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Abstract12

Accurate models describing the relationship between genotype and phenotype are necessary in or-13

der to understand and predict how mutations to biological sequences affect the fitness and evolution of14

living organisms. The apparent abundance of epistasis (genetic interactions), both between and within15

genes, complicates this task and how to build mechanistic models that incorporate epistatic coefficients16

(genetic interaction terms) is an open question. The Walsh-Hadamard transform represents a rigorous17

computational framework for calculating and modeling epistatic interactions at the level of individual18

genotypic values (known as genetical, biological or physiological epistasis), and can therefore be used19

to address fundamental questions related to sequence-to-function encodings. However, one of its main20

limitations is that it can only accommodate two alleles (amino acid or nucleotide states) per sequence21

position. In this paper we provide an extension of the Walsh-Hadamard transform that allows the cal-22

culation and modeling of background-averaged epistasis (also known as ensemble epistasis) in genetic23

landscapes with an arbitrary number of states per position (20 for amino acids, 4 for nucleotides, etc.).24

We also provide a recursive formula for the inverse matrix and then derive formulae to directly extract25

any element of either matrix without having to rely on the computationally intensive task of constructing26

or inverting large matrices. Finally, we demonstrate the utility of our theory by using it to model epistasis27

within a combinatorially complete multiallelic genetic landscape of a tRNA, revealing that both pairwise28

and higher-order genetic interactions are enriched between physically interacting positions.29
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Author Summary30

An important question in genetics is how the effects of mutations combine to alter phenotypes. Genetic in-31

teractions (epistasis) describe non-additive effects of pairs of mutations, but can also involve higher-order32

(three- and four-way etc.) combinations. Quantifying higher-order interactions is experimentally very chal-33

lenging requiring a large number of measurements. Techniques based on deep mutational scanning (DMS,34

also known as MPRAs and MAVEs) represent valuable sources of data to study epistasis. However, the35

best way to extract the relevant pair-wise and higher-order epistatic coefficients (genetic interaction terms)36

from this data for the task of phenotypic prediction remains an unresolved problem. The Walsh-Hadamard37

transform represents a rigorous computational framework for calculating and modeling epistatic interactions38

at the level of individual genotypic values. Critically, this formalism currently only allows for two alleles39

(amino acid or nucleotide states) per sequence position, hampering applications in more biologically realis-40

tic scenarios. Here we present an extension of the Walsh-Hadamard transform that overcomes this limitation41

and demonstrate the utility of our theory by using it to model epistasis within a combinatorially complete42

multiallelic genetic landscape of a tRNA.43

Introduction44

A fundamental challenge in biology is to understand and predict how changes (or mutations) to biologi-45

cal sequences (DNA, RNA, proteins) affect their molecular function and ultimately the phenotype of living46

organisms. The phenomenon of ‘epistasis’ (genetic interactions) – broadly defined as the dependence of mu-47

tational effects on the genetic context in which they occur [1, 2, 3] – is widespread in biological systems, yet48

knowledge of the underlying mechanisms remains limited. Defining the extent of epistasis and better under-49

standing of its origins has relevance in fields ranging from genetic prediction, molecular evolution, infectious50

disease and cancer drug development, to biomolecular structure determination and protein engineering [3].51

Evolutionarily related sequences, natural genetic variation within populations, and more recently results of52

techniques such as deep mutational scanning (DMS) [4] – also known as massively parallel reporter as-53

says (MPRAs) and multiplex assays of variant effect (MAVEs) – represent valuable sources of data to study54

epistasis [5, 1]. In particular, DMS enables the systematic measurement of mutational effects across entire55

combinatorially complete genetic landscapes [5, 6, 7, 8, 9, 10, 11, 12, 13]. Importantly, the typical use of56

engineered genotypes, haploid individuals and near-identical environmental (laboratory) conditions in these57

experiments allows population genetic considerations – such as dominance, variable allele frequencies and58

linkage disequilibrium – to be ignored [14]. In other words, measurements obtained from deep mutational59

scanning and related methods permit the modeling of epistasis in the mechanistic sense (sequence-to-function60

encoding) rather than in the evolutionary sense i.e. at the population genetic level. Nevertheless, precisely61

how to extract the most biologically relevant pairwise and higher-order epistatic coefficients (genetic inter-62

action terms) from this type of data is an unresolved problem.63

Quantitative definitions of epistasis vary among fields, but it has been argued that one particular formula-64
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tion termed ‘background-averaged’ epistasis, also known as ‘ensemble’ epistasis [1, 12], may provide the65

most useful information on the epistatic structure of biological systems [2]. The underlying rationale is that66

by averaging the effects of mutations across many different genetic backgrounds (contexts), the method is67

robust to local idiosyncrasies in the relationship between genotype and phenotype. It has been previously68

pointed out that the definition of background-averaged epistasis is conceptually similar to that of ‘statisti-69

cal epistasis’ attributed to Fisher, but instead of measuring the average effect of allele substitutions against70

the population average genetic background i.e. averaging over all genotypes present in a given population71

(taking into account their individual frequencies), the approach instead averages over all possible genotypes72

(assuming equal genotype weights) [1, 2].73

The current mathematical formalism of background-averaged epistasis is based on the Walsh-Hadamard74

transform [2]. Interestingly, although widely used in physics and engineering, the Walsh-Hadamard trans-75

form was first applied to non-biological fitness landscapes in the field of genetic algorithms (GA) [15], subse-76

quently being proposed as the basis of a framework for the computation of higher-order epistasis in empirical77

settings [16]. However, the Walsh-Hadamard transform can only accommodate two alleles (amino acid or78

nucleotide states) per sequence position, with no extension to multialleleic landscapes (cardinality greater79

than two) yet made, as confirmed by multiple recent reports [2, 17, 18, 19]. Alternative implementations for80

multiallelic landscapes either rely on ‘one-hot encoding’ elements of larger alphabets as biallelic sequences –81

requiring the manipulation of prohibitively large Walsh-Hadamard matrices – or constructing graph Fourier82

bases [18], which is mathematically complex and provides no straightforward way to interpret epistatic co-83

efficients. The result is that the application of background-averaged epistasis has been severely limited and84

its properties remain largely unexplored in more biologically realistic scenarios.85

In this work we provide an extension of the Walsh-Hadamard transform that allows the calculation and mod-86

eling of background-averaged epistasis in genetic landscapes with an arbitrary number of states (20 for amino87

acids, 4 for nucleotides, etc.). We also provide a recursive formula for the inverse matrix, which is required to88

infer epistatic coefficients using regression. Furthermore, we derive convenient formulae to directly extract89

any element of either matrix without having to rely on the computationally intensive task of constructing90

or inverting large matrices. Lastly, we apply these formulae to the analysis of a multiallelic DMS dataset,91

demonstrating that sparse models inferred from the background-averaged representation (embedding) of the92

underlying genetic landscape more regularly include epistatic terms corresponding to direct physical inter-93

actions.94

Results95

Extension of the Walsh-Hadamard transform to multiallelic landscapes96

In this work, a genotype sequence is represented as a one-dimensional ordering of monomers, each of which97

can take on 𝑠 possible states (or alleles), for example 𝑠 = 4 for nucleotide sequences or 𝑠 = 20 for amino98

acid sequences. Without loss of generality, the 𝑠 states can be labelled 0, 1, 2,… , 𝑠− 1, where 0 denotes the99

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.03.06.531391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531391
http://creativecommons.org/licenses/by-nc-nd/4.0/


wild-type allele. We are going to consider genotype sequences of length 𝑛 ∈ ℕ, i.e. sequences taking values100

in 𝑛, where  ∶= {0, 1,… , 𝑠 − 1}.101

Each genotype �⃗� ∈ 𝑛 is associated with its phenotype 𝑦�⃗�. Note that here we use the term ‘phenotype’ as102

shorthand for ‘molecular phenotype score’ from a quantitative laboratory assay (DMS) reporting on a molec-103

ular function for each genotype of interest. In quantitative genetics terminology this might be referred to as104

‘genotypic value’ because environmental deviation is negligible due to the controlled nature of the experi-105

ments, but our subject here is the macromolecule not an individual from a population [14]. In the context of106

empirical genotype-phenotype landscapes, the phenotypic effect of a genotype �⃗� is typically measured with107

respect to the wild-type, i.e. it is given by 𝑦�⃗� − 𝑦(0,…,0).108

It is important to emphasize that in what follows we implicitly restrict ourselves to the haploid reference109

base, because our primary goal is the modeling of sequence-to-function encodings for individual genotype110

sequences – for the ultimate purpose of understanding and engineering macromolecules – not the modeling111

of sequence evolution or quantification of sources of phenotypic variance in populations.112

If the phenotypic effects of individual mutations were independent, they would be additive, meaning that113

the phenotypic effect of �⃗� = (𝑖1,… , 𝑖𝑛) would be the sum of the phenotypic effects of the single mutants114

(𝑖1, 0,… , 0),… , (0,… , 0, 𝑖𝑛). The epistatic coefficient quantifies how much the observed phenotypic effect115

of �⃗� deviates from this assumption. In the case of background-averaged epistasis, we quantify the interac-116

tions between a set of mutations by averaging over all possible genotypes for the remaining positions in the117

sequence. For example, if 𝑛 = 3 and 𝑠 = 2, the pairwise epistatic coefficient involving the mutations at posi-118

tions 2 and 3 is calculated by averaging over all states (backgrounds) for the remaining positions, in this case119

given by the two states of the first position (∗ denotes the positions at which the averaging is performed), i.e.120

𝜀(∗,1,1) = 1
2
([

(𝑦(1,1,1) − 𝑦(1,0,0)) − (𝑦(1,1,0) − 𝑦(1,0,0)) − (𝑦(1,0,1) − 𝑦(1,0,0))
]

+
[

(𝑦(0,1,1) − 𝑦(0,0,0)) − (𝑦(0,1,0) − 𝑦(0,0,0)) − (𝑦(0,0,1) − 𝑦(0,0,0))
])

= 1
2
([

𝑦(1,1,1) − 𝑦(1,1,0) − 𝑦(1,0,1) + 𝑦(1,0,0)
]

+
[

𝑦(0,1,1) − 𝑦(0,1,0) − 𝑦(0,0,1) + 𝑦(0,0,0)
])

.

More generally, in [2] it is shown that for 𝑠 = 2 and any sequence length 𝑛, phenotypic effects can be121

decomposed into background-averaged epistatic coefficients with122

�̄�𝑛 = 𝑉𝑛 ⋅ �̂�𝑛 ⋅ �̄�𝑛,

where �̄�𝑛 is the vector (𝑦�⃗�, �⃗� ∈ [0, 1]𝑛), �̄�𝑛 is the vector (𝜀𝑗 , 𝑗 ∈ [∗, 1]𝑛) and �̂�𝑛 and 𝑉𝑛 are 2𝑛 × 2𝑛 matrices123

defined recursively as follows:124

�̂�𝑛+1 =

(

�̂�𝑛 �̂�𝑛

�̂�𝑛 −�̂�𝑛

)

�̂�0 = 1,
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𝑉𝑛+1 =

(

1
2𝑉𝑛 0
0 −𝑉𝑛

)

𝑉0 = 1.

The matrix �̂� is known as the Walsh-Hadamard transform [20, 21] and 𝑉 is a diagonal weighting (or nor-125

malisation) matrix to correct the sign and account for averaging over different numbers of backgrounds as a126

function of epistatic order [2].127

In this work, we provide an extension of this theory to describe background-averaged epistasis for sequences128

with an arbitrary number of states 𝑠. Before writing a general formula, we consider the simplest possible129

multi-state (multiallelic) landscape i.e. a sequence of length 𝑛 = 1 with 𝑠 = 3,130

⎛

⎜

⎜

⎜

⎝

𝜀(∗)
𝜀(1)
𝜀(2)

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1∕3 0 0
0 −1 0
0 0 −1

⎞

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎝

1 1 1
1 −1 0
1 0 −1

⎞

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎝

𝑦(0)
𝑦(1)
𝑦(2)

⎞

⎟

⎟

⎟

⎠

∶= 𝑉1 ⋅𝐻1 ⋅ �̄�1.

Consistent with the definition of background-averaged epistasis for biallelic landscapes [2], the zeroth-order131

epistatic coefficient 𝜀(∗) is the mean phenotypic value across all genotypes and the first-order epistatic coef-132

ficients 𝜀(1) and 𝜀(2) are simply the respective individual phenotypic effects of genotypes 𝑦(1) and 𝑦(2) with133

respect to the wild-type. However, the key feature of 𝐻1 for multiallelic landscapes – and where it departs134

from the canonical Walsh-Hadamard transform – is the introduction of zero elements to exclude phenotypes135

that are irrelevant for the calculation of a given epistatic coefficient. In other words, these phenotypes are136

excluded because they correspond neither to relevant intermediate genotypes nor alternative genetic back-137

grounds. We remind the reader that as we are interested in phenotypes at the level of individual genotypes,138

i.e. the haploid reference base, additive effects of different alleles at the same position (locus) are irrelevant139

and can be ignored.140

If we now consider a sequence of length 𝑛 = 2 with 𝑠 = 3, then the 𝐻2 and 𝑉2 matrices become 9×9 (𝑠𝑛×𝑠𝑛)141

and can be constructed from recurring to the case 𝑛 = 1 above, giving142

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜀(∗,∗)
𝜀(∗,1)
𝜀(∗,2)
𝜀(1,∗)
𝜀(1,1)
𝜀(1,2)
𝜀(2,∗)
𝜀(2,1)
𝜀(2,2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
9

0 0 0 0 0 0 0 0
0 −1

3
0 0 0 0 0 0 0

0 0 − 1
3 0 0 0 0 0 0

0 0 0 −1
3 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1

3
0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1 1
1 −1 0 1 −1 0 1 −1 0
1 0 −1 1 0 −1 1 0 −1
1 1 1 −1 −1 −1 0 0 0
1 −1 0 −1 1 0 0 0 0
1 0 −1 −1 0 1 0 0 0
1 1 1 0 0 0 −1 −1 −1
1 −1 0 0 0 0 −1 1 0
1 0 −1 0 0 0 −1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑦(0,0)
𝑦(0,1)
𝑦(0,2)
𝑦(1,0)
𝑦(1,1)
𝑦(1,2)
𝑦(2,0)
𝑦(2,1)
𝑦(2,2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∶= 𝑉2 ⋅𝐻2 ⋅ �̄�2,
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where the colors highlight the block structure of the matrices. In 𝑉2, the red square corresponds to 1
𝑠
𝑉1 and143

the light red squares to −𝑉1. In 𝐻2, the gray squares correspond to 𝐻1 and the blue squares to −𝐻1. In Table144

1 we show the results of background-averaged epistatic coefficients calculated by applying the above formula145

to an empirical multiallelic landscape with 𝑛 = 2 and 𝑠 = 3 [6].146

Nucleic acid
sequence

Base 𝑠 = 3
representation

Phenotypic effect
�̄�2

Epistatic term
�̄� = 𝑉2 ⋅𝐻2 ⋅ �̄�2

GC (0,0) 0 -0.17
GA (0,1) -0.14 -0.21
GT (0,2) -0.07 0.02
AC (1,0) -0.13 -0.24
AA (1,1) -0.8 -0.53
AT (1,2) -0.01 0.19
TC (2,0) -0.19 -0.05
TA (2,1) 0 0.33
TT (2,2) -0.18 0.08

Table 1: Interaction terms based on background-averaged epistasis (�̄�) for an empirical multiallelic genotype-phenotype
landscape consisting of all combinations of two mutations each at positions 6 and 66 in the tRNA-Arg(CCU) [6], i.e.
𝑛 = 2 and 𝑠 = 3. The first two columns indicate nucleic acid sequences and their base 3 representations. Here the
‘GC’ reference (wild-type) genotype corresponds to that of S. cerevisiae, denoted by (0, 0). The second two columns
show the measured phenotypic effects and corresponding background-averaged epistatic coefficients. See Results for a
regression analysis of the entire dataset.

More generally, for any value of 𝑠, when 𝑛 = 1,147

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜀(∗)
𝜀(1)
𝜀(2)
⋮

𝜀(𝑠−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1∕𝑠 0 0 … 0
0 −1 0 … 0
0 0 −1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
0 0 … 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 … 1
1 −1 0 … 0
1 0 −1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
1 0 … 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑦(0)
𝑦(1)
𝑦(2)
⋮

𝑦(𝑠−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∶= 𝑉1 ⋅𝐻1 ⋅ �̄�1,

where 𝜀(∗) corresponds to averaging phenotypes over all possible genotypes and the remaining coefficients148

simply correspond to the phenotypic effects of each mutation.149

For 𝑛 = 2, we have to consider different combinations of mutations in both positions. In this case, the150

phenotypes can be written as151

𝑦(0,0), 𝑦(0,1),… , 𝑦(0,(𝑠−1)), 𝑦(1,0),… , 𝑦(1,(𝑠−1)),… , 𝑦((𝑠−1),0),… , 𝑦((𝑠−1),(𝑠−1)) .

A natural ordering of the phenotypes is given by interpreting genotype �⃗� as the base 𝑠 representation of an152

integer (see Table 1). From this, we can see how the first 𝑠 genotypes correspond to combining the wild-type153

allele at the first position with a state from the case 𝑛 = 1, i.e. to genotypes that can be written 0 ⌢ �⃗� ∶= (0, �⃗�),154

with �⃗� ∈ 1. The next 𝑠 genotypes correspond to the first mutated allele at the first position combined with155

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.03.06.531391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531391
http://creativecommons.org/licenses/by-nc-nd/4.0/


all the genotypes of 𝑛 = 1, i.e. 1 ⌢ �⃗�, �⃗� ∈ 1, and so on. Therefore, we can write the matrices 𝐻 and 𝑉156

following a block structure. In the case 𝑛 = 2 and any given 𝑠, we would then have157

𝐻2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐻1 𝐻1 𝐻1 … 𝐻1

𝐻1 −𝐻1 0 … 0
𝐻1 0 −𝐻1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
𝐻1 0 … 0 −𝐻1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where the number of 𝐻1 blocks corresponds to the number of states of the first position, so 𝑠. Moreover,158

each of these blocks must be normalized to yield the corresponding background-averaged epistatic terms.159

Therefore 𝑉2 can also be expressed as a function of 𝑉1 as follows:160

𝑉2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
𝑠
𝑉1 0 … 0
0 −𝑉1 ⋱ ⋮

⋮ ⋱ ⋱ 0
0 … 0 −𝑉1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Given these two matrices, we can write the background-averaged epistatic coefficients for the case of 𝑛 = 2161

and 𝑠 different states per position as �̄�2 = 𝑉2 ⋅ 𝐻2 ⋅ �̄�2. More generally, the decomposition of phenotypic162

effects into background-averaged epistatic coefficients is given by163

�̄�𝑛 = 𝑉𝑛 ⋅𝐻𝑛 ⋅ �̄�𝑛, (1)

where 𝐻𝑛 and 𝑉𝑛 can be defined recursively as164

𝐻𝑛+1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐻𝑛 𝐻𝑛 𝐻𝑛 … 𝐻𝑛

𝐻𝑛 −𝐻𝑛 0 … 0
𝐻𝑛 0 −𝐻𝑛 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
𝐻𝑛 0 … 0 −𝐻𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐻0 = 1 and 𝐻𝑛 is 𝑠𝑛 × 𝑠𝑛, (2)

165

𝑉𝑛+1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
𝑠
𝑉𝑛 0 0 … 0
0 −𝑉𝑛 0 … 0
⋮ ⋮ ⋱ ⋱ 0
⋮ ⋮ ⋱ ⋱ 0
0 0 … 0 −𝑉𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑉0 = 1 and 𝑉𝑛 is 𝑠𝑛 × 𝑠𝑛. (3)
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Recursive inverse matrix166

Equation (1) defines the vector of epistatic coefficients, �̄�𝑛, as a function of the vector of phenotypes, �̄�𝑛, which167

in general is the quantity that is measured experimentally. However, usually phenotypic measurements are168

only available for a subset of genotypes. An alternative is therefore to estimate the epistatic coefficients �̄�𝑛169

by regression,170

�̄�𝑛 = 𝐻−1
𝑛 ⋅ 𝑉 −1

𝑛 ⋅ �̄�𝑛 , (4)

where the product 𝐻−1
𝑛 ⋅ 𝑉 −1

𝑛 represents a matrix of sequence features. This is analogous to the more widely171

used one-hot encoding strategy, which implicitly relies on a ‘background-relative’ (or ‘biochemical’) view of172

epistasis when regressing to full order [2]. We discuss other advantages of estimating background-averaged173

epistatic coefficients using regression at the end of this manuscript.174

Since 𝑉𝑛 is a diagonal matrix, its inverse is also a diagonal matrix whose elements are the inverse of the175

elements of 𝑉𝑛.176

The inverse of 𝐻𝑛 is the matrix 𝐴𝑛 which can be defined recursively as177

𝐴𝑛+1 =
1
𝑠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝑛 𝐴𝑛 𝐴𝑛 … 𝐴𝑛

𝐴𝑛 (1 − 𝑠)𝐴𝑛 𝐴𝑛 … 𝐴𝑛

𝐴𝑛 𝐴𝑛 (1 − 𝑠)𝐴𝑛 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 𝐴𝑛

𝐴𝑛 𝐴𝑛 … 𝐴𝑛 (1 − 𝑠)𝐴𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐴0 = 1 and 𝐴𝑛 is 𝑠𝑛 × 𝑠𝑛. (5)

See Proposition 1 in S1 Text for a proof of this result. This is the most efficient method to determine the full178

matrix 𝐴𝑛 (see Results) and, to the best of our knowledge, the first reported recursive definition of the inverse179

Walsh-Hadamard transform.180

Formulae to obtain elements of the matrices181

When regressing phenotypes on genotypes, a common goal is to determine whether epistatic coefficients up182

to the 𝑟𝑡ℎ order (where 𝑟 < 𝑛) are sufficient to describe the complexity of the biological system. Furthermore,183

as mentioned above, some fraction of phenotype values within combinatorially complete genetic landscapes184

are typically unavailable, representing missing data. Restricting the epistatic order and missing phenotypes185

respectively correspond to omitting rows and columns from𝐻𝑛 (and vice versa from𝐴𝑛). Formulae to directly186

obtain elements of the matrices in equations (1) and (4) would therefore be convenient.187

In order to write the matrix element (𝐻𝑛)𝑖𝑗 , we need to compare the genotype sequences �⃗�, 𝑗 ∈ 𝑛,188

�⃗� = (𝑖1, 𝑖2,… , 𝑖𝑛)
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𝑗 = (𝑗1, 𝑗2,… , 𝑗𝑛) ,

where �⃗� denotes the 𝑖𝑡ℎ element in 𝑛,  = {0, 1,… , 𝑠 − 1}, and the elements of 𝑛 are ordered by the base189

𝑠 representation of integers. For instance, for any value of 𝑛, we will denote the wild-type state with index190

𝑖 = 1 and write �⃗� = 1⃗ = (0,… , 0). The element denoted with index 𝑖 = 2 would be �⃗� = 2⃗ = (0,… , 0, 1) and191

so on.192

The elements of 𝐻𝑛 can be written as193

(𝐻𝑛)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(−1)(𝐸𝑛)𝑖𝑗 if (𝑀𝑛)𝑖𝑗 = 𝑛

0 otherwise,

where 𝑀 and 𝐸 are 𝑠𝑛 × 𝑠𝑛 matrices whose elements are194

(𝐸𝑛)𝑖𝑗 =
𝑛
∑

𝑘=1
𝑖𝑘⋅𝑗𝑘>0

𝛿𝑖𝑘𝑗𝑘 (6)

(𝑀𝑛)𝑖𝑗 =
𝑛
∑

𝑘=1
𝑖𝑘⋅𝑗𝑘>0

𝛿𝑖𝑘𝑗𝑘 +
𝑛
∑

𝑘=1
𝑖𝑘⋅𝑗𝑘=0

1 = (𝐸𝑛)𝑖𝑗 +
𝑛
∑

𝑘=1
𝑖𝑘⋅𝑗𝑘=0

1,

where 𝛿𝑖𝑗 denotes the Kronecker delta of 𝑖, 𝑗, which is equal to 1 when 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗. In words, (𝐸𝑛)𝑖𝑗195

counts the number of positions at which the genotype sequences �⃗� and 𝑗 carry the same mutated allele and196

(𝑀𝑛)𝑖𝑗 is equal to (𝐸𝑛)𝑖𝑗 plus the number of positions where �⃗� or 𝑗 carry the wild-type allele. See Proposition197

2 in S1 Text for a proof of this result.198

Furthermore, the elements of 𝐴𝑛 can be written as199

(𝐴𝑛)𝑖𝑗 =
1
𝑠𝑛
(1 − 𝑠)(𝐸𝑛)𝑖𝑗 , (7)

where 𝐸𝑛 is defined as in (6). See Proposition 3 in S1 Text for a proof of this result.200

Finally, the matrices 𝑉𝑛 and 𝑉 −1
𝑛 are diagonal matrices whose diagonal elements can be written as201

(𝑉𝑛)𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�) 1
𝑠𝑊𝑛(�⃗�)

(8)

and202

(𝑉 −1
𝑛 )𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�)𝑠𝑊𝑛(�⃗�), (9)

where

𝑊𝑛(�⃗�) ∶=
𝑛
∑

𝑘=1
𝑤𝑘, with 𝑤𝑘 ∶= 𝛿𝑖𝑘0
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and �⃗� again denotes the 𝑖𝑡ℎ element in 𝑛 when ordered by the base 𝑠 representation of integers. In words,203

𝑤𝑘 = 1 if the genotype sequence �⃗� carries the wild-type allele at position 𝑘 and 𝑊𝑛(�⃗�) counts the number of204

positions in �⃗� carrying the wild-type allele. We prove this result in Proposition 4 in S1 Text.205

Generalization to different numbers of states per position206

We can generalize the formulae described in the previous subsection further by considering that each position207

can have different numbers of states. In this case, we can denote 𝑠𝑘 the number of possible states at position208

𝑘. For 𝑛 = 1, this corresponds to exactly the same matrix as in the previous case but with 𝑠 = 𝑠1, which is209

the number of possible states in this position. For 𝑛 = 2, the matrix changes because now the new position210

can have a different number of possible states, 𝑠2. Following the recursive definition of 𝐻𝑛, we can construct211

𝐻2 by repeating 𝐻1 𝑠2 times, with the structure stated in (2). Therefore, we have212

𝐻2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑠1
⏞⏞⏞
𝐻1 𝐻1 𝐻1 … 𝐻1

𝐻1 −𝐻1 0 … 0
𝐻1 0 −𝐻1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
𝐻1 0 … 0 −𝐻1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠2 blocks of size 𝑠1⟹𝑠2𝑠1

.

So the structure is exactly the same but the size of the matrix for each 𝑛 varies according to the number of213

possible states of the new position. The definition of 𝐻𝑛 is the same as in (2) but the dimensions of the matrix214

are
∏𝑛

𝑘=1 𝑠𝑘 ×
∏𝑛

𝑘=1 𝑠𝑘. Similarly, the inverse matrix 𝐴𝑛+1 can be written recursively as215

𝐴𝑛+1 =
1

𝑠𝑛+1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝑛 𝐴𝑛 𝐴𝑛 … 𝐴𝑛

𝐴𝑛 (1 − 𝑠𝑛+1)𝐴𝑛 𝐴𝑛 … 𝐴𝑛

𝐴𝑛 𝐴𝑛 (1 − 𝑠𝑛+1)𝐴𝑛 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 𝐴𝑛

𝐴𝑛 𝐴𝑛 … 𝐴𝑛 (1 − 𝑠𝑛+1)𝐴𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐴0 = 1 and 𝐴𝑛 is
𝑛
∏

𝑘=1
𝑠𝑘×

𝑛
∏

𝑘=1
𝑠𝑘.

(10)
The matrix 𝐴𝑛 defined in (10) is the inverse of the matrix 𝐻𝑛 in the general case where each position can216

have a different number of states.217

In this general case, the elements of 𝐻𝑛 and 𝐴𝑛 can be written as218

(𝐻𝑛)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(−1)(𝐸𝑛)𝑖𝑗 if (𝑀𝑛)𝑖𝑗 = 𝑛

0 otherwise

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.03.06.531391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531391
http://creativecommons.org/licenses/by-nc-nd/4.0/


(𝐴𝑛)𝑖𝑗 =
∏𝑛

𝑘=1
(

1 − 𝑠𝑘
)𝑒𝑘

∏𝑛
𝑘=1 𝑠𝑘

,

where 𝐸𝑛 and 𝑀𝑛 are defined as in (6) and 𝑒𝑘 =

{

1 if 𝑖𝑘 = 𝑗𝑘 ≠ 1
0 otherwise

.219

The matrices 𝑉𝑛 and 𝑉 −1
𝑛 are diagonal matrices whose diagonal elements can be written as220

(𝑉𝑛)𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�)
𝑛
∏

𝑘=1

(

1
𝑠𝑘

)𝑤𝑘

and

(𝑉 −1
𝑛 )𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�)

𝑛
∏

𝑘=1
𝑠𝑘

𝑤𝑘 ,

where

𝑊𝑛(�⃗�) ∶=
𝑛
∑

𝑘=1
𝑤𝑘, with 𝑤𝑘 ∶= 𝛿𝑖𝑘0.

We prove the results in this subsection in Propositions 5, 6 and 7 in S1 Text.221

The above formulae permit the calculation and modeling of background-averaged epistasis in arbitrarily-222

shaped genetic landscapes, i.e. with any number of alleles (states) per position, as well as the direct construc-223

tion of sub-matrices for regression to any desired epistatic order and/or in the presence of missing data. In the224

following subsections we report benchmarking results comparing the performance of alternative methods to225

obtain 𝐻𝑛 and 𝐴𝑛, as well as results from the application of our theory extension to an empirical multiallelic226

genotype-phenotype landscape.227

Benchmarking228

Fig 1a-d provides a visualization of the matrices 𝐻𝑛 and 𝐴𝑛 for different values of 𝑛 and 𝑠, clearly showing229

a fractal pattern in all cases due to their recursive nature.230

In this paper, we provide different methods to construct 𝐴𝑛 = 𝐻−1
𝑛 . First, 𝐻𝑛 can be numerically inverted231

using standard matrix inversion algorithms (here we use the linalg.inv function from the SciPy library232

in Python), referred to as “Recursive 𝐻𝑛 inverse” in Fig 1e,f. Alternatively, the recursive definition of the233

inverse given by equation (5) can be used, which we refer to as “Recursive 𝐴𝑛”. As can be seen in Fig 1e,234

this method is faster than numerically inverting 𝐻𝑛.235

Finally, we also provide a convenient formula for extracting specific individual elements of 𝐴𝑛 (Proposition236

3), referred to as “All elements 𝐴𝑛” in Fig 1e,f. This method is more computationally intensive than the237

previously described methods, due to the formula relying on the computation of (𝐸𝑛)𝑖𝑗 , which equates to238

counting the number of sequence positions that are identically mutated in vectors �⃗� and 𝑗, each of size 𝑛.239

However, in situations where subsets of elements (or sub-matrices) – rather than full matrices – are desired,240
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Figure 1: Benchmarking results and heat map representations of matrices corresponding to the binary (biallelic) and
multi-state (multiallelic) extension of the Walsh-Hadamard transform, and their corresponding inverses. a, 𝐻6 Walsh-
Hadamard transform. b, 𝐻4 multi-state extension of the Walsh-Hadamard transform for 𝑠 = 3. c, 𝐴6 Inverse Walsh-
Hadamard transform. d, 𝐴4 multi-state extension of the inverse Walsh-Hadamard transform for 𝑠 = 3. e, Computational
time on a MacBook Pro (13-inch, 2017, 2.3GHz dual-core Intel Core i5) for extracting elements of 𝐴𝑛 matrices of vari-
ous dimensions and numbers of states (alleles) per position (𝑠 ∈ [2, 10]). Comparisons are shown between numerically
inverting the recursively constructed 𝐻𝑛 (using scipy.linalg.inv), i.e. “Recursive 𝐻𝑛 inverse”, using the recursive
formula for 𝐴𝑛, using the formula to extract all elements of 𝐴𝑛 and extracting 10 random elements of 𝐴𝑛 (see legend).
The mean across 10 replicates is depicted. Linear regression lines were fit to data from matrices with at least 100 ele-
ments. f, Similar to e but indicating memory usage. Linear regression lines were fit to data from matrices with at least
10 elements.
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Proposition 3 provides a method that can be faster and more memory efficient (see “10 elements 𝐴𝑛” in Fig241

1e,f).242

For example, in the case of a 10-mer DNA sequence, constructing the full inverse transform 𝐴10 with 𝑠 = 4243

would require > 1023 bytes (100 million petabytes) of memory in the best-case scenario (“Recursive 𝐻𝑛244

inverse” in Fig 1f, log-linear extrapolation). Similarly, the full inverse transform for a 4-mer amino acid se-245

quence (𝐴4 with 𝑠 = 20) would impose a memory footprint > 1020 bytes. On the other hand, calculating246

the subset of elements from these matrices required for the prediction of a single phenotype using epistatic247

coefficients up to third order (three-way genetic interaction terms) is feasible in both situations using Propo-248

sition 3 (3,675 and 29,678 elements; 2.5 GB and 192 GB of memory; 1.8 and 99 seconds, respectively). This249

memory footprint can easily be diminished further using data chunking, which is a unique benefit of this250

method.251

Application to a multiallelic genotype-phenotype landscape252

In order to demonstrate the utility of our theory, we used it to model epistasis within a combinatorially com-253

plete multiallelic genetic landscape of a tRNA. Fig 2a-c summarises the model system and DMS experimental254

strategy employed in [6]. Briefly, a budding yeast strain was used in which the single-copy arginine-CCU255

tRNA (tRNA-Arg(CCU)) gene is conditionally required for growth. A library of variants of this gene was256

designed to cover all 5,184 (26×34) combinations of the 14 nucleotide substitutions observed in ten positions257

in post-whole-genome duplication yeast species (Fig 2a,b). The library was transformed into S. cerevisiae,258

expressed under restrictive conditions and the enrichment of each genotype in the culture was quantified by259

deep sequencing before and after selection (Fig 2c). After reprocessing of the raw data, we retained high260

quality fitness estimates for 3,847 variants (74.2%).261

Although the findings in [6] were based on the application of background-averaged epistasis theory, the prior262

limitation of the Walsh-Hadamard transform to only two alleles per sequence position required the authors263

to adopt an ad hoc strategy that involved performing separate analyses on combinatorially complete biallelic264

sub-landscapes.265

However, with the extensions provided in this work, we were able model background-averaged epistasis in266

this multiallelic landscape using all available data simultaneously. We trained Lasso regression models of267

the form in equation (4) to predict variant fitness from nucleotide sequences, where the inferred model pa-268

rameters correspond to background-averaged epistatic coefficients up to eighth order (Fig 2d; see Methods).269

To determine the effect of data sparsity on the results, we sub-sampled the original data to obtain training270

dataset sizes ranging from 64% to 1% of all variants with high quality fitness estimates. The resulting mod-271

els incorporate many higher-order epistatic coefficients (Fig 2e, ‘Background-averaged models’) yet exhibit272

extreme sparsity, with the median number of non-zero coefficients of any order ranging from 19 to 60 i.e.273

approximately 1% of all possible coefficients of eighth order or less (Fig 2f, S1 Fig). Fig 2e indicates model274

performance on held out test data, with all models except those fit using the most severely subsampled data275

(1%) tending to explain more than 50% of the total explainable variance.276
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Figure 2: Learning sparse models from the near combinatorially complete fitness landscape of a tRNA. a, Species
phylogenetic tree and multiple sequence alignment of the tRNA-Arg(CCU) orthologues indicating variable positions
across the seven yeast species and the synthesized library below: R (A or G); B (C, G or T); D (A, G or T); Y (C or T);
M (A or C); H (A, C or T). b, Secondary structure of S. cerevisiae tRNA-Arg(CCU) indicating variable positions (open
and closed red circles) and three Watson–Crick base pairing (WCBP) interactions between pairs of variable positions
i.e. [1,71], [2,70] and [6,66] (red lines and closed red circles). c, DMS experiment to quantify the phenotypic effects of
all variants in the combinatorially complete genetic landscape. See [6] for details. d, Cartoon depiction of alternative
feature matrices for inferring epistatic coefficients by linear regression. 𝐺−1 in the lower panel indicates the matrix
of one-hot encoded sequence features – or embeddings – typically used when fitting models of genotype-phenotype
landscapes [2]. The upper panel represents the matrix of sequence features used to infer background-averaged epistatic
coefficients, as in equation (4). e, Numbers of non-zero espistatic coefficients of different orders in Lasso regression
models inferred using different random fractions of the DMS data indicated in panels a-c. f, Performance of Lasso
regression models. The median number of model coefficients is indicated. Colour scale as in panel g. g, Enrichment
of direct physical interactions (red lines in panel b) in non-zero epistatic coefficients (see panel h). *, 𝑃 < 0.05; **,
𝑃 < 0.01; ***, 𝑃 < 0.001. h, Strategy for testing enrichment of direct physical interactions in Lasso regression model
coefficients. i, Same as panel g, except enrichment test results are shown separately for epistatic coefficients of different
orders. Error bars indicate nonparametric bootstrap 95% confidence intervals of the mean in all panels.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.03.06.531391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531391
http://creativecommons.org/licenses/by-nc-nd/4.0/


For comparison, we used the same procedure to fit Lasso regression models of the form �̄� = 𝐺−1 ⋅ �̄�, where277

𝐺−1 represents a matrix of one-hot encoded sequence features i.e. the presence or absence of a given mutation278

– or mutation combination (interaction) – with respect to the reference (wild-type) genotype is denoted by a279

‘1’ or ‘0’ respectively (Fig 2d-f, ‘One-hot models’). The definition of𝐺 and its relationship to the biochemical280

(or background-relative) view of epistasis is explained in [2]. The sparsity of one-hot models is similar to281

that of background-averaged models regardless of training set size (Fig 2e,f). However, the latter tend to282

incorporate greater numbers of higher-order epistatic terms, particularly with larger training set sizes (Fig283

2e, orders 3,4,5+), whereas the former tend to perform slightly better with very small training set sizes (Fig284

2f).285

To evaluate whether the inferred models report on biologically relevant features of the underlying genetic286

landscapes, we tested whether sparse model coefficients were more likely to comprise genetic interactions (or287

modulators thereof) involving known physically interacting positions in the wild-type tRNA secondary struc-288

ture (Fig 2b,h). Regardless of data sparsity, background-averaged model coefficients tend to be significantly289

enriched for physical interactions (Fig 2g, S1 Fig). On the other hand, in the case of even moderate sub-290

sampling of training data (16%), one-hot model coefficients show no such enrichment (Fig 2g). Importantly,291

repeating a similar enrichment analysis using randomly selected model coefficients of identical number and292

distribution over coefficient orders speaks to the validity of the Fisher’s Exact Test null hypothesis with only293

minor inflation of the corresponding test statistic (S1 Fig). Restricting the enrichment analysis to epistatic294

coefficients of specific orders shows qualitatively similar results, with background-averaged model coeffi-295

cients up to fourth order significantly enriched for physical interacting position pairs, even at the most severe296

sub-sampling fractions (Fig 2i, S1 Fig).297

Discussion298

We have provided an extension to the most rigorous computational framework available for describing and299

modeling empirical genotype-phenotype mappings. Beyond the study of background-averaged epistasis with300

respect to mutations in the primary sequence, this also permits the inclusion of ‘epimutations’ (changes in301

the epigenetic state of DNA), amino acid post-translational modifications or even particular environmen-302

tal/experimental conditions.303

In the simplest application, background-averaged epistatic coefficients (genetic interaction terms) can be di-304

rectly computed from phenotypic measurements via the decomposition in equation (1). However, estimating305

epistatic coefficients by regression – as in equation (4) – is a more natural choice in the presence of missing306

data, when data for multiple related phenotypes is available [22] and/or in the presence of global epistasis307

[23, 24]. Our mathematical results provide three alternative methods to compute the multi-state (multiallelic)308

extension of the inverse Walsh-Hadamard transform 𝐴𝑛, one of which allows the direct extraction of specific309

elements or sub-matrices. In which situations might this capability be desirable?310

First, constructing full 𝐴𝑛 matrices – particularly by numerical inversion – is impractical for large genetic311

landscapes. Second, the result of the product 𝐻−1
𝑛 ⋅ 𝑉 −1

𝑛 represents a matrix of sequence features when312
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setting up the inference of epistatic (model) coefficients �̄�𝑛 from phenotypic measurements �̄�𝑛 as a regression313

task [22, 23, 25, 26]. The ability to construct this feature matrix in batches (of rows) allows computational314

resource-efficient iteration over large datasets when using frameworks such as TensorFlow or PyTorch.315

Third, there are currently no methods to comprehensively map empirical genotype-phenotype landscapes316

with size greater than the low millions of genotypes. Therefore, assaying landscapes of this size or larger317

will typically involve experimental measurement of a (random) sub-sample of genotypes, corresponding to318

distinct rows in 𝐴𝑛. In other words, it is usually unnecessary to construct full 𝐴𝑛 matrices when modeling real319

experimental data. Finally, there is evidence of extreme sparsity in the epistatic architecture of biomolecules320

where only a small fraction of theoretically possible genetic interactions are non-zero [7]. The feasibility of321

sampling very large background-averaged epistatic coefficient spaces may improve methods to infer accurate322

genotype-phenotype models.323

Using results from the analysis of a near combinatorially complete multiallelic fitness landscape of a tRNA,324

we have shown that sparse regression models relying on a background-averaged definition of epistasis can325

efficiently capture salient features of the underlying biological system – namely direct physical interactions326

– even in situations of sparse sampling of phenotypes. This behaviour, which we speculate is due to a richer327

representation of the sequence feature space compared to one-hot models (i.e. higher level of constraint328

during model fitting; Fig 2d), is particularly desirable in the case of very large genetic landscapes where329

comprehensive phenotyping is infeasible. However, more work is needed to determine whether this result330

holds more generally. One difficulty in such comparisons between approaches is the requirement for a set331

of interactions or landscape features that are known to be critical for biomolecular function. Here we rely332

on Watson–Crick base pairing interactions whose importance for RNA secondary structure and function is333

well-established.334

More broadly, this work opens the door to investigations of the biological properties of background-averaged335

epistasis in empirical genetic landscapes of arbitrary shape and complexity. Beyond applications within the336

field of DMS, we believe our theory extensions have the potential to influence research in evolutionary and337

synthetic biology including protein engineering. In future it will be important to compare the performance338

and properties of models relying on this definition of epistasis to those of other recently proposed models339

that incorporate higher-order genetic interactions for phenotypic prediction [27, 28].340

Methods341

Raw sequencing (FASTQ) files obtained from the tRNA-Arg(CCU) DMS experiment in [6] were re-processed342

with DiMSum v1.3 [29] using default parameters with minor adjustments. We obtained fitness estimates for343

5,059 out of a total of 5,184 possible variants (97.6%) in the combinatorially complete genetic landscape.344

We restricted the data to a high quality subset by requiring fitness estimates in all six biological replicates as345

well as at least 10 input read counts in all input samples. This resulted in a total of 3,847 retained variants346

(74.2%) for downstream analysis.347
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We trained Lasso regression models to predict variant fitness estimates from nucleotide sequences using348

the ‘scikit-learn’ Python package. Training data comprised random subsets of 1, 2, 4, 8, 16, 32 and 64% of349

retained variants of all mutation orders. All remaining held out variants comprised the ‘test’ data which was350

unseen during model training in each case.351

To train models inferring background-averaged epistatic coefficients we used feature matrices of the form352

𝐻−1
𝑛 ⋅ 𝑉 −1

𝑛 (see equation (4)). For comparison, one-hot encoded matrices of sequence features were used.353

Linear regression was performed using 10-fold cross validation to determine the optimal value of the L1354

regularization parameter 𝜆 in the range [0.005, 0.25] (‘LassoCV’ and ‘RepeatedKFold’ functions). Final355

models were fit to all training data. In order to estimate model-related statistics and performance results we356

fit 100 models to different random subsets of the training data for each model type and training data fraction.357

In Fig 2 and S1 Fig we plot the mean or median of the indicated measures over all models, where 95%358

confidence intervals were obtained using a nonparametric bootstrap approach and 1000 bootstrap samples.359

For performance estimates in Fig 2f we estimated the maximum explainable variance by taking the square360

of the mean Pearson correlation between replicate fitness estimates over all 15 pairwise combinations.361

To test enrichment of physical interactions in Lasso model coefficients we used the strategy illustrated in Fig362

2h. For each model, all position pairs represented in non-zero epistatic coefficients of at least second order363

were determined. The number of position pairs corresponding to direct physical interactions was counted and364

an associated enrichment score (odds ratio) and P-value calculated using Fisher’s Exact Test. The background365

set consisted of all position pairs in all possible epistatic coefficients. To test the appropriateness of the366

null hypothesis we also repeated enrichment analyses using random models i.e. randomly chosen sets of367

epistatic coefficients matching the numbers of non-zero coefficients in Lasso models and their distribution368

over different epistatic orders.369
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Figure S1: Supplementary figure related to Fig 2. a, P-value from Fisher’s Exact Test for enrichment of direct phys-
ical interactions in non-zero epistatic coefficients (related to Fig 2g). b, Enrichment of direct physical interactions in
non-zero epistatic coefficients of random models with matching numbers of epistatic coefficients of different orders
(related to Fig 2g). P-value from Fisher’s Exact Test for enrichment of direct physical interactions in non-zero epistatic
coefficients of random models with matching numbers of epistatic coefficients of different order (related to panel b). d,
Median number of epistatic terms in Lasso models (related to Fig 2f). f, P-value from Fisher’s Exact Test for enrich-
ment of direct physical interactions in non-zero epistatic shown separately for epistatic coefficients of different orders
(realted to Fig 2i). Error bars indicate nonparametric bootstrap 95% confidence intervals of the mean in all panels,
except in panel d where these correspond to the median.
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Supporting Information 1 - Supplementary Methods436

Here we provide the proofs of the mathematical results shown in the main text.437

Proposition 1. Let us define the matrices 𝐴𝑛 recursively as438

𝐴𝑛+1 =
1
𝑠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝑛 𝐴𝑛 𝐴𝑛 … 𝐴𝑛

𝐴𝑛 (1 − 𝑠)𝐴𝑛 𝐴𝑛 … 𝐴𝑛

𝐴𝑛 𝐴𝑛 (1 − 𝑠)𝐴𝑛 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 𝐴𝑛

𝐴𝑛 𝐴𝑛 … 𝐴𝑛 (1 − 𝑠)𝐴𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐴0 = 1 and 𝐴𝑛 is 𝑠𝑛 × 𝑠𝑛. (5)

For 𝑛 ∈ ℕ, 𝐴𝑛 is the inverse of the matrix 𝐻𝑛 defined in equation (2).439

Proof. Let us prove this by induction. For 𝑛 = 1 we have440

𝐻1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 … 1
1 −1 0 … 0
1 0 −1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
1 0 … 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11)

441

𝐴1 =
1
𝑠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 … 1
1 1 − 𝑠 1 … 1
1 1 1 − 𝑠 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 1
1 1 … 1 1 − 𝑠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12)

The rows and columns of these two matrices can be described as follows:442

(𝐻1)𝑖⋅ =

⎧

⎪

⎨

⎪

⎩

(1, 1,… , 1) if 𝑖 = 1

(1, 0,… , 0, ℎ𝑖, 0,… , 0) if 𝑖 ≠ 1,

(𝐴1)⋅𝑗 =
1
𝑠

⎧

⎪

⎨

⎪

⎩

(1, 1,… , 1)𝑇 if 𝑗 = 1

(1, 1,… , 1, 𝑎𝑗 , 1,… , 1)𝑇 if 𝑗 ≠ 1,

where ℎ𝑖 ∶= (𝐻1)𝑖𝑖 = −1 ∀𝑖 > 1 and 𝑎𝑗 ∶= (𝐴1)𝑗𝑗 = 1 − 𝑠 ∀𝑗 > 1.443
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Therefore,

(𝐻1 ⋅ 𝐴1)𝑖𝑗 = (𝐻1)𝑖⋅ ⋅ (𝐴1)⋅𝑗 =
1
𝑠

⎧

⎪

⎨

⎪

⎩

𝑠 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗

𝐻1 ⋅ 𝐴1 =
1
𝑠

⎛

⎜

⎜

⎜

⎜

⎝

𝑠 0 … 0
0 𝑠 ⋱ ⋮

⋮ ⋱ ⋱ 0
0 … 0 𝑠

⎞

⎟

⎟

⎟

⎟

⎠

= 𝐼𝑠×𝑠,

where 𝐼𝑠×𝑠 is the identity matrix of size 𝑠 × 𝑠. Since both 𝐻1 and 𝐴1 are symmetric, it is also true that444

𝐴1 ⋅𝐻1 = 𝐼𝑠×𝑠. Therefore, 𝐴1 is the inverse of 𝐻1.445

Assume that the hypothesis is true for a fixed 𝑛 ∈ ℕ. Let us now prove that it is also true for 𝑛+1. Following446

the recursive definitions of 𝐻𝑛+1 and 𝐴𝑛+1 in equations (2) and (5), we can write the blocks of these matrices447

as follows:448

(𝐻𝑛+1)[𝑖][⋅] =

⎧

⎪

⎨

⎪

⎩

(𝐻𝑛,𝐻𝑛,… ,𝐻𝑛) if 𝑖 = 1

(𝐻𝑛, 0,… , 0, ℎ̃𝑖, 0,… , 0) if 𝑖 ≠ 1,
(13)

where (𝐻𝑛+1)[𝑖][𝑗] denotes the block at position 𝑖, 𝑗 in 𝐻𝑛+1 and ℎ̃𝑖 ∶= (𝐻𝑛+1)[𝑖][𝑖] = −𝐻𝑛 ∀𝑖 > 1;449

(𝐴𝑛+1)[⋅][𝑗] =
1
𝑠

⎧

⎪

⎨

⎪

⎩

(𝐴𝑛, 𝐴𝑛,… , 𝐴𝑛)𝑇 if 𝑗 = 1

(𝐴𝑛, 𝐴𝑛,… , 𝐴𝑛, �̃�𝑗 , 𝐴𝑛,… , 𝐴𝑛)𝑇 if 𝑗 ≠ 1,
(14)

where (𝐴𝑛+1)[𝑖][𝑗] denotes the block at position 𝑖, 𝑗 in 𝐴𝑛+1 and �̃�𝑗 ∶= 𝑠(𝐴𝑛+1)[𝑗][𝑗] = (1 − 𝑠)𝐴𝑛 ∀𝑗 > 1. We
can therefore write the block at position 𝑖, 𝑗 of the product of these matrices as follows:

(𝐻𝑛+1 ⋅ 𝐴𝑛+1)[𝑖][𝑗] = (𝐻𝑛+1)[𝑖][⋅] ⋅ (𝐴𝑛+1)[⋅][𝑗] =
1
𝑠

⎧

⎪

⎨

⎪

⎩

𝑠𝐻𝑛 ⋅ 𝐴𝑛 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗.

According to the induction hypothesis we know that 𝐻𝑛 and 𝐴𝑛 are inverse matrices i.e. 𝐻𝑛 ⋅ 𝐴𝑛 = 𝐼𝑠𝑛×𝑠𝑛 .450

Therefore, the blocks on the diagonal are identity matrices and the blocks outside the diagonal are zeros.451

This means that 𝐻𝑛+1 ⋅ 𝐴𝑛+1 = 𝐼𝑠𝑛+1×𝑠𝑛+1 . Similarly, due to the symmetry of the matrices we can also prove452

that 𝐴𝑛+1 ⋅𝐻𝑛+1 = 𝐼𝑠𝑛+1×𝑠𝑛+1 .453

We can then conclude that 𝐴𝑛 = 𝐻−1
𝑛 for every 𝑛 ∈ ℕ.454

Proposition 2. The elements of 𝐻𝑛 can be written as455
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(𝐻𝑛)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(−1)(𝐸𝑛)𝑖𝑗 if (𝑀𝑛)𝑖𝑗 = 𝑛

0 otherwise,

where 𝑀 and 𝐸 are 𝑠𝑛 × 𝑠𝑛 matrices whose elements are456

(𝐸𝑛)𝑖𝑗 =
𝑛
∑

𝑘=1
𝑖𝑘⋅𝑗𝑘>0

𝛿𝑖𝑘𝑗𝑘 (6)

(𝑀𝑛)𝑖𝑗 =
𝑛
∑

𝑘=1
𝑖𝑘⋅𝑗𝑘>0

𝛿𝑖𝑘𝑗𝑘 +
𝑛
∑

𝑘=1
𝑖𝑘⋅𝑗𝑘=0

1 = (𝐸𝑛)𝑖𝑗 +
𝑛
∑

𝑘=1
𝑖𝑘⋅𝑗𝑘=0

1,

where 𝛿𝑖𝑗 denotes the Kronecker delta of 𝑖, 𝑗.457

Proof. Let us prove the formula by induction. For 𝑛 = 1 and any given 𝑠, 𝐻𝑛 is given by equation (11).458

Therefore, we can write (𝐸1)𝑖𝑗 and (𝑀1)𝑖𝑗 as follows:459

(𝑀1)𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if 𝑖 = 1 or 𝑗 = 1

1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗 ≠ 1

(𝐸1)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑖 = 𝑗 ≠ 1

0 otherwise.
(15)

Therefore, since 𝑛 = 1, (𝑀1)𝑖𝑗 = 𝑛 = 1 only when either 𝑖 = 1, 𝑗 = 1 or 𝑖 = 𝑗. In the rest of the cases460

(𝑀1)𝑖𝑗 ≠ 𝑛 = 1 and, according to the formula, the elements of the matrix will be 0. Now, for the cases where461

(𝑀1)𝑖𝑗 = 𝑛 = 1, we need to check the value of (𝐸1)𝑖𝑗 . We can see how (𝐸1)𝑖𝑗 = 1 only when 𝑖 = 𝑗 and462

they are different from 1. This means that all the elements of the diagonal of 𝐻1, except the first one, will be463

(−1)1 = −1 and the first row and first columns will have (−1)0 = 1. The rest of the elements correspond to464

(𝑀1)𝑖𝑗 ≠ 𝑛 = 1 so they will be filled with zeros. Putting all this together, we find the expression as 𝐻1 from465

equation (11).466

Assume now that the expression is true for a fixed 𝑛 ∈ ℕ and let us prove it for 𝑛+1. In this case, the matrix467

of 𝐻𝑛+1 is defined by blocks (see equation (2)). We first define the indices 𝑃 ∈ {1,… , 𝑠} and 𝑄 ∈ {1,… , 𝑠}468

for row and column blocks, respectively. The first matrix block of 𝐻𝑛+1 corresponds to 𝑃 = 1 and𝑄 = 1. The469

corresponding blocks of the matrices 𝑀𝑛+1 and 𝐸𝑛+1, which are necessary for the derivation of the block in470

𝐻𝑛+1, are computed by comparing the genotype sequences 𝑝, 𝑞 ∈ 𝑛+1 for which 𝑝 = (0, 𝑖1,… , 𝑖𝑛) ∶= 0 ⌢ �⃗�471
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for �⃗� ∈ 𝑛 and 𝑞 = 0 ⌢ 𝑗, 𝑗 ∈ 𝑛. More generally, the block in the 𝑃 𝑡ℎ position with respect to the rows and472

𝑄𝑡ℎ position with respect to the columns can be obtained by comparing the genotype sequences 𝑝, 𝑞 ∈ 𝑛+1
473

for which 𝑝 = (𝑃 − 1) ⌢ �⃗�, �⃗� ∈ 𝑛 and 𝑞 = (𝑄 − 1) ⌢ 𝑗, 𝑗 ∈ 𝑛. See below for a visual description of the474

notation.475

From these observations, it can easily be deduced that for any 𝑝 = (𝑃 − 1) ⌢ �⃗�, 𝑞 = (𝑄 − 1) ⌢ 𝑗 with476

�⃗�, 𝑗 ∈ 𝑛, 𝑃 − 1, 𝑄 − 1 ∈  ,477

(𝑀𝑛+1)𝑝𝑞 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑀𝑛)𝑖𝑗 + 1 if 𝑃 = 1 or 𝑄 = 1

(𝑀𝑛)𝑖𝑗 + 1 if 𝑃 = 𝑄

(𝑀𝑛)𝑖𝑗 if 𝑃 ≠ 𝑄 ≠ 1

(16)

(𝐸𝑛+1)𝑝𝑞 =

⎧

⎪

⎨

⎪

⎩

(𝐸𝑛)𝑖𝑗 + 1 if 𝑃 = 𝑄 ≠ 1

(𝐸𝑛)𝑖𝑗 otherwise,
(17)

where 𝑖 = 𝑝 − 𝑠𝑛(𝑃 − 1), 𝑗 = 𝑞 − 𝑠𝑛(𝑄 − 1), 𝑃 = ⌈𝑝∕𝑠𝑛⌉ and 𝑄 = ⌈𝑞∕𝑠𝑛⌉, with ⌈.⌉ denoting the ceiling478

function. A visual description of the notation of the block structure of the matrices is given by479

𝑋𝑛+1 = row block 𝑃
{

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑋11
𝑛 …

column block 𝑄
⏞⏞⏞
𝑋1𝑄

𝑛 … 𝑋1𝑠
𝑛

⋮ ⋱ ⋮ ⋮
𝑋𝑃 1

𝑛 … 𝑋𝑃𝑄
𝑛 … 𝑋𝑃𝑠

𝑛
⋮ ⋮ ⋱ ⋮

𝑋𝑠1
𝑛 … 𝑋𝑠𝑄

𝑛
↑

column 𝑞

… 𝑋𝑠𝑠
𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

←row 𝑝

Here 𝑋𝑛+1 denotes any generic matrix following the structure of the matrices in equations (2), (3), (5), (16)480

and (17).481

Now, similar to the case 𝑛 = 1, we have that (𝑀𝑛+1)𝑝𝑞 = 𝑛 + 1 only when (𝑀𝑛)𝑖𝑗 = 𝑛 and either 𝑃 = 1,482

𝑄 = 1 or 𝑃 = 𝑄, which corresponds to the newly added state being 𝑝1 = 𝑃 − 1 = 0, 𝑞1 = 𝑄 − 1 = 0 or483

𝑝1 = 𝑞1. In the rest of the cases (𝑀𝑛+1)𝑝𝑞 ≠ 𝑛 + 1 and the elements of the matrix 𝐻𝑛+1 will be 0. Now, for484

the cases where (𝑀𝑛+1)𝑝𝑞 = 𝑛+1, we will have that (𝐸𝑛+1)𝑝𝑞 has either the same value of the corresponding485

entry in 𝐸𝑛 or it will be increased by 1. This means, that when 𝑃 = 𝑄 ≠ 1, the sign of the entry in 𝐻𝑛+1 will486

be inverted. Otherwise, the sign of the element of the matrix stays the same. With this we prove the formula487

for 𝐻𝑛+1, since we have shown how we can find the same block structure as in equation (2). By induction,488

we can conclude that the formula holds for every 𝑛 ∈ ℕ.489

Proposition 3. The elements of 𝐴𝑛 can be written as490

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.03.06.531391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531391
http://creativecommons.org/licenses/by-nc-nd/4.0/


(𝐴𝑛)𝑖𝑗 =
1
𝑠𝑛
(1 − 𝑠)(𝐸𝑛)𝑖𝑗 , (7)

where 𝐸𝑛 is defined as in equation (6).491

Proof. Let us prove the formula by induction.492

For any given 𝑠, 𝐴1 is defined in equation 12. Its diagonal elements are equal to (1 − 𝑠)∕𝑠 for 𝑖 > 1, 1∕𝑠 for493

𝑖 = 1 and its off-diagonal elements are equal to 1∕𝑠. It can easily be observed from equation (15) that the494

RHS of equation (7) is equal to (1− 𝑠)∕𝑠 for 𝑖 = 𝑗 ≠ 1 and to 1∕𝑠 otherwise, so equation (7) is true for 𝑛 = 1.495

Assume now that equation (7) is true for a fixed 𝑛 ∈ ℕ and let us prove it for 𝑛 + 1. We use the recursive496

definition of 𝐴𝑛+1 in equation (5) and the block representation of the genotype sequences as in the proof of497

(2).498

Let us start with the first block in the diagonal of 𝐴𝑛+1, i.e. 𝑃 = 1 and 𝑄 = 1, where the entries of the499

corresponding block in 𝐸𝑛+1 are derived from comparisons of pairs of genotype sequences of the form 𝑝 =500

0 ⌢ �⃗�, 𝑞 = 0 ⌢ 𝑗 for �⃗�, 𝑗 ∈ 𝑛. From equation (5), this block is equal to 1
𝑠
𝐴𝑛, so writing 𝑖 = 𝑝 mod 𝑠𝑛 and501

𝑗 = 𝑞 mod 𝑠𝑛, we have502

(𝐴𝑛+1)𝑝𝑞 =
1
𝑠
(𝐴𝑛)𝑖𝑗 =

1
𝑠𝑛+1

(1 − 𝑠)(𝐸𝑛)𝑖𝑗 .

From equation (17), (𝐸𝑛+1)𝑝𝑞 = (𝐸𝑛)𝑖𝑗 , which yields the desired result.503

Now let us consider the elements in the other diagonal blocks of 𝐴𝑛+1, where the entries correspond to pairs504

of genotype sequences of the form 𝑝 = (𝑃 − 1) ⌢ �⃗�, 𝑞 = (𝑄 − 1) ⌢ 𝑗 with 𝑃 = 𝑄 ≠ 1 and �⃗�, 𝑗 ∈ 𝑛. From505

equation (5), this block is equal to 1
𝑠
(1 − 𝑠)𝐴𝑛, i.e.506

(𝐴𝑛+1)𝑝𝑞 =
1
𝑠
(1 − 𝑠)(𝐴𝑛)𝑖𝑗 =

1
𝑠𝑛+1

(1 − 𝑠)(𝐸𝑛)𝑖𝑗+1.

From equation (17), (𝐸𝑛+1)𝑝𝑞 = (𝐸𝑛)𝑖𝑗 + 1, which yields the desired result.507

Finally, let us consider the elements in the off-diagonal blocks of 𝐴𝑛+1, where the entries correspond to pairs508

of genotype sequences of the form 𝑝 = (𝑃 − 1) ⌢ �⃗�, 𝑞 = (𝑄 − 1) ⌢ 𝑗 with 𝑃 ≠ 𝑄 and �⃗�, 𝑗 ∈ 𝑛. From509

equation (5), this block is equal to 1
𝑠
𝐴𝑛, so we have510

(𝐴𝑛+1)𝑝𝑞 =
1
𝑠
(𝐴𝑛)𝑖𝑗 =

1
𝑠𝑛+1

(1 − 𝑠)(𝐸𝑛)𝑖𝑗 .

From equation (17), (𝐸𝑛+1)𝑝𝑞 = (𝐸𝑛)𝑖𝑗 , which completes the proof.511

Proposition 4. The matrices 𝑉𝑛 and 𝑉 −1
𝑛 are diagonal matrices whose diagonal elements can be written as512

(𝑉𝑛)𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�) 1
𝑠𝑊𝑛(�⃗�)

(8)
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and513

(𝑉 −1
𝑛 )𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�)𝑠𝑊𝑛(�⃗�), (9)

where

𝑊𝑛(�⃗�) ∶=
𝑛
∑

𝑘=1
𝑤𝑘, with 𝑤𝑘 ∶= 𝛿𝑖𝑘0

and �⃗� again denotes the 𝑖𝑡ℎ element in 𝑛 when ordered by the base 𝑠 representation of integers.514

Proof. Let us prove equation (8) by induction, equation (9) follows directly.515

One can easily check from equation (3) that the formula holds for 𝑛 = 1. Let us now assume that equation516

(8) is true for a fixed 𝑛 ∈ ℕ and let us prove it for 𝑛 + 1. We use the recursive definition of 𝑉𝑛+1 in equation517

(3). Let us consider the element (𝑉𝑛+1)𝑝𝑝. If 𝑝 = 0 ⌢ �⃗�, this corresponds to the first block of 𝑉𝑛+1, i.e. 𝑃 = 1,518

where the elements are multiplied by 1∕𝑠 and 𝑊𝑛+1(𝑝) = 𝑊𝑛(�⃗�) + 1, so519

(𝑉𝑛+1)𝑝𝑝 =
1
𝑠
(𝑉𝑛)𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�) 1

𝑠𝑊𝑛(�⃗�)+1
= (−1)𝑛+1−𝑊𝑛+1(𝑝) 1

𝑠𝑊𝑛+1(𝑝)
.

Similarly, if 𝑝 = (𝑃 − 1) ⌢ �⃗� and 𝑃 > 1, i.e. for the other diagonal blocks, from the recursive formula520

the elements are multiplied by −1 and 𝑊𝑛+1(𝑝) = 𝑊𝑛(�⃗�), so by writing again 𝑖 = 𝑝 − 𝑠𝑛(𝑃 − 1), where521

𝑃 = ⌈𝑝∕𝑠𝑛⌉, we have522

(𝑉𝑛+1)𝑝𝑝 = −(𝑉𝑛)𝑖𝑖 = (−1)1+𝑛−𝑊𝑛(�⃗�) 1
𝑠𝑊𝑛(�⃗�)

= (−1)𝑛+1−𝑊𝑛+1(𝑝) 1
𝑠𝑊𝑛+1(𝑝)

,

which completes the proof.523

Proposition 5. The matrix 𝐴𝑛 defined in equation (10) is the inverse of the matrix 𝐻𝑛 in the general case524

where each position can have a different number of states.525

Proof. Let us prove by induction that 𝐻𝑛 ⋅ 𝐴𝑛 = 𝐼 where 𝐼 is the identity matrix of the corresponding size.526

Since 𝐻𝑛 and 𝐴𝑛 are symmetric, this would imply that 𝐴𝑛 ⋅𝐻𝑛 = 𝐼 as well, and therefore, 𝐴𝑛 = 𝐻−1
𝑛 .527

The case 𝑛 = 1 corresponds exactly to the case 𝑛 = 1 of the proof of Proposition 1 by setting 𝑠 = 𝑠1.528

Therefore, 𝐻1𝐴1 = 𝐼𝑠1×𝑠1 , and 𝐴1 is the inverse of 𝐻1.529

Now, assume the hypothesis is true for a fixed 𝑛 ∈ ℕ and let us prove that this is also true for 𝑛 + 1. We can530

write the rows and columns of the matrices 𝐻𝑛+1 and 𝐴𝑛+1 as equation (13) and equation (14), respectively.531

The only difference is that we need to replace 𝑠 by 𝑠𝑛+1 and the size of the matrices is different. Following532

exactly the same derivation as in Proposition 1 we can conclude that 𝐻𝑛+1𝐴𝑛+1 = 𝐼 and this proves by533

induction that 𝐴𝑛 = 𝐻−1
𝑛 .534
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Proposition 6. In this general case, the elements of 𝐻𝑛 and 𝐴𝑛 can be written as535

(𝐻𝑛)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(−1)(𝐸𝑛)𝑖𝑗 if (𝑀𝑛)𝑖𝑗 = 𝑛

0 otherwise

(𝐴𝑛)𝑖𝑗 =
∏𝑛

𝑘=1
(

1 − 𝑠𝑘
)𝑒𝑘

∏𝑛
𝑘=1 𝑠𝑘

,

where 𝐸𝑛 and 𝑀𝑛 are defined as in equation (6) and 𝑒𝑘 =

{

1 if 𝑖𝑘 = 𝑗𝑘 ≠ 1
0 otherwise

.536

Proof. The proof follows directly from the proofs of Propositions 2 and 3. The only difference in the induction537

step is that 𝑠 is replaced by 𝑠𝑛+1.538

Proposition 7. The matrices 𝑉𝑛 and 𝑉 −1
𝑛 are diagonal matrices whose diagonal elements can be written as539

(𝑉𝑛)𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�)
𝑛
∏

𝑘=1

(

1
𝑠𝑘

)𝑤𝑘

and

(𝑉 −1
𝑛 )𝑖𝑖 = (−1)𝑛−𝑊𝑛(�⃗�)

𝑛
∏

𝑘=1
𝑠𝑘

𝑤𝑘 ,

where

𝑊𝑛(�⃗�) ∶=
𝑛
∑

𝑘=1
𝑤𝑘, with 𝑤𝑘 ∶= 𝛿𝑖𝑘0.

Proof. The proof follows the same steps as the proof of Proposition 4. The only difference in the induction540

step is that 𝑠 is replaced by 𝑠𝑛+1.541

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2023. ; https://doi.org/10.1101/2023.03.06.531391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.06.531391
http://creativecommons.org/licenses/by-nc-nd/4.0/

