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Motivation

Motivation (I)

The past: emergence of hardware accelerators

Hardware accelerators (especially GPUs) have become a real
solution for HPC
Hardware: manycore systems on chip (up to 240 cores on
modern Nvidia GPUs)
Software: problem solved with high level programming and
execution models (e.g. Nvidia CUDA, Brook+, OpenCL)
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Motivation

Motivation (II)

The present: heterogeneous multi-accelerator systems

One accelerator is not always enough for many applications
Different accelerators adapted to specific applications
Multi-accelerator systems are the next step
Hardware: Nvidia Tesla series, multiple ClearSpeed boards per
system, hybrid architectures, . . .
Software: the problem is not solved yet:

Big code modifications from sequential code
Manual scheduling
The user has to know the best accelerator for each part of the
application
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Motivation

Motivation (III)

The future: heterogeneous multi-accelerator systems (on-chip)

Number of cores is increasing
The programmability problem must be addressed as soon as
possible
Hardware: Larrabee, AMD Fusion, . . .
Software: will determine the success or failure of novel
architectures
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Introduction

Introduction. StarSs

The StarSs programming model addresses the programmability
problem by exploiting task level parallelism
It consists of:

A few OpenMP-like pragmas identifying tasks in the user code
A source-to-source compiler
A runtime system adapted to the underlying architecture

Many instantiations of StarSs have been developed: CellSs,
SMPSs, GridSs
Each instantiation targets one specific architecture
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Introduction

Introduction. GPUSs

Our proposal: GPUSs

GPUSs: Instantation of the StarSs programming model focusing
heterogeneous multi-accelerator platforms

—

1 Heterogeneity: The target architecture is an heterogeneous
multi-accelerator system

2 Separate memory spaces: The user does not have to deal with
separate memory spaces for each accelerator

3 Simplicity: It adds few pragmas to the sequential user code to
port it to the multi-accelerator system

4 Portability: It can be easily ported to other similar architectures
based on multiple accelerators
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Contents

1 Introduction

2 The StarSs programming model. New extensions

3 The GPUSs framework

4 Experimental results

5 Conclusions and future work

An Extension of the StarSs Programming Model . . . 9 Ayguadé et al.



The StarSs programming model. New extensions

The StarSs programming model

StarSs programming model

Automatic parallelization of sequential applications
Runtime system: efficient use available resources (e.g. GPUs)
in parallel
The user annotates the application: pieces of code that will be
executed on a GPU (tasks)
Runtime extracts parallelism building a data dependency graph

void task1( float * A ){
  ...
}

#pragma css task
void task1( float * A ){
  ...
}

User code
Annotated

code
TDG Tesla system

User Runtime Runtime
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The StarSs programming model. New extensions

Proposed extensions

Extensions to the StarSs programming model

GPUSs provides OpenMP-like constructs to annotate code:

To identify a unit of work, or task: pragma css task
To select the execution device: pragma css target device
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The StarSs programming model. New extensions

Defining tasks: the task clause

Taskifying functions

#pragma css task [ c l a u s e _ l i s t ]
{ f unc t i on−header | func t i on−d e f i n i t i o n }

The task clause denotes a function that is always executed as a
task.
Whenever the program calls a function annotated in this way, the
runtime will create an explicit task.
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The StarSs programming model. New extensions

Defining tasks: the task clause

Identifying the directionality of the arguments

#pragma css task i npu t ( parameter ) |
ou tput ( parameter ) |
i nou t ( parameter )

{ func t i on−header | func t i on−d e f i n i t i o n }

The input, output and inout clauses denote the
directionality of each argument.
Used by the runtime to track dependencies among tasks and
manage data transfers.
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The StarSs programming model. New extensions

Specifying target devices: the target clause

Specifying target devices

#pragma css t a r g e t device ( device−name− l i s t ) [ clause− l i s t ]
{ f unc t i on−header | func t i on−d e f i n i t i o n }

The target construct specifies that the execution of a task can
be offloaded on a given device.
The target device is specified in device-name-list.
When a task becomes ready, the runtime can choose among the
available targets to decide where to execute the task.
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The StarSs programming model. New extensions

Managing heterogeneity: the implements clause

The implements clause is used to specify alternative
implementations for a function

Example

#pragma css task
void matmul ( f l o a t ∗A, f l o a t ∗B, f l o a t ∗C ) ;

#pragma css t a r g e t device ( cuda ) implements ( matmul )
void matmul_cuda ( f l o a t ∗A, f l o a t ∗B, f l o a t ∗C ) {

/ / tuned vers ion f o r a CUDA−compat ib le device
}

#pragma css t a r g e t device ( smp ) implements ( matmul )
void matmul_smp ( f l o a t ∗A, f l o a t ∗B, f l o a t ∗C ) {

/ / tuned v rs ion f o r a SMP device
}
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The StarSs programming model. New extensions

Example: the matrix-matrix multiplication

Parallelizing the matix-matrix multiplication

#pragma css task i npu t (A [BS ] [ BS] , B [BS ] [ BS ] ) i nou t (C[BS ] [ BS ] )
#pragma css t a r g e t device ( cuda )
void matmul ( f l o a t ∗A, f l o a t ∗B, f l o a t ∗C ) {

/ / tuned CUDA code f o r the matmul
}

f l o a t ∗A [ ] [ ] , ∗B [ ] [ ] , ∗C [ ] [ ] ;

i n t main ( void ) {
for ( i n t i =0; i <NB; i ++ )

for ( i n t j =0; j <NB; j ++ )
for ( i n t k =0; k<NB; k++ )

matmul ( A [ i ] [ k ] , B [ k ] [ j ] , C[ i ] [ j ] ) ;
}
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The StarSs programming model. New extensions

Example: the Cholesky factorization

The Chokesky factorization of a dense SPD matrix A ∈ℜn×n is
defined as

A = LLT

where L ∈ℜn×n is a lower triangular matrix.

Blocked algorithm:

Chol_spotrf

Chol_trsm

Chol_upd
  - Chol_gemm
  - Chol_syrk
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The StarSs programming model. New extensions

Sequential Cholesky factorization

void Cholesky ( f l o a t ∗A, i n t ts , i n t nt ) {
for ( i n t k = 0; k < nt ; k++) {

c h o l _ s p o t r f ( A [ k∗nt+k ] , t s ) ; / / Fac to r i ze d iagonal b lock

for ( i n t i = k +1; i < n t ; i ++) / / T r i angu la r so lves
chol_strsm ( A[ k∗nt+k ] , A [ k∗nt+ i ] , t s ) ;

/ / Update t r a i l i n g submatr ix
for ( i n t i = k +1; i < n t ; i ++) {

for ( i n t j = k +1; j < i ; j ++)
chol_sgemm ( A[ k∗nt+ i ] , A [ k∗nt+ j ] , A [ j ∗nt+ i ] , t s ) ;

cho l_ssyrk ( A [ k∗nt+ i ] , A [ i ∗nt+ i ] , t s ) ;
}

}

i n t main ( void ) {
f l o a t ∗A[ n t ] [ n t ] ;
. . .
/ / Compute the Cholesky f a c t o r
Cholesky ( A, ts , n t ) ;

}
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The StarSs programming model. New extensions

Taskifying the Cholesky factorization
Each block function can be converted into a task:

spotrf task

#pragma css task i nou t (A [NT ] [ NT ] )
void c h o l _ s p o t r f ( f l o a t ∗A ) {

s p o t r f ( "Lower" , &ts , A,
&ts , & i n f o ) ;

}

sgemm task

#pragma css task i npu t (A [NT ] [ NT] ,
B [NT ] [ NT ] )

i nou t (C[NT ] [ NT ] )
void chol_sgemm ( f l o a t ∗A,

f l o a t ∗B,
f l o a t ∗C ) {

sgemm( "N" , "T" , &ts , &ts , &ts ,
−1.0 , A, &ts , B, &ts ,

1 .0 , C, &t s ) ;
}

ssyrk task

#pragma css task i npu t (A [NT ] [ NT ] )
i nou t (C[NT ] [ NT ] )

void cho l_syrk ( f l o a t ∗A,
f l o a t ∗C ) {

ssyrk ( "L" , "N" , &ts , &ts ,
−1.0 , A, &ts ,

1 .0 , C, &t s ) ;
}

strsm task

#pragma css task i npu t (T [NT ] [ NT ] )
i nou t (B [NT ] [ NT ] )

void chol_strsm ( f l o a t ∗T ,
f l o a t ∗B ) {

dtrsm ( "R" , "L" , "T" , "N" ,
&ts , &ts , 1 .0 , T , &ts ,

B, &t s ) ;
}

An Extension of the StarSs Programming Model . . . 19 Ayguadé et al.



The StarSs programming model. New extensions

Taskifying the Cholesky factorization
Each block function can be converted into a task:

spotrf task

#pragma css task i nou t (A [NT ] [ NT ] )
void c h o l _ s p o t r f ( f l o a t ∗A ) {

s p o t r f ( "Lower" , &ts , A,
&ts , & i n f o ) ;

}

sgemm task

#pragma css task i npu t (A [NT ] [ NT] ,
B [NT ] [ NT ] )

i nou t (C[NT ] [ NT ] )
void chol_sgemm ( f l o a t ∗A,

f l o a t ∗B,
f l o a t ∗C ) {

sgemm( "N" , "T" , &ts , &ts , &ts ,
−1.0 , A, &ts , B, &ts ,

1 .0 , C, &t s ) ;
}

ssyrk task

#pragma css task i npu t (A [NT ] [ NT ] )
i nou t (C[NT ] [ NT ] )

void cho l_syrk ( f l o a t ∗A,
f l o a t ∗C ) {

ssyrk ( "L" , "N" , &ts , &ts ,
−1.0 , A, &ts ,

1 .0 , C, &t s ) ;
}

strsm task

#pragma css task i npu t (T [NT ] [ NT ] )
i nou t (B [NT ] [ NT ] )

void chol_strsm ( f l o a t ∗T ,
f l o a t ∗B ) {

dtrsm ( "R" , "L" , "T" , "N" ,
&ts , &ts , 1 .0 , T , &ts ,

B, &t s ) ;
}

An Extension of the StarSs Programming Model . . . 19 Ayguadé et al.



The StarSs programming model. New extensions

Specifying the target device for each task

By default, each task is executed on the SMP device unless the
target clause is given.
Example: chol_spotrf can be executed on a CUDA-capable
device:

spotrf task on a CUDA-capable device

#pragma css task i nou t (A [NT ] [ NT ] ) t a r g e t device ( cuda )
void c h o l _ s p o t r f ( f l o a t ∗A ) {

/ / CUDA kerne l f o r
/ / the Cholesky f a c t o r i z a t i o n

}
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The StarSs programming model. New extensions

Specifying multiple implementations for each task

Multiple implementations for the chol_spotrf can be given:

spotrf task on a CUDA-capable device

#pragma css task i nou t (A [NT ] [ NT ] )
void c h o l _ s p o t r f ( f l o a t ∗A ) ;

#pragma css task i nou t (A [NT ] [ NT ] ) t a r g e t device ( cuda )
implements ( c h o l _ s p o t r f )

void cho l_spot r f_cuda ( f l o a t ∗A ) {
/ / CUDA kerne l f o r
/ / the Cholesky f a c t o r i z a t i o n

}

#pragma css task i nou t (A [NT ] [ NT ] ) t a r g e t device ( smp )
implements ( c h o l _ s p o t r f )

void chol_spotr f_smp ( f l o a t ∗A ) {
/ / SMP r o u t i n e f o r
/ / the Cholesky f a c t o r i z a t i o n

}
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The GPUSs framework

The target architecture

A typical multi-accelerator system

Host

Host with main
memory

Devices with
local memory

Communication
through
PCIExpress

No direct
device-device
communication

Communication
through main
memory
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The GPUSs framework

The GPUSs runtime. Overview

Many features inherited from the CellSs and SMPSs runtimes
Two main modules:

1 Execution of the annotated user code, task generation and
scheduling

2 Data movements and task execution
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The GPUSs framework

The GPUSs runtime. Structure

1 A master thread:
Executes the user code
Intercepts calls to annotated functions
Generates tasks
Inserts them in a Task Dependency Graph

2 A helper thread:
Consumes tasks from the TDG as the GPUs become idle
Maps tasks to the most suitable device
Intercepts finalization signals from the worker threads

3 A set of worker threads:
Wait for available tasks
Perform the necessary data transfers from RAM to GPU
Invoke the task call on the GPU
Retrieve the results (if necessary)
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The GPUSs framework

The GPUSs runtime. Locality exploitation

Host and device memories: two-level memory hierarchy
Data is transferred to device memory prior to any task execution
Data is transferred back after execution

Consider the local memory of each GPU as a cache memory
storing recently-used data blocks
Software cache + Memory coherence policies:

Write-invalidate
Write-back

The runtime keeps a memory map of each accelerator cache
This information can be used to improve the mapping of tasks to
resources
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The GPUSs framework

The GPUSs runtime. Additional features

Definition of the number of accelerators at runtime
Paraver traces to analyze performance

Hybrid CPU/GPU execution of tasks
Ported to a system with multiple ClearSpeed boards
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Experimental results

Experimental results

Experimental setup

CPU Dual Xeon QuadCore E5440
CPU frequency 2.83 Ghz
RAM memory 16 Gbytes
GPU Tesla s1070
Graphics processors 4 x GT200
GPU frequency 1.3 Ghz
Video memory 4 Gbytes per GPU
Interconnection PCIExpress Gen2
CUDA version 2.0
MKL version 10.0.1
Driver version 185.18

Performance measured in GFLOPS
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Experimental results

Experimental results. Cholesky factorization

0

100

200

300

400

500

0 4096 8192 12288 16384 20480

G
F
L
O
P
S

Matrix size

Cholesky factorization - GPUSs runtime

GPUSS - Cached Write-back - 4 GPUs
GPUSS - Basic implementation - 4 GPUs

MKL spotrf - Dual Intel Xeon (8 cores)
Cholesky GPU (CUBLAS) - 1 GPU

Tasks executed exclusively on GPUs (simple precision)
Important improvement with software cache

An Extension of the StarSs Programming Model . . . 30 Ayguadé et al.



Experimental results

Experimental results. Scalability
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Experimental results

Experimental results. GEMM
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Experimental results

Experimental results on ClearSpeed boards
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Conclusions and future work

Conclusions

Conclusions
StarSs programming model: versatile and extensible for new
architectures
Programmability will determine the success of emerging
architectures
Our approach relies on a runtime system: little user intervention
Many ideas can be applied to other multi-accelerator systems

Future work
More complex scheduling strategies
Porting to other multi-accelerator platforms
Porting to heterogeneous multi-accelerator platforms
Let the runtime automatically decide where to execute each task
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Conclusions and future work

Questions?
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SuperMatrix Extension of the SuperMatrix SMP runtime

Automatic parallelization of linear algebra
programs
Hybrid CPU / Multi-GPU systems

Volkov et al. Some highly tuned codes for multi-GPU systems
Linear algebra codes
No runtime or automatic scheduling

Lee et al. Compiler framework for automatic translation and
optimization
OpenMP→ GPU translation

StarPU
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Conclusions and future work

Tesla vs. Cell B.E.

Similarities with the Cell B.E.
Heterogeneous architectures:

Cell B.E.: 1 PPE + 8 SPEs
Tesla: 1 (multicore) CPU + 4 GPUs

Each accelerator has its own local memory pool
Fast interconnection network

Differences with the Cell B.E.
GPUs need more granularity to attain good performance
PPE performance is poor compared to that of the SPE
Larger local memory spaces for each GPU (Gbytes) than for
each SPE (Kbytes)
Impact of data transfers (PCIExpress vs EIB)
GPUs are passive elements: no system threads can be run on
them
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Conclusions and future work

Specifying data movements

Some additional clauses can be used with the device pragma:

Data movement clauses

copy_in ( data−reference− l i s t )
copy_out ( data−reference− l i s t )

These clauses specify data movement for the shared variables inside
a task:

copy_in moves variables from host to device memory once the
task is ready for execution.
copy_out moves variables from device to host once the task
finishes execution.
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