x-leading subset. Conversely, if T is an
x-leading subset and k := |T | ∈ Kx�v, then

∑
j∈T xj =

∑k
j=1 xj =

∑k
j=1 vj = vT .

This proves (i).
(ii) There is nothing to show if i = j, so assume that kt−1 < i < j ≤ kt for some

t. Note that kt−1 + 1, kt − 1 6∈ Kx≺v. Therefore, by the Claim, xkt−1 > xkt−1+1 and
xkt

> vkt
. So xkt

> vkt
≥ vkt+1 ≥ xkt+1.

We claim that for suitably small ε > 0 the vector y = x+ ε(ei − ej) is majorized
by v. To show this we only need to worry about the active inequalities among∑

j∈T xj ≤ vT (as the strict such inequalities will still hold for y with ε small
enough). By property (i) of this Lemma, if

∑
j∈T xj = vT holds, then T is an x-

leading subset and |T | ∈ Kx�v. Therefore, as xkt−1 > xkt−1+1 and xkt
> xkt+1, it
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follows that T contains one of the two sets {1, 2, . . . , kt−1} or {1, 2, . . . , kt}. Thus
T contains either both or none of the i and j chosen above, and then

∑
j∈T yj =∑

j∈T xj ≤ vT and it follows that y � v. Similarly, it follows that x− ε(ei−ej) � v,
and the proof is complete. �

The next theorem determines the extreme points of Ω(b|c) and shows that this
polytope is integral, i.e., it has only integral extreme points.

Theorem 2.3 : The extreme points of Ω(b|c) consists of all (0, 1)-matrices A ∈
Rm×n satisfying R(A) � b and S(A) � c. Thus, the extreme points are all the
matrices in the classes A(R,S) with R � b and S � c.

Proof : Let A ∈ Ω(b|c) be an extreme point of Ω(b|c). We may assume that both
R(A) and S(A) are monotone: this is obtained by suitable row and column permu-
tations, and, by symmetry (Proposition 2.1), these operations do not destroy the
extreme point property.
Let ri = ri(A) and sj = sj(A) be ith row sum and jth column sum in A (1 ≤

i ≤ m, 1 ≤ j ≤ n). Thus,

r1 ≥ r2 ≥ · · · ≥ rm and s1 ≥ s2 ≥ · · · ≥ sn.

Define the coincidence set

K = KR(A)�b

and let K = {k1, k2, . . . , kp} where 1 ≤ k1 < k2 < · · · < kp = m. So, the sum of
the k first row sums in A equal the upper bound

∑k
i=1 bi precisely when k ∈ K.

Similarly, define the coincidence set

L = KS(A)�c

and let L = {l1, l2, . . . , lq} where 1 ≤ l1 < l2 < · · · < lq = n. The sum of the l first
column sums in A equals the upper bound

∑l
j=1 bj precisely when l ∈ L. We may

partition A according to K and L as follows

A =


A11 A12 · · · A1q

A21 A22 · · · A2q
...

Ap1 Ap2 · · · Apq


where the t’th block row corresponds to rows kt−1 + 1, . . . , kt in A and the v’th
block column corresponds to columns lv−1 + 1, . . . , lv in A, where t ≤ p, v ≤ q and
we define k0 = l0 = 0. The sum of all entries in the t’th block row equals

kt∑
i=kt−1+1

bi

and sum of all entries in the v’th block column equals

lq∑
j=lv−1+1

bj .
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Note that all these sums are integers. Our goal is to prove that aij ∈ {0, 1} for
each 1 ≤ i ≤ m, 1 ≤ j ≤ n. Define F = {(i, j) : 0 < aij < 1}, the positions of the
“fractional entries” in A. Assume that F is nonempty; we shall derive a contradiction
from this. Let (i1, j1) ∈ F , say kt−1 < i1 ≤ kt so (i1, j1) is in the t’th block row.
Since

kt∑
i=kt−1+1

ri =
kt∑

i=kt−1+1

bi

which is an integer (as b is integral), there must exist (i2, j2) ∈ F such that (i1, j1) 6=
(i2, j2) and (i2, j2) lies in the same block row of A and, say, lv−1 < j2 ≤ lv. Then

lv∑
j=lv−1+1

cj =
lv∑

j=lv−1+1

bj

which is an integer, so there is fractional entry ai3j3 in the same block column of A.
We may continue like this and, eventually, we get a cycle (after possible reordering)

(i1, j1), (i2, j2), . . . , (ih, jh), (i1, j1)

where all these positions lie in F . For ε ∈ R let Aε = [aεij ] be the matrix obtained
from A by letting aεitjt = aitjt + ε when t is even, and and aεitjt = aitjt − ε when t
is odd.
Claim: For suitably small ε > 0 both Aε and A−ε lie in Ω(b|c).
Proof of Claim: Clearly, for small ε > 0 we have 0 ≤ aεij ≤ 1 and 0 ≤ a−εij ≤ 1 for

each i, j. The majorizations R(Aε) � b and S(Aε) � c as well as R(A−ε) � b and
S(A−ε) � c now follow from Lemma 2.2. This proves the Claim.
Finally, A = (1/2)Aε + (1/2)A−ε holds, so by the Claim this contradicts that A

is an extreme point of Ω(b|c). This proves that F = ∅ so each entry in A is 0 or
1. The theorem now follows (the second statement in the theorem follows directly
from the first statement). �

It is easy to construct (0, 1)-matrices in Ω(b|c), that is, extreme points. Due to
Theorem 2.3, the extreme points are all the matrices in the classes A(R,S) with
R � b and S � c. So, for instance, take R to be an m-vector with as nearly equal as
possible entries summing to τ and similarly for S. It is easy to verify that S � R∗,
so by the Gale-Ryser theorem (see e.g. [4]), A(R,S) 6= ∅. Moreover, R � b and
S � c. Thus any matrix in A(R,S) lies in Ω(b|c). For instance, let b = (4, 4, 2, 0)
and c = (5, 2, 1, 1, 1). Define R = (3, 3, 2, 2) and S = (2, 2, 2, 2, 2), so R � b and
S � c. Then the matrix 

1 0 1 0 1
1 0 1 0 1
0 1 0 1 0
0 1 0 1 0


lies in A(R,S) and therefore also in Ω(b|c).
The previous theorem generalizes the classical Birkhoff - von Neumann theorem

for doubly stochastic matrices (see [4] for a discussion of this result and majoriza-
tion).
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Corollary 2.4: ([1], [9])[The Birkhoff - von Neumann theorem] The extreme
points of the set Ωn of doubly stochastic matrices are the permutation matrices.

Proof : Let b = c = e in Theorem 2.3. Then, as explained above, Ω(e|e) = Ωn, and
since all extreme points are integral, the extreme points must be the permutation
matrices. �

Let A be a (0, 1)-matrix. A Ryser interchange in A is to replace a 2×2 submatrix[
1 0
0 1

]
by [

0 1
1 0

]
or vice versa.
The next theorem says that the extreme points of Ω(b|c) are connected using

certain interchanges.

Theorem 2.5 : For each pair of (0, 1)-matrices A and B in Ω(b|c) (i.e., extreme
points) it is possible to transform A into B by a sequence of operations of one of
the following two types

(i) a Ryser interchange
(ii) interchanging a 0 and a 1 lying in the same row or column.

Proof : Let A,B ∈ Ω(b|c). First, if A and B both lie in the same class A(R,S) for
some R and S, it follows from the Ryser interchange theorem (see [4]) that we can
transform A into B by a sequence of operations of type (i).
So, assume that A and B do not lie in the same Ryser class. Let (as above) R

be the monotone m-vector with as nearly equal as possible entries summing to τ
and similarly for S. Then A(R,S) is nonempty, so let C ∈ A(R,S). Say that A
does not lie in A(R,S) and let the row and column sum vectors of A be R′ and
S′, respectively. Then there are transfers (see [8]) for the majorizations R � R′

and S � S′ and corresponding matrix operations of type (i) or (ii) above which
transform A into a matrix A′ in A(R,S). Then we can transform A′ further into
C using Ryser interchanges. In a similar way we can go from B to C. The theorem
now follows. �

3. Faces

In this section we study the faces of Ω(b|c). Recall that a face F of a convex
set C ⊆ Rm×n satisfies (i) F ⊆ C, (ii) F is convex, and (iii) every line segment
[A,B] = {(1−λ)A+λB : 0 ≤ λ ≤ 1} in C with an interior point in F also satisfies
A,B ∈ F . A useful result says that, if C is a polyhedron in Rm×n (so it is defined
by a finite linear system of inequalities), then F is a nonempty face of C if and only
if it is the solution set of the given system of linear inequalities, but where some
of the inequalities are replaced by equalities. For general theory of faces of convex
sets and polyhedra, see [10], [11], [13].
We first determine the dimension of Ω(b|c). Recall that τ =

∑
i bi =

∑
j cj .

Lemma 3.1: If τ = 0 or τ = mn, then Ω(b|c) consists only of a single matrix,
namely Om,n or Jm,n, respectively. If 0 < τ < mn, then the dimension d of Ω(b|c)
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is given as follows.

(i) If b1 > bm and c1 > cn, then d = mn− 1.
(ii) If b1 > bm and c1 = cn, then d = (m− 1)n.
(iii) If b1 = bm and c1 > cn, then d = m(n− 1).
(iv) If b1 = bm and c1 = cn, then d = (m− 1)(n− 1).

Proof : The case where τ is 0 or mn is clear, so assume 0 < τ < mn. Let Ā = [āij ]
be the m× n matrix where each entry is τ/mn. Then Ā ∈ Ω(b|c) and 0 < āij < 1
for each i, j. Moreover, ri(Ā) = τ/m and sj(Ā) = τ/n for each i and j.
(i) Let T be a nonempty strict subset of {1, 2, . . . ,m} and let k = |T |. Then

∑
i∈T

ri(Ā) = kτ/m = k(1/m)
m∑
i=1

bi < k(1/k)
k∑
i=1

bi =
k∑
i=1

bi.

The strict inequality here follows from the fact that b is monotone and b1 > bm.
Similarly one proves that

∑
j∈T sj(Ā) <

∑|T |
j=1 cj for nonempty strict subsets T of

{1, 2, . . . , n}. We conclude that the only inequality in (3) that holds with equality
for Ā is

∑
i,j aij = τ . This shows that the dimension of Ω(b|c) is at least mn− 1. It

cannot be more since the (m,n)-entry is always determined by the other entries.
(ii) If c1 = cn, then the column sums of all matrices in Ω(b|c) equal c1. Thus

the first n− 1 entries in each row determine uniquely that last entry. Now proceed
similar to the above. (iii) Similar to case (ii).
(iv) If b1 = bm and c1 = cn, then all the row sums of all matrices in Ω(b|c) equal

b1 and all the column sums equal c1. All the remaining majorization inequalities
in (3) are then redundant, and due to the matrix Ā with entries strictly between 0
and 1, we conclude that the dimension of Ω(b|c) is (m− 1)(n− 1). �

The next theorem describes the faces of the majorization permutahedronM(v) =
{x ∈ Rn : x � v}. This result will be used below to study the faces of Ω(b|c). Recall
the notation vT =

∑|T |
j=1 vj for a monotone vector v ∈ Rn. DefineNn = {1, 2, . . . , n}.

Associated with T ⊆ Nn is its incidence vector which is the (0, 1)-vector of length
n whose support equals T .

Theorem 3.2 : Let ∅ 6= T1 ⊂ T2 ⊂ · · · ⊂ Tk = Nn for some positive k. Then

F = {x ∈M(v) :
∑
j∈Tt

xj = vTt
(1 ≤ t ≤ k)} (4)

is a face of M(v). Conversely, every nonempty face F of M(v) may be written in
the form (4) for a suitable chain of subsets ∅ 6= T1 ⊂ T2 ⊂ · · · ⊂ Tk = Nn.

Proof : Recall the inequality description of M(v) given in (2). In general, each
face of a polyhedron is obtained by replacing some of its defining inequalities by
the corresponding equations. This implies the first part of the theorem, by setting
inequalities

∑
j∈T xj ≤ vT to equality for T ∈ {T1, T2, . . . , Tk}.

In order to prove the converse statement we first show that the set function
T → vT is submodular, i.e.,

vT∪T ′ + vT∩T ′ ≤ vT + vT ′ (T, T ′ ⊆ Nn).

In fact, let T, T ′ ⊆ Nn, and define p1 = |T ∩ T ′|, p2 = min{|T |, |T ′|}, p3 =
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max{|T |, |T ′|} and p4 = |T ∪T ′|. So p1 ≤ p2 ≤ p3 ≤ p4 and p4− p3 = p2− p1. Then

(vT + vT ′)− (vT∪T ′ + vT∩T ′) =
∑p2

j=p1+1 vj −
∑p4

j=p3+1 vj .

Since v is monotone, vp1+k ≥ vp3+k for k = 1, 2, . . . , p2 − p1(= p4 − p3). Thus,
the right-hand side of the inequality above is nonnegative, and the submodularity
follows.
Let now F be a nonempty face of M(v). Thus, there is a family T of nonempty

subsets of Nn such that

F = {x ∈M(v) :
∑
j∈T

xj = vT (T ∈ T )}. (5)

We may assume that T is maximal with this property (so T contains each T such
that

∑
j∈T xj = vT holds for all x ∈M(v)).

Claim 1: If T, T ′ ∈ T , then T ∩ T ′, T ∪ T ′ ∈ T . So, T is closed under union and
intersection.
Proof of Claim 1: Assume T, T ′ ∈ T and let x ∈ F . Then, by submodularity∑

j∈T xj +
∑

j∈T ′ xj =
∑

j∈T∪T ′ xj +
∑

j∈T∩T ′ xj

≤ vT∪T ′ + vT∩T ′

≤ vT + vT ′

=
∑

j∈T xj +
∑

j∈T ′ xj

so there must be equality throughout. In particular,
∑

j∈T∪T ′ xj = vT∪T ′ and∑
j∈T∩T ′ xj = vS∩T . Since x was an arbitrary element in F , we conclude that

T ∪ T ′, T ∩ T ′ ∈ T ; this proves the Claim.
Note that Nn ∈ T (as each x ∈M(v) satisfies

∑n
j=1 xj =

∑n
j=1 vj). Consider the

following procedure. First, choose T1 ∈ T such that no T ′ ∈ T is strictly contained
in T1. Then, inductively, assuming T1, T2, . . . , Tt−1 have been chosen, let Tt ∈ T be
such that no set T ′ ∈ T satisfies

t−1⋃
p=1

Tp ⊂ T ′ ⊂ Tt.

where the inclusions are strict. Continue this process until we obtain Tk = Nn. This
gives a chain of sets ∅ 6= T1 ⊂ T2 ⊂ · · · ⊂ Tk = Nn where Tt ∈ T (t = 1, 2, . . . , k).
We now prove that (4) holds.
Claim 2: Let T ∈ T . Then the incidence vector of T (in Nn) is a linear combi-

nation of the incidence vectors of Ti (i ≤ k).
Proof of Claim 2: Assume that the incidence vector of T is not a linear combination
of the incidence vectors of Ti (i ≤ k). This implies that T cannot be a linear
combination of the incidence vectors of the sets

T1, T2 \ T1, T3 \ T2, . . . , Tk \ Tk−1

and, in particular, T cannot be a union of some of these subsets. Therefore there is
a smallest possible t such that T ∩ Tt is a strict subset of Tt. This contradicts our
construction of the chain T1, T2, . . . , Tk since we then should have selected T ∩ Tt,
and not Tt, at stage t of the construction procedure above. This proves Claim 2, by
contradiction.
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Assume that x ∈M(v) satisfies

∑
j∈Tt

xj = vTt
(1 ≤ t ≤ k). (6)

Let T ∈ T . From Claim 2 it follows that the equation
∑

j∈T xj = vT is implied by
the the k equations (6). This shows the inclusion

F = {x ∈M(v) :
∑
j∈T

xj = vT (T ∈ T )} ⊇ {x ∈M(v) :
∑
j∈Tt

xj = vTt
(1 ≤ t ≤ k)}.

Since the opposite inclusion is trivial, we have shown (4), and the proof is complete.
�

Theorem 3.2 says that the faces of M(v) may be viewed as the direct sum of
smaller majorization permutahedra obtained by decomposing v. Moreover, the di-
mension of the face F (given in the theorem) is at most n−k, and it is equal to n−k
if and only if k is the maximal length of a chain of Tt’s satisfying (4). We remark
that the majorization permutahedron M(v) may be seen as the base polytope of
the polymatroid associated with the submodular function T → vT , and a similar
result to Theorem 3.2 holds for polymatroids (see [12]).
Note that the equations in (4) may be written equivalently as

∑
j∈Tt\Tt−1

xj = vTt
− vTt−1 (1 ≤ t ≤ k) (7)

where T0 := ∅ (and v∅ = 0). Since the sets T1, T2 \ T1, T3 \ T2, . . . , Tk \ Tk−1 are a
partition of Nn, the equations in (7) are constraints on the sum of components of
x for each set in this partition.
We now turn to Ω(b|c). Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}. Consider an

ordered partition K = (K1,K2, . . . ,Kp) of I. Let κt =
∑t

j=1 |Kj | for t = 1, 2, . . . , p,
κ0 = 0, and define

bKt =
κt∑

j=κt−1+1

bj (t = 1, 2, . . . , p).

Similarly, for an ordered partition L = (L1, L2, . . . , Lq) of J let γt =
∑t

j=1 |Lj |
for t = 1, 2, . . . , q, γ0 = 0 and cLt =

∑γt

j=γt−1+1 cj (t = 1, 2, . . . , q). For instance, if
m = 6, p = 3, K1 = {2, 4, 5}, K2 = {1, 3}, K3 = {6}, then κ1 = 3, κ2 = 5, κ3 = 6
and

bK1 = b1 + b2 + b3, bK2 = b4 + b5, bK3 = b6.

The following result characterizes the faces of Ω(b|c).

Theorem 3.3 :
Let F be a face of Ω(b|c). Then there are two disjoint subsets Z0 and Z1 of

I × J , an ordered partition K = (K1,K2, . . . ,Kp) of I and an ordered partition
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L = (L1, L2, . . . , Lq) of J such that F consists of the matrices A ∈ Ω(b|c) satisfying

∑
i∈Kt

∑n
j=1 aij = bKt (1 ≤ t ≤ p)∑

j∈Lt

∑m
i=1 aij = cLt (1 ≤ t ≤ q)

aij = 0 ((i, j) ∈ Z0)
aij = 1 ((i, j) ∈ Z1).

(8)

Conversely, if F consists of those matrices A ∈ Ω(b|c) satisfying (8) for some K,
L, Z0 and Z1, then F is a face of Ω(b|c).

Proof : Let F be a face of Ω(b|c). Since Ω(b|c) is a polyhedron, F is obtained from
the inequality description (3) of Ω(b|c), by replacing a subset of the inequalities by
the corresponding equations. Such a subsystem contains equations aij = 0 for (i, j)
in some subset Z0 of I × J , and aij = 1 for (i, j) in a subset Z1 of I × J . Clearly,
these sets Z0 and Z1 must be disjoint. The remaining equations in the subsystem
come from the majorization constraints for row and column sums, i.e., the first two
sets of inequalities in (3).
Consider first these equations for row sums, i.e.,

∑
i∈T

n∑
j=1

aij =
|T |∑
i=1

bi (T ∈ T ) (9)

where T is some class of subsets of I. Since each A ∈ Ω(b|c) satisfies R(A) � b, we
may consider the corresponding majorization permutahedron M(b) = {x ∈ Rm :
x � b}. The equations (9), viewed as equations involving the row sums ri(A),
define a face of this polytope. By Theorem 3.2, and its proof, the equations (9) are
equivalent to a subset of these equations corresponding to a certain chain of subsets

∅ 6= T1 ⊂ T2 ⊂ · · · ⊂ Tp = {1, 2, . . . ,m}

Moreover (as remarked after Theorem 3.2), by defining Kt = Tt \ Tt−1 for t =
1, 2, . . . , p (and T0 = ∅) this subsystem is equivalent to

∑
i∈Kt

n∑
j=1

aij = bKt (1 ≤ t ≤ p)

where K is the ordered partition K = (K1,K2, . . . ,Kp).
Next, consider the equations from (3) corresponding to column sums. Using sim-

ilar arguments as above these equations are equivalent to

∑
j∈Lt

m∑
i=1

aij = cLt (1 ≤ t ≤ q).

This shows that a general face F of Ω(b|c) has the form described in the theorem.
Conversely, if F is a subset of Ω(b|c) satisfying the equations in (8) for some K,
L, Z0 and Z1, then F must be a face of Ω(b|c) (as some defining inequalities have
been set to equality).

�
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Note that the constraints described in (8) resemble those known for transporta-
tion polytopes (see [4]); we return to this below. The difference is that here we have
a constraint on the sum of certain subsets of rows (or columns).

We now investigate edges of Ω(b|c), i.e., one-dimensional faces of that polytope,
and for this we introduce a certain directed graph.
Let P = [pij ] and Q = [qij ] be two distinct vertices of Ω(b|c). Let FP,Q be

the smallest face of Ω(b|c) containing P and Q. Then FP,Q has the form de-
scribed in Theorem 3.3 for suitable ordered partitions K = (K1,K2, . . . ,Kp),
L = (L1, L2, . . . , Lq) and sets Z0 and Z1. We may assume that both p and q
are largest possible. Define Btt′ = Kt × Lt′ (t ≤ p, t′ ≤ q). Then these “blocks”
Btt′ are a partition of I × J . Define a directed graph DP,Q as follows. It con-
tains vertices u1, u2, . . . , up and v1, v2, . . . , vq; define U = {u1, u2, . . . , up} and
V = {v1, v2, . . . , vq}. For each (i, j) with pij = 1 and qij = 0 the pair (i, j) is
contained in a unique block Btt′ and we introduce an associated arc eij in DP,Q

such that eij goes from ut to vt′ . Similarly, for each (i, j) with pij = 0 and qij = 1
we introduce an arc eij , but now it is directed from vt′ to ut. Clearly, each of these
mentioned pairs (i, j) is outside Z0 ∪ Z1. Note that DP,Q may have parallel arcs
and that its arc set is nonempty.

Theorem 3.4 : Let P and Q be vertices of Ω(b|c). Then P and Q are adjacent
on Ω(b|c) if and only if the arc set of DP,Q is a directed cycle.

Proof : Assume first that [P,Q] is an edge of Ω(b|c) and consider the associated
directed graph DP,Q.
Claim 1: The arc set of DP,Q may be partitioned into arc-disjoint (even) cycles.
Proof of Claim 1: Both P and Q satisfy the equations (from (8))

∑
i∈Kt

n∑
j=1

aij = bKt (1 ≤ t ≤ p).

In this equation, for fixed t, insert first P and then Q, and subtract. This gives that

|{(i, j) ∈ N1 : i ∈ Kt}| = |{(i, j) ∈ N2 : i ∈ Kt}|.

Thus, the indegree and the outdegree in DP,Q coincide at each vertex vt. Similarly,
using equations for column sums in (8), we conclude that the indegree and the
outdegree coincide at each vertex ut, so this holds for all vertices in DP,Q. But this
implies that the arc set of DP,Q may be partitioned into arc-disjoint (even) cycles
(this is a directed version of Veblen’s theorem, see [2]). Each such cycle is even as
DP,Q is (directed) bipartite. This proves Claim 1.
We now strengthen Claim 1.

Claim 2: The arc set of DP,Q is precisely a directed cycle.
Proof of Claim 2: Consider Claim 1 and assume that DP,Q contains two such arc-
disjoint cycles C1 and C2. Let C ′1 be obtained from C1 be reversing the direction of
each arc in C1. As a result we obtain a matrix P ′ which agrees with P in all positions
except for those positions corresponding to arcs in C1, and in those positions 1’s
and 0’s have been interchanged compared to P . Note that we only modified entries
outside Z0 ∪ Z1 and that P ′ has the same number of 1’s in each block row and
block column defined by the partitions K and L. This implies, by Lemma 2.2, that
R(P ′) � b and S(P ′) � c, so P ′ ∈ Ω(b|c). Moreover, P ′ satisfies all the equations
(8) so P ′ ∈ F . But P ′ is different from P and Q, so the edge F contains three
vertices; a contradiction. This proves Claim 2.
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Claim 2 shows the first part of the theorem. Conversely, if the arc set of DP,Q is
a directed cycle, then it is easy to see that FP,Q cannot contain any other (0, 1)-
matrices than P and Q, which implies that [P,Q] is an edge.

�

Example: Let b = (2, 0) and c = (1, 1). Note that (1, 1) � b. Then the only
(0, 1)-matrices in Ω(b|c) are

P =
[

1 0
0 1

]
, Q =

[
0 1
1 0

]
, R =

[
1 1
0 0

]
, and S =

[
0 0
1 1

]
.

Consider faces corresponding to different ordered partitions (K,L) as in the theorem
above. Note that we must have L = ({1}, {2}) as c = (1, 1).

• Let K = ({1}, {2}). Then each matrix in F satisfies r1(A) = 2, so the only
matrix in is F is R. Similarly, if K = ({2}, {1}), then each matrix in F satisfies
r2(A) = 2, so the only matrix in is F is S.

• Let K = ({1, 2}) so p = 1. Then F equals Ω(b|c) if Z0 = Z1 = ∅. This implies
that the smallest face FP,Q containing P and Q is Ω(b|c), so [P,Q] is not an
edge. Similarly, we conclude that [R,S] is not an edge. These facts can also
be seen directly from Theorem 3.4 because the digraph DP,Q contains two arc-
disjoint cycles: DP,Q is given by U = {u1}, V = {v1, v2} and arcs (u1, v1),
(v1, u1), (u1, v2), (v2, u1). In contrast, [P,R] is an edge; then DP,R contains the
arcs (u1, v2) and (v2, u1), so precisely one cycle. Similarly, we see that [R,Q],
[Q,S] and [S, P ] are edges. So Ω(b|c) is a rectangle with corners at P,Q,R, S
and diagonals [P,Q] and [R,S].

�

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be monotone nonnegative in-
tegral vectors, and let Ã(R,S) be the truncated transportation polytope consisting
of all nonnegative matrices A = [aij ] with row and column sum vectors R and S,
respectively, where 0 ≤ aij ≤ 1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that Ã(R,S)
is nonempty. A face F of Ã(R,S) consists of all matrices in this polytope where
a certain specified set S0 of entries have been set equal to 0 and a disjoint set S1

of entries have been set equal to 1, in such a way that there is at least one matrix
in Ã(R,S). Thus a face is specified by a (0, 1, ∗)-matrix F where ∗ means that
no explicit restriction is imposed on an entry. We may assume that for each entry
(i, j) of F equal to ∗, there is a matrix in F whose (i, j)-entry is strictly between
0 and 1; otherwise, we may replace the ∗ in F with 0 or 1 without changing the
face specified by F . (Note: if there is a matrix in the face whose (i, j)-entry is 0
and one whose (i, j)-entry is 1, then by taking convex combinations, we see that
there is a matrix in the face whose (i, j)-entry is any specified number between 0
and 1.) Such a matrix F is called ∗-minimal for Ã(R,S). We set σ∗(F ) equal to the
number of entries of F equal to ∗. If some row or column contains a ∗, then, since
R and S are integral, it must contain at least one other ∗.
Let F = [fij ] be a (0, 1, ∗)-matrix of size m× n. Consider the complete bipartite

graph Km,n with vertex set {u1, u2, . . . , um} ∪ {v1, v2, . . . , vn} and edges [ui, vj ]
(i ≤ m, j ≤ n). Let G∗(F ) be the subgraph of Km,n induced by the edges [ui, vj ]
for which fij = ∗ (i ≤ m, j ≤ n). The matrix F is ∗-indecomposable provided that
G∗(F ) is connected. In what follows we assume that the matrix F specifying F is
∗-indecomposable, as the general case follows from the ∗-indecomposable case using
additivity of the dimension as usual.
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Theorem 3.5 : If the face F of Ã(R,S) is specified by a ∗-minimal, ∗-
indecomposable matrix F , then the dimension of F equals

σ∗(F )−m− n+ 1.

Proof : Let F = [fij ]. For each (i, j) such that fij = ∗, there is a matrix in F
whose (i, j)-entry is strictly between 0 and 1. By taking convex combinations, there
is a matrix X = [xij ] ∈ F such that 0 < xij < 1 for all (i, j) with fij = ∗. Since
G∗(F ) is connected, it has a spanning tree T∗. Let W be the set of entries of F
(necessarily equal to ∗) which correspond to the edges of T∗. It follows inductively,
using the fact that a tree has a pendent vertex, that a matrix in F is uniquely
determined once the entries corresponding to the entries of F outside W but equal
to ∗ have been specified. Since T∗ has m+n−1 edges, it follows that the dimension
of F is at most equal to σ∗(F )− (m+ n− 1).
Now consider the matrix X defined above. For each (i, j) with 0 < xij < 1 such

that the (i, j)-entry of F does not correspond to an edge of T∗, there is a small
interval Iij containing xij such that for each of the matrices Z = [zij ] such that
zij = fij if fij = 0 or 1, zij = 0 if (i, j) corresponds to an edge of T , and zij ∈ Iij
otherwise, the row and column sum vectors are dominated by R and S, respectively.
We may then specify inductively the entries of Z corresponding to the edges of T∗
and obtain a matrix in F . It follows that F contains a rectangular parallelepiped
of dimension σ∗(F )− (m+ n− 1), and thus the dimension of F is as given in the
statement of the theorem. �

Now let F be a face of Ω(b|c) and use the notation of Theorem 3.3 and its proof.
The face F can be regarded as a block truncated transportation polytope specified
by a block matrix F as in Theorem 3.3. A block can contain only specified entries
(0 or 1) or it can contain at least one entry equal to ∗. We refer to those blocks
that contain at least one entry equal to ∗ as a ∗-block. The block matrix F is
∗-block indecomposable provided the bipartite graph Gb∗(F ) ⊆ Kp,q whose edges
correspond to the blocks containing at least one entry equal to ∗ is connected. As
above, we assume that Gb∗(F ) is connected. We also assume that the matrix F is
∗-minimal, meaning as above, that replacing any ∗ with either a 0 or a 1 results
in a proper subface of F . The quantity σ∗(F ) is the number of entries equal to ∗
(and not the number of blocks containing an entry equal to ∗). Note that because
of the integrality of the vectors b and c, if some row or column of blocks contains a
∗, then it must contain at least one other ∗. With these assumptions we have the
following theorem.

Theorem 3.6 : Let F be a face of Ω(b|c) specified by F as above. Then the
dimension of F equals

σ∗(F )− p− q + 1.

Proof : This may be shown very similar to the proof of Theorem 3.5 with the
graph Gb∗(F ) replacing the graph G∗(F ). One takes a spanning tree Tb∗ of Gb∗(F )
and proceeds with arguments as above. The only difference is that in the blocks
corresponding to the edges of Tb∗ one can vary in an interval all but one of the
entries corresponding to the ∗s, and use the remaining ∗ in the block to achieve the
desired block row and column sums. �

We now consider the 1-dimensional faces of Ω(b|c), that is, the edges of the vertex-
edge graph of this polytope. In order that a face F be an edge, σ∗(F )− p− q + 1
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must equal 1, that is,

σ∗(F ) = p+ q.

Then the graph Gb∗(F ) ⊆ Kp,q, being connected, has at least p+ q− 1 edges. Thus
either (I) there are p+ q blocks each containing one (and only one) ∗, or (II) there
are p + q − 1 blocks containing one ∗, with exactly one of these blocks containing
two ∗s.
First consider case I. Then Gb∗(F ) has exactly p+ q edges, and since it has p+ q

vertices, Gb∗(F ) is a unicyclic connected graph. If Gb∗ had a vertex of degree one,
then we contradict the maximality property of F (the entry corresponding to that
∗, being the only unspecified entry either in its row or column block would have
to be 0 or 1). Thus Gb∗(F ) is a cycle through all the vertices and hence p = q. It
follows that F has two vertices obtained by alternating 0s and 1s in the positions
corresponding to the edges of Gb∗(F ).
Now consider the case II. Then Gb∗(F ) is a tree. It follows inductively as before

that we contradict the maximality property of F unless this tree has only two
vertices, that is, Gb∗(F ) ⊆ K1,1. But then p = q = 1 and there is only one block,
and it contains exactly two entries equal to ∗. It follows that F contains two vertices
obtained by setting these entries equal to 0 and 1, and 1 and 0, respectively.
The above characterization of faces of dimension 1 and their corresponding ver-

tices is equivalent to that given in Theorem 3.4.
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