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An Extension of the Shannon Theory Approach to Cryptography 

MARTIN E. HELLMAN, MEMBER, IEEE 

Abstract-Shannon’s information-theoretic approach to cryp- 

tography is reviewed and extended. It is shown that Shannon’s 

random cipher model is conservative in that a randomly chosen 

cipher is essentially the worst possible. This is in contrast with 

error-correcting codes where a randomly chosen code is essentially 

the best possible. The concepts of matching a cipher to a language 

and of the trade-off between local and global uncertainty are also 

developed. 

I. INTRODUCTION 

I NTEREST IN commercial applications of cryp- 
tography has recently experienced a dramatic upsurge, 

largely motivated by the growing use of time-shared re- 
mote access computers and the large monetary losses 
possible through their misuse. Privacy legislation has also 
had an important effect. 

This and companion papers [ 11, [2] emphasize increasing 
the theoretical basis on which commercial and other 
nonsecret cryptographic systems can be built. This paper 
is concerned with the “classical” information-theoretic, 
or Shannon theory, approach to cryptography in. which 
unlimited cryptanalytic computational abilities are as- 
sumed. This approach was pioneered by Shannon [3]. The 
companion papers are concerned with another theoretical 
approach, more closely related to the theory of computa- 
tional complexity, in which the cryptanalyst has a large but 
finite computational ability. As argued in [2], the current 
emphasis of computational complexity on worst case 
computation time is inadequte for use in cryptography and 
ensemble arguments are needed. We therefore believe that 
both aspects of the theory can benefit from attention by 
information theorists. It is our opinion that the finite 
computational theory will bear more directly on the 
practice of cryptography and that the classical theory will 
be useful mostly in providing insights into design princi- 
ples. 

Fig. 1 depicts the flow of information in a cryptographic, 
or cipher, system. A message (plaintext) M is to be com- 
municated over an insecure communication channel such 
as radio or a tapped telephone line. To prevent unautho- 
rized personnel from learning the contents of the message, 
it is enciphered prior to transmission to produce a cryp- 
togram (ciphertext) 

C = T&M). (1) 
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Fig. 1. Flow of information in cryptographic system. 

The transformation TK is invertible and depends on a key 
K, known to the legitimate transmitter and receiver, but 
unknown to the cryptanalyst who seeks to gain unau- 
thorized access to the message through his knowledge of 
the cryptogram, the nature of the message (e.g., the lan- 
guage in which it was written), and the general cipher 
system being used (i.e., the set of transformations (Tk (-)I). 
The only information available to the legitimate receiver, 
but not to the cryptanalyst, is the identity of the key being 
used. A secure channel, indicated by the shielded cable, is 
used for transmission of the key. Typically, this secure 
channel is a courier and is too slow for transmission of the 
message. 

We may represent the enciphering, deciphering, and 
cryptanalytic operations as 

C = f(M,K) A TK(M) (2) 

M = g(C,K) A Ti’(C) (3) 

A = h(C), (4) 

and our goal is to preserve the security of the message (e.g., 
by keeping Pr (fi = M) close to 0 for even the best 
cryptanalytic function h). 

As discussed in [2], the cryptanalyst often has side in- 
formation available to him, and this can greatly ease his 
task. This side information usually takes the form of par- 
tial knowledge of the message. Such knowledge can be 
viewed as increasing the redundancy of the message and 
can easily be taken into account in what follows. The 
chosen plaintext attack, described in [2], is associated with 
a cryptanalytic attack of finite computational abilities and 
is therefore not of interest in this paper. 

If each message or cryptogram consists of N characters 
from a finite alphabet of L symbols, we can represent an 
arbitrary cipher in the form of Fig. 2. Letting R, = logs L 
denote the absolute rate of the language, there are 2RoN 
possible messages and an equal number of cryptograms. 
Unless otherwise stated, all ciphers are tacitly noncom- 
pressive and nonexpansive and are therefore of this 
form. 

For purposes of this paper, we define a model in which 
the messages are divided into two subsets. The first con- 
tains 2RN meaningful messages, each with the same a 
priori probability 2 - RN. R is, of course, the rate of lan- 
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Fig. 2. Representation of cipher. 

guage. The remaining messages are meaningless in the 
language and are assigned a priori probabilities of 0. 

This model is adopted in preference to the more usual 
ergodic source model for several reasons. A natural lan- 
guage matches neither model exactly, and adoption of our 
model greatly simplifies the proofs of several theorems. 
Also, from a cryptographic point of view, there appears to 
be little difference between the results of one model or the 
other. In particular, perfect noiseless source coding is im- 
possible to achieve in practice under either model’s ap- 
proximation to a natural language. This is attributable in 
large part to the fact that there is no way of devising a 
simple, implementable scheme that maps the meaningful 
messages into indices 1 through 2 RN and the meaningless 
ones into the remaining indices. The importance of this will 
become clear in the next section. The word “meaningful” 
almost can be replaced by “typical” in an ergodic source 
model. 

We also assume that there are 2H(K) keys, all equally 
likely a priori and independent of the message. H(K) is 
then the entropy of the key measured in bits. Referring to 
Fig. 2, a line with a number i in it indicates that the mes- 
sage at the left is encrypted as the cryptogram at the right 
when the ith key is used. The figure shows only twelve 
messages and two keys for the sake of clarity. Since 
meaningless messages are never enciphered (at least in our 
simple model), their encryptions are not shown. 

If the first meaningful message in Fig. 2 is enciphered 
with key ~1, then the cryptogram is breakable. This is 
because the resultant cryptogram (the fourth) has no other 
meaningful messages into which it can be deciphered. If, 
however, message #l is enciphered with key #2, the re- 
sultant cryptogram (the ninth) is unbreakable since an- 
other meaningful message (#3) can be enciphered with 
another key (# 1) to yield this same cryptogram. Such a 
false solution will be called a spurious message decipher- 
ment. The number of spurious message decipherments IZ, 
is a random variable and is determined by the cipher and 
C. If n, takes on large values with probability close to one, 
then the system will be secure even if the cryptanalyst is 
allowed unlimited computation. The best he can do is to 
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make a list of all meaningful solutions and to choose rci 
randomly from this list. 

A different situation exists when the fourth message is 
encrypted with key # 1. The resultant cryptogram (# 12) 
is deciphered as message #4 with both key # 1 and key # 2. 
Thus the cryptanalyst knows which message was sent, and 
n, = 0, but he does not know whether key #l or key #2 
was used. This will be termed a spurious key decipher- 
ment, and here the number of spurious key decipherments 
nk is one. Clearly, nk I n, in general. A cipher which 
makes good use of its key will have nk G n,. 

While n, is of greater interest, it is much simpler to 
evaluate nk. In particular, if Z(C) denotes the number of 
“lines” ending on cryptogram C, then nk (C), the number 
of spurious key decipherments when C is intercepted, is 

nk(c) = max ([z(c) - 11, 0). (5) 

Here, “line” means a line connecting a meaningful message 
to a cryptogram as in Fig. 2. All of our theorems therefore 
deal with nh, and toward the end of the paper we relate 
these results to n,. 

Even n, does not totally summarize the security level 
of a cipher, since it is a measure of uncertainty on a block 
basis rather than on a per digit basis. Finding tractable 
approaches to per digit uncertainty is an important 
problem, and Lu [9] has made a start at treating it. In 
cryptography, as elsewhere, there is a trade-off between 
assuming a model which is tractable and one which closely 
resembles reality. The nk approach used in this paper is 
extremely tractable and, as later discussed, appears to 
model reality closely in all but pathological systems. 

II. RANDOM CIPHERS 

As originally defined by Shannon [3], a random cipher 
is one in which g(C,K), the decipherment of C under key 
K, is a uniformly distributed random variable on the set 
of 2RoN messages, both meaningful and not. Further, 
g(C,,K,) is independent of the rest of the (g(C,K)}. The 
motivation behind this definition is easily understood, 
since in most cryptographic systems use of an incorrect key 
in decipherment produces a garbled random-looking 
message. Indeed, a cryptomachine can be used as a good 
source of pseudorandom numbers. It appears that this 
intuitive reasoning, developed by Shannon during World 
War II, led to his less intuitively understandable, but more 
famous, random coding arguments for error-correcting 
codes. 

The following definition is slightly different and ensures 
that the cipher chosen is both uniquely encipherable and 
uniquely decipherable, as are most real ciphers. 

Definition: A random cipher is one in which, for each 
(C,,K,) pair, g(C,,K,) has a uniform marginal distribution 
on all 2 RoN messages. However, the (g (C, K)] are dependent 
in that, for any set S of cryptograms not including C,, the 
distribution of g(C,,K,) given (g(C,K,)JcEs is uniform 
over all messages not in (g(C,K,)JcEs. There is no de- 
pendence between g(C,K,) and g(C’,Kl), for K, # KI. 
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As usual, we are really defining an ensemble of ciphers 
to allow the calculation of ensemble averages. Use of the 
term “random cipher” is a slight abuse that should produce 
no more confusion that that associated with referring to 
a random code ensemble as a “random code.” 

The following theorem and corollary constitute a sim- 
plified version of one of Shannon’s main results [3]. 

Theorem I: Over the ensemble of random ciphers, the 
expected number of spurious key decipherments ?ik is 

SOURCE 
MESSAGES 

ENCRYPTED 
CODED SOURCE CODED 

MESSAGES MESSAGES 

ffk = @H(K) - 1) 2-N” A 2H(K)-ND 
t (6) 

where 

pON+RN 
MEANINGLESS 

MESSAGES 

D = R, - R (7) 

is the redundancy of the language in bits/character. The 
approximation (6) is very accurate, provided H(K) is of 
reasonable size. For example, if H(K) > 10 bits, it is ac- 
curate to at least three significant decimal digits. 

Fig. 3. Perfect source coding followed by encryption produces 
unbreakable cipher. 

Proof: Because of the symmetry induced by the en- 
semble, ?ik is independent of C,, the particular cryptogram 
intercepted. There is one correct meaningful solution, and 
there are 2H(K) - 1 remaining keys, each of which has the 
same probability p of yielding a spurious key decipher- 
ment. Therefore, 

Taking a simple substitution cipher on English as an 
example, 

i?k = (2H(K) - l)p. (8) 

From the definition of a random cipher, we see that the 
dependencies do not come into play since we are dealing 
with 2H(K) different keys. Therefore, 

H(K) - logs (26!) = 88.4 bits (12) 

R, = logz (26) = 4.7 bits/character (13) 

R s 1.5 bits/character (14) 

D = 3.2 bits/character, (15) 

and therefore the random cipher model would predict a 
unicity distance 

and 

p = 2RN/$LN = Z-ND > (9) 

zk = (2fW) - 1)2-N”, 

completing the proof. 

(10) 

N, i 28 characters. (16) 

When N = 40, Zji - 1 X 10-12, and when N = 20, & = 2 X 
lo;, indicating the rapid variation of ?ik in the vicinity of 
NO. 

Corollary 1, stated below, follows directly from this rea- 
soning. 

Corollary 1: Over the ensemble of random ciphers, the 
random variable nk has a binomial distribution with pa- 
rameters n = (2H(K) - 1) andp = 2-ND. Therefore, when 
the product np is large (equivalently, nk is large), the 
probability that the system is secure (i.e., Pr (nh is large)) 
is close to one. Conversely, when the product np is small, 
the system is insecure with probability close to one. Be- 
cause of the rapid variation of the exponential with in- 
creasing N, we may take 

According to Friedman [5], “practically every example 
of 25 or more characters representing the monoalphabetic 
encipherment of a ‘sensible’ message in English can be 
readily solved.” Since the random cipher model is only a 
model, this close agreement is rather remarkable. The 
material that follows helps to explain this agreement. If a 
cipher is used which produces a good mixing of messages 
as the key is varied, the random cipher model should pro- 
duce a reasonable estimate of unicity distance. We will also 
see that by avoiding this mixing, it is possible to design a 
cipher whose performance is much superior to that of the 
random cipher model, and that random ciphers have es- 
sentially the poorest performance possible. 

NO = H(K)ID (11) 

as a good measure of the minimum amount of text neces- 
sary for there to be a unique solution to a random cipher. 
That is, for N < N,, the system is considered secure, while 
for N > N,, it is considered insecure. 

Shannon calls the minimum amount of ciphertext re- 
quired to yield a unique solution to a cryptogram the 
unicity distance of the cipher. We see that N, in (11) is a 
good measure of the unicity distance for a random ci- 
pher. 

In particular, (11) indicates that if perfect noiseless 
source coding were to precede encipherment, N, would be 
infinite since the output of a perfect source coder is a 
“language” with no redundancy. Hence, D = 0 for the 
language acted on by the cipher. Fig. 3 is a cipher diagram 
illustrating this situation. It is seen that data compression 
has the perhaps unexpected benefit of increasing the se- 
curity of a cryptosystem. Of course, it is impossible to 
implement a perfect source code because of cost, but even 
partial compression is useful in increasing N,,. This ob- 
servation is due to Shannon [3]. 
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Note that the source code is not secret and is assumed 
known to the cryptanalyst. The source coding operation 
would provide no security by itself, and only adds to the 
security of the system in an indirect, although important, 
way. 

If it is necessary that the system be capable of trans- 
mitting even meaningless messages, a cipher of the form 
shown in Fig. 4 can be used to achieve an unbounded 
unicity distance. The important point is that the mean- 
ingful and meaningless messages are not intermixed as the 
key is varied. There must be a set of 2RN “meaningful” 
cryptograms into which all (meaningful message, key) pairs 
are enciphered. Although Fig. 4 indicates an intermediate 
source coding stage, in the next section we will see that 
certain ciphers can be “matched” to a language to produce 
the same effect without any explicit source coding. 

The fact that random ciphers perform so much more 
poorly than carefully designed ciphers (e.g., those of Figs. 
3 and 4) is at first surprising since random error-correcting 
codes are virtually optimal [6]. In fact, random ciphers are 
essentially the worst possible, in the sense of the following 
two theorems. 

Theorem 2: If each meaningful message has a priori 
probability 2- RN and each key has a priori probability 
2-H(K) independent of the message, then 

zk 2 2HLW-ND - 1 (17) 

for any uniquely encipherable, uniquely decipherable ci- 
pher. The expectation is now only over C since the cipher 
is fixed. 

Remark: This theorem says that whenever the random 
cipher model predicts security through a large expected 
number of spurious decipherments, any cipher whatsoever 
must also possess a large expected number and therefore 
be secure. However, when the random cipher model pre- 
dicts few spurious decipherments, the theorem does not 
preclude other ciphers from still having many. 

Proof: Using the assumed a priori probabilities and 
(5), we obtain 

nk = 5 Pr (C)nk(C) 

2-HW-RN c 12(C) - 1. 

C I 

(19) 

Using the convexity of the function x2, we see that the last 
term in brackets is minimized when each of the 2RoN 
values of Z(C) equals its average value 2RN+H(K)12RflN, 
although there might not exist any cipher that achieves this 
minimum. Therefore, 

nk > (2-H(K)-RN2R,N[2RN+H(K)-RoN]z) - 1 cm 

= 2HW-ND - 1, (21) 

completing the proof. 

ENCRYPTED 
MESSAGES MESSAGES 

*W-2RN 
MEANINGLESS d MEANINGLESS 

CRYPTOGRAMS 

Fig. 4. Unbreakable cipher without source coding. 

The above theorem still leaves something to be desired 
in that it does not guarantee that the actual number of 
spurious key decipherments nk will be large with high 
probability when its expected value ?ik is large. For ex- 
ample, if ?ik = lOlo, it may be possible for nk to take on the 
value zero with probability 1 - lo-lo and to take on the 
value 1020 with probability lo-lo. Such a cipher would be 
highly insecure in spite of the large value of &. The fol- 
lowing theorem removes this weakness. 

Theorem 3: If each (meaningful message, key) pair has 
equal a priori probability, then any uniquely encipherable 
and decipherable cipher whatsoever must satisfy 

Pr (nk I m - I) 5 m/2H(K)-ND. (22) 

Remark: This theorem says that if 2 H(K)-ND (which is 
iik for a random cipher) is large, then the probability that 
the actual number of spurious key decipherments nk is also 
large must be close to one for all ciphers. For example, if 
?Ik = lOlo for a random cipher, then Pr (nk < 105) I 10m5 
for any cipher; if Sk = 1020 for a random cipher, then Pr (nk 
< lOlo) _< lo-lo for any cipher; etc. 

Proof: 

Pr (nk 5 m - 1) = 
,C:& Pr (c) 

= c l(C)/2RN+H(K) 
{C:I(C)+n) 

_< z-RN-H(K) c m 

{C:1(C)Gn) 

5 ,2-RN-H(K)2R,N 

= m/2H(K)-ND (23) 

Q.E.D. 

These theorems show that random ciphers are essen- 
tially the worst possible. The value of N, given by (11) is 
thus conservative. 
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As has been noted, the number of spurious message 
decipherments satisfies n, I nk so that dealing with nk 
can make a cipher look more secure than it really is, which 
somewhat weakens the statement that random ciphers are 
essentially the worst possible. It is possible to design a ci- 
pher which is less secure than a random cipher by making 
many keys equivalent. For example, if TK(M) = M for all 
keys K, then, even if H(K) is huge, there are no spuriously 
deciphered messages, although there are many spuriously 
diciphered keys. It would appear to be a simple matter to 
ensure that the key is well-used, thereby revalidating the 
conservative nature of the random cipher model. 

For random ciphers, the difference between nk and n,,, 
is unimportant as far as N, is concerned. When N is near 
the unicity distance, very few of the meaningful messages 
are possible decipherments, and the chance that two of 
these will be the same is infinitesimal since they are chosen 
uniformly from a set of size 2RN. 

III. MATCHINGCIPHERSTOLANGUAGESAND 
LOCALLYINFORMATIVECIPHERS 

We have seen that there are ciphers, such as those de- 
picted in Figs. 3 and 4, which are much superior to random 
ciphers. Basically, what is required is a clustering of 
meaningful messages into a set of meaningful cryptograms. 
It might appear that such clustering would require a two- 
stage encipherment; the first stage being a source coding 
operation. However, we shall show that the same effect can 
sometimes be obtained by matching the structure of the 
cipher to that of the language. A trade-off between local 
and global security will also be developed. 

As a first step, consider an artificial language in which 
the 26 letters occur with equal frequency and successive 
letter choices are independent except that once a letter is 
chosen, it is repeated three times. Thus a typical sentence 
in this language is “‘FFFXXXLLLAAAXXXRRR.” Now 

consider applying a simple substitution cipher with 2H(K) 
keys chosen at random from among the 26! possible keys. 
The above sentence would be enciphered into a crypto- 
gram of the form “SSSBBBMMMYYYBBBFFF,” as- 
suming F is enciphered as S, X as B, etc. A cryptanalyst 
who is given such a cryptogram has no way of choosing 
among the 2H(K) possible keys since a simple substitution 
operation is measure preserving. Each key yields a typical 
sentence as its decipherment, and even the cryptogram 
itself looks like a meaningful message! A simple substitu- 
tion cipher is thus secure when applied to this simple ar- 
tificial language. The effect is the same as if we had first 
done perfect source coding and then encrypted. Contrast 
this with the use of a transposition cipher with the same 
number of keys 2H(K) chosen at random from among the 
N! possible transpositions. A typical cryptogram looks like 
“XLFFXARARXLXXRAXFL.” The redundancy of the 
language is now quite useful in cryptanalysis, and (11) is 
a good measure of the unicity distance. 

Next, consider first-order English as a second artificial 
language. That is, successive letters are independent 
random variables, each having the same probability dis- 
tribution as in English (i.e., P(E) = 0.123, P(T) = 

0.096, - - - ,P(Z) = 0.001). A typical sentence in this lan- 
guage looks like “RESNFEALTMISEQ. ” Using a simple 
substitution cipher yields a cryptogram such as “FXO- 

BRXYMGUNOXC.” This type of cipher is no longer se- 
cure, and frequency analysis is an obvious cryptanalytic 
technique. For example, X is seen to occur three times in 
14 letters. It is likely to represent E or another frequently 
occurring letter. It is almost definitely not 2 or a similar, 
infrequently occurring letter. However, now a transposi- 
tion cipher is secure since none of the language’s redun- 
dancy has to do with the relative positions of letters. 
Equivalently, transposition is a measure preserving 
transformation, and a transposed message looks as 
meaningful as the original message. 

Thus in some sense, a simple substitution cipher is 
perfectly matched to the first artificial language, and a 
transposition cipher is perfectly matched to the second. 
However, note that we have not done any source coding. 
Even meaningless messages can be unambiguously enci- 
phered and deciphered. Furthermore, we did not have to 
know the exact structure of the language. For example, in 
the second case, if the letters had occurred with the same 
relative frequencies as in French, the cipher would still be 
secure. There is an obvious connection to recent work on 
universal codes [7]. 

On a natural language such as English, neither cipher 
is perfectly secure. Yet, the second artificial language more 
closely resembles English than does the first. And, as noted 
by Shannon [3], a transposition cipher on English has a 
larger unicity distance than that given by (11). This is 
because a typical English message will have about 12.3 
percent E’s, 9.6 percent T’s, etc. When a transposition is’ 
applied, the resultant cryptogram will also have about 12.3 
percent E’s, 9.6 percent T’s, etc. Therefore, a typical 
message of length N cannot be encrypted into an arbitrary 
cryptogram out of the 2RoN possible, but rather, it must 
be encrypted into one of the 2R1N cryptograms which have 
12.3 percent E’s, 9.6 percent T’s, etc. RI is the rate of a first 
order approximation to English [8] and is approximately 
4.17 bits/character. Going through arguments similar to 
those for random ciphers, we thus find that for a transpo- 
sition cipher, 

nh 2 2H(K)-N(Rl-R) - 1. (24) 

Similarly, all theorems of the preceding section still apply 
if D is replaced by RI - R. The effective redundancy is 
thus reduced from 4.7-1.5 = 3.2 bits/character to 4.17-1.5 
= 2.67 bits/character. The unicity distance is increased by 
a factor of 3.212.67 = 1.2. And, from a computational point 
of view, first-order frequency characteristics are of no use 
in cryptanalysis, thereby removing a frequently used entry 
into a cipher. 
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By extension, we could use a transposition on pairs of 
letters, or on words, and remove even more of the effective 
redundancy. Using frequency characteristics of common 
English words, we estimate that the rate of a first-order 
word approximation to English (a language in which suc- 
cessive words are independent random variables, and in 
which words occur with the same relative frequencies as 
in English) is R,l = 2.22 bits/character. The effective value 
of D becomes 2.22-1.5 = 0.72 bits/character, and the bound 
on unicity distance increases by a factor of 3.210.72 = 4.4 
over that guaranteed by a random cipher. Also, the re- 
dundancy that is left is more difficult to describe, making 
cryptanalysis computationally more difficult. 

We could go further and transpose sentences, para- 
graphs, whole reports, etc., but an obvious problem appears 
as we consider such extensions. While it is true that a 
cryptanalyst has more difficulty breaking these larger 
transpositions, it is also true that even without crypta- 
nalysis, one can glean important local information. For 
example, in a word transposition cipher, knowledge that 
certain words have occurred can be damaging in and of 
itself. Even though global security is preserved, the local 
information which seeps through can cause damage. 

The above arguments indicate that a word transposition, 
followed by a simple cipher to hide local information, 
might be good in practical use. A similar idea, known as 
bisection, has found use in classical cryptography to re- 
move stylized beginnings (e.g., “Dear Sir:“) and endings 
of messages as entry points for cryptanalysis. 

Another example concerns numerical data. This is often 
viewed as possessing little redundancy, and (11) would 
therefore predict a large unicity distance. If, however, the 
data is stored in ASCII or EBCDIC, a great deal of re- 
dundancy is available to a cryptanalyst. By designing a 
cipher which always replaces numerals by other numerals, 
this redundancy is made useless for cryptanalysis. Of 
course, then the cryptanalyst gains local information as to 
where text ends and data begins, but, in most cases, this 
seems worth trading in return for global security. Lu [9] 
has recently studied a problem which can be partially 
viewed as a trade-off between local and global uncertain- 

ty. 

IV. DISCUSSION 

As mentioned in the introduction, it is our belief that the 
classical, or Shannon theory, approach taken in this paper 
is not, in general, directly applicable to designing practical 
cryptographic systems. Rather, it appears to be useful 
mostly for gaining qualitative insights into the design of 
practical systems. For example, we have seen the value of 
data compression in increasing security and that ciphers 
can be matched to the structure of a data source. 

Another example of qualitative insight which can be 
gained from the Shannon theory approach concerns the 
wiretap channel introduced by Wyner [lo]. Through in- 
sightful techniques, Wyner developed necessary and suf- 
ficient bonditions on an achievable region of information 
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rates. Carleial and Hellman [ 1 l] later derived a modified 
version of Wyner’s result which appears useful in quanti- 
fying the concept of a discrete mixing transformation. This 
concept was introduced by Shannon [3] in describing a 
technique for the design of computationally secure ciphers. 
There are undoubtedly other connections between the 
classical information-theoretic approach to cryptography 
and the more directly useful computational theory ap- 
proach. The need to study ensemble behavior in the 
computational theory is one area which deserves attention, 
and we hope that others will come to light as work pro- 
gresses. 

One last comment concerns a t.ype of duality between 
ciphers and error-correcting codes. Since random error- 
correcting codes are essentially the best possible and 
random ciphers are essentially the worst possible, and since 
redundancy is needed for error-correction but weakens a 
cipher, we are tempted to label these problems as duals or 
opposites. The reason for this duality stems from the very 
opposite goals of error-correcting codes and ciphers. An 
error-correcting code is designed to be uncertainty (i.e., 
noise) immune, whereas a cipher is designed to uncertainty 
(i.e., key) sensitive. The cryptanalyst is trying to remove 
the “noise”, and we want his job to be as difficult as pos- 
sible. This duality should not be taken too far though, 
especially when the cryptanalyst has a finite computational 
ability. Concatenated codes [12] possess nice error-cor- 
recting properties, and concatenated or product ciphers 
also appear to be useful for computationally secure ciphers 
[13]-[15]. 

REFERENCES 

Ill 

121 

14 

[41 

[51 

I61 

[71 

Bl 

I91 

[lOI 

[Ill 

[121 

[ISI 

[141 

P51 

W. Diffie and M. Hellman, “Multiuser cryptography,” presented 
at 1975 National Computer Conference, New York, June 1976. 
-- “New directions in cryptography,” IEEE’ Trans. inform. 
T/a&y, vol. IT-22, pp 644-654, Nov. 1976. 
C. Shannon, “Communication theory of secrecy systems,” Bell Sys. 
Tech. J., vol. 28, pp. 656-715, Oct. 1949. 
-- “A mathematical theory of communication,” Rell Sys. Tech. 
J., vb. 27, Part I, pp. 479-523, Part II, pp. 623-656, 1948’. 
W. F. Friedman, “Cryptology,” in Encyclopedia Rrittnnnica, p. 848, 
1973. 
R. Gallager, Information Theory and Reliable Conmzunication. 
New York: Wiley, 1968. 
L. Davisson, “Universal noiseless coding,” If&‘% Trans. Inform. 
Theory, vbl. IT-19, pp. 783-795, Nov. 1973. 
C. Shannon, “Prediction and entropy of printed English,” Bell Sys. 
Tech. J., vol. 30, pp. 50.-64, Jan. 1951. 
S. C. Lu, “Sphere packing bounds for additive block ciphers and 
memoryless binary sources,” IJniversity of Hawaii Report 75. 
EE-CAN-2, July 1975. 
A. Wyner, “The wiretap channel,” Bell Sys. Tech. J.. vol. 54, pp. 
1355-1387, Oct. 1975. 
A. Carleial and M. Hellman, “A note on Wyner’s wiretap channel,” 
IEEE Trans. Inform. Theory, this issue, pp. 387~-390. 
G. D. Forney, Jr., Concatenated Codes. Cambridge, MA: MIT 
Press, 1966. 
H. Feistel, “Cryptography and computer privacy,” Sci. Amer., vol. 
228, pp. 15-23, May 1973. 
E. Grossman, “Group theoretic remarks on cryptographic systems 
based on two types of addition,” IBM Report RC-4742, Yorktown 
Heights, NY, Feb. 1974. 
D. Coppersmith and E. Grossman, “Generators for certain alter- 
nating groups with applications to cryptography,” SIAM J. Appl. 
Math, vol. 29, pp. 624-627, Dec. 1975. 


