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Abstract. In this paper, we are interested in the boundary value problem involving 

a third order autonomous ordinary nonlinear differential equation. Its solutions are 

the similarity solutions of a problem of boundary-layer theory dealing with mixed 

convection phenomena in a porous medium. We confirm our results by numerical illustrations 

using a shooting algorithm of Mathematica.  

           Keywords: boundary-layer; mixed convection; similarity solution; third order 

nonlinear differential equation. 

 

 

1. INTRODUCTION  

        

 

The problems of fluid mechanics are usually governed by systems of partial 

differential equations. In the modeling of boundary-layer and in some cases, the system of 

partial differential equations reduces to a system involving a third order differential equation 

(see [1]). For example, in the study of the mixed convection phenomena created by a heated 

plate and embedded in a porous medium saturated with a fluid, we are led to consider in 

        the following PDE system (see [2, 3] ): 
    

 
 
 
 
 
 

 
 
 
 
 

  

   
 

  

   
  

                
 

 
 
  

   
     

    
 

 
 
  

   

 
  

   
  

  

   
   

   

    
 

   

    
  

    
 
           

  (1) 

 

The unknowns are: the Darcy velocities of the fluid   and   in the directions of the     
and    axes, the temperature of the fluid   , the pressure of the fluid  , the density of the fluid 

 .  

The constants represent: the viscosity of the fluid  . The thermal expansion coefficient 

of the fluid is  . The permeability of the saturated porous medium is  . The thermal 

diffusivity is  . The acceleration of the gravity is denoted by  . The density of the fluid far 

from the plate is designated by   .  
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In our system of coordinates, the boundary conditions along the plate are 

 

                    
   

   and                           (         
 

with     is the mass transfer coefficient of the plate (see [4, 5]) (     corresponds to a 

fluid suction,      is for an impermeable wall and     corresponds to a fluid injection). 

The boundary conditions far from the plate are 

 

                             and             as       

 

The first equation of the system (1), called the continuity equation, is automatically 

satisfied by introducing the stream function   as (see [3]):    

 

  
  

   
  

and      

   
  

   
 

 

We eliminate    from Equations in System (1) by differentiating the second equation 

with respect to    and the third equation with respect to   . The equations of this system can be 

rewritten as (see [3]): 
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and 

  

   

  

   
 

  

   

  

   
   

   

    
 

   

    
  (3) 

 

Using the following non-dimensional quantities (see [5]) 
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(4) 

 

where L is an arbitrary length scale,     = 
   

 
 is the Péclet number ( a dimensionless number 

used in the case of mixed convection), where         is the reference velocity (      
and    is the reference temperature, and                 we obtain the following 

equations (see [5]): 
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                       (6) 
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where    is the Rayleigh number,      
           

 
 

          

 
. Suppose that the Péclet 

number is very large, then the  resulting temperature boundary-layer is analogous to that in 

classical boundary-layer theory. Therefore, by letting       in Eqs. (5) and (6), we obtain 

the following boundary-layer approximation equations  (see [5]): 

 

   

   
  

  

  
 (7) 

and 

  

  

  

  
 

  

  

  

  
 

   

   
 (8) 

 

where    
  

  
 is the mixed convection parameter. 

By using the non-dimensionality (4),  the boundary conditions become (see [5]): 

 

On the plate 

 

                           (   ) or             (  < 0), 0     , 

 

and far from the plate 

 
  

  
                       as      , 0      

 

By eliminating   in Eqs. (7) and (8), we obtain     
  

  
    and  

 

   

   
 

  

  

   

   
 

  

  
 
   

    
            (9) 

 

with the boundary conditions 

 
  

  
         

   

  

  

  
         

and   

  
  

  
           

(10) 

 

We are looking for similarity solutions of Equation (9), with the boundary conditions 

(10) by introducing the dimensionless similarity variables (see [5]): 

 

          
   

         
with  

         
 

  
 

   

     

and  

       =        

(11)       
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where   is a function to be determined. The function   is called a similarity solution of (9), 

and the variable   is called a similarity variable.  

Therefore, we obtain  the following third order autonomous nonlinear differential 

equation  

                            (12) 

                                                                           

with  the boundary conditions: 

 

       ∈ ,           and         ∈       
 

Then   is a solution of Eq. (9) if and only if   is a solution of  Eq. (12).  

 

Remark 1.    

a. When      , Eq. (12) is equivalent to the following equation 

 

                      (13) 

 

with             F 
 

    
   and    is a constant depending on     In this case, if      

i.e.    , then Eq. (12) or Eq. (13) reduces to the Blasius equation (as it is we well-know).   

b. For      , Eq. (12) reduces to                    See  the end of this article. 

This equation has a first integral given by     

 

       = 3   
     

        . 
 

 

2. THE BOUNDARY VALUE PROBLEM (        ) 

 

 

In this section, let       We are interested in studying solutions of Eq. (13). 

Associated with this equation we have the following boundary value problem:   

 

                    

 
 
 

 
  

                     

              

            

                

   

 

where         for  ∈       ,  ∈        and the  parameter      is a temperature 

power-law profile and         is the mixed convection parameter. Note that if        , 
then the problem (        ) does not have any solutions (see [6]). 

In the study of different cases, the case where    ∈  ,   ∈  ,          see  [7-9]. 

The case  ∈      ∈          was treated in [10-12].  In [13] and [14], some theoretical 

results were found with         , and     ,  the method used by the authors allows 

them to prove the existence of a convex solution for the case       but for the case     it 

seems that the method used for case       is not applicable. 

In what follows, we denote by    a solution of  initial value problem below and by        the 

right maximal interval of its existence 
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The approach used to study the problem            is a shooting method. It consists of 

finding the values of a real parameter    for which    exists on         i.e.    =    and such 

that   
   ∈       as       

 

 

2.1. ON BLASIUS INEQUALITIES 

 

 

Let     be an interval and       be a function. 

 

Definition 1. ([11]) We say that   is a subsolution (resp. a supersolution) of the Blasius 

equation if   is of class    and if             on   (resp.             on  ). 
 

Definition 2. ([11]) Let        We say that   is a  -subsolution (resp. a  -supersolution) of 

the Blasius equation if   is of class    and if             on I (resp.             on I). 

 

Proposition 1. ([11]) Let   ∈  . There does not exist nonpositive concave subsolution of the 

Blasius equation on the interval [       . 
 

Proposition 2. ([11]) Let   ∈  . There does not exist  -subsolution of the Blasius equation 

on the interval [        
 

 

2.2  PRELIMINARY RESULTS 

 

 

Proposition 3. Let us suppose that   is a solution of Equation (13) on the maximal interval  

             for all   ∈  . 
(1)  Let                 Then    

            
(2)  Let                 Then    

                  
(3)  Let                     Then    

           
(4)  Let                              Then    

              
(5)  Let               Then    

                

(6)  Let       
 

 
     Then    

    . 

 

Proof: Statements 1-5 follow immediately from Eq. (13) and for statement 6 we get it 

directly. 

 

Proposition 4. Let   be a solution of the Eq. (13) on some maximal interval           and 

   . 

(1)  If   is any anti-derivative of   on    then                        
(2) If         and if        ∈   as       and  if, moreover,   is of constant  sign at           

infinity,  then          as       
(3) If        and if        ∈   as     , then       or        



 An extension result on … Mohamed Boulekbache and Mohammed Aiboudi 

 

 

www.josa.ro Mathematics Section 

356 

(4) If         then     and    are unbounded near      
(5) If there exists a point   ∈   satisfying         = 0 and       =    where      or   then 

for all   ∈    we have                      
(6) If         as     , then      does not tend to    or    as     . 

 

Proof: The first statement follows immediately from Eq. (13). For the proof of Statements 2-

5, see [11]. For Statement 6, assume for the sake of contradiction that         as   
  . So, the function    is nonincreasing for all      , and hence               Since 

        as     , we deduce from Statement 2 of Proposition 4 that 

 

                          
 

This leads to a contradiction. For         as     . There exists a point        

where the function    is nondecreasing for        Also from Statement 2 of Proposition 4, 

we obtain               as      which is a contradiction. 

 

 

2.3 RESULTS AND DISCUSSION 

  

 

       Consider the problem              with      , which represents the opposing mixed 

convection. We are interested in concave, convex and convex-concave solutions of this 

problem.  As mentioned above, we have used the shooting method. Define the following sets: 

           
                

           
          

                 
             ∈                    

                    
                          

  

                   
             ∈                    

                     
                          

  

                    
 

Lemma 1. Let      . If         Then    is a concave and decreasing solution of             

on        , with       . 

 

Proof: If      , then it follows from Proposition 4, Statement 1, that   
         and 

  
          for all  ∈        , we have 

 

  
         

      
          

       
           

 

Therefore, for all   ∈  ,    is decreasing and a nonpositive concave subsolution of 

the Blasius equation on  [      .Thanks to Proposition 1, we have       , with   
     

   as      . 
 

Remark 2.    We note that          and     are disjoint nonempty subsets of  , and we have 

                 (see [11]), and thanks to Lemma 1, we have if    starts concave, it 

remains concave, thus                and it is clear for all  ∈  , the problems            

and            have no concave solution. 

Lemma 2. ([11]) Let      . Then    is a convex solution of the boundary value problem 

           on         if and only if   ∈   . 
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Lemma 3. ([8]) Let     . If   ∈   , then    is a convex-concave, decreasing solution of 

             on         with       (see Fig. 1). 

 

                       
  Figure 1.                    

 

Remark 3. From Proposition 4, (Statements 1,3 and 5), if   ∈   , there are only three 

possibilities for the solution of the problem             More precisely, 

(1)     is convex and   
        as       

(2)  there exists a point   ∈         such that   
       = 0  and   

          

(3)     is a convex solution of              

 

Proposition 5.  Let     . There does not exist a convex solution of               

 

Proof: Assume that    is convex solution of             , i.e.   
         . There exists 

  ∈         such that   
    > 1 for all  ∈           We have 

 

  
              

          
       

            
       

           
 

then    is a  -subsolution of the Blasius equation on         . Therefore, from Proposition 2, 

we have      . Furthermore, the function    is decreasing for      . Hence for all 

 ∈                      (  ). Then we have 

 

        
          

              
                 

               
      

 

which is a contradiction with the fact that   
        as     .  

 

Proposition 6. Let      and let    be a solution of (13) on some right maximal interval 

       . If there exists   ∈         such that   
        and   

        , then for all      , 

  
        (see Fig. 1). 

 

Proof. Let    be a solution of (13) on some right maximal interval of existence          Let 

  ∈         be such that   
       ,   

        , so    is a maximum. We suppose that there 

exists        such that   
          It follows that   

    on          Then we have  

 

                                 
            

        
             

 

which yields a contradiction. 
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2.3.1. The case      . 

 

Proposition 7.  Let     . The problem            has no convex solution. 

 

Proof: Assume for the sake of contradiction that   is a convex solution of             on 

        Then there exists     ∈      ) such that         and           on 
          So the function    is increasing for all      , i.e.               for        It 
then follows that                                , and we obtain a contradiction for 

  large enough since         ,         and        .  

 

Remark 4. Thanks to Propositions 5, 7 and Remark 3, if  ∈    there exists a point    ∈
      )  such that   

      = 0 and   
         i.e. we have only the second case of Remark 3 

(see Figs. 2-3). 

 

                  
Figure 2.                                    Figure 3.                                 

 

Lemma 4. Let  ∈     and     . If there exists    ∈         such that   
         and 

            then   
      

 

   
. 

 

Proof: Let  ∈   , then there exists    ∈         which is the first point where    
       , 

        . From Remark 3, there exists       such that   
          To reach a 

contradiction, suppose that          and   
      

 

   
. Thus the function    is increasing 

on [  ,   ]. Therefore   
                

     , which is a contradiction.  

 

Remark 5. Thanks to the previous Lemma, if   ∈    and if there exists   ∈          such 

that   
      

 

   
 ,  then          . In this case, the problem            has no convex-

concave solution on         Indeed, the function    is increasing on           so we have 

      ) ≤         By passing to the limit as       thanks to Proposition 4 (Statements 2, 4 

and 6), this leads to a contradiction, since   (             
          and     (  ) = 0. 

Also in the same case the problem             has no convex-concave solution on        , 

with          since there exists   ∈          such that   
       . Thus the function    is 

increasing on          hence                 It follows that          
        

        and the 

contradiction occurs here too.  

 

Proposition 8. The problem             has no negative convex- concave solution. 

 

Proof: Suppose for the sake of contradiction that   is a negative convex-concave solution of 

           on         Thanks to Lemma 1 and since            there exists    ∈        
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such that    
         So the function    is increasing for all          i.e.                  It 

follows that for all        

 

                                                        ,  
 

and from Proposition 4 (Statements 2 and 4). This is a contradiction to the fact that 

        , since         and          as     .     

 

Remark 6. If the problem            has a convex-concave solution, then this solution changes 

its sign. 

Lemma 5. If   ∈      , then  there exists       
       

 
  such that                 

Moreover,    is a negative solution. 

 

Proof:  Let  ∈   . From Proposition 4 Statement 4, we know that the function    is 

increasing on         Hence    ( )           Thanks to Proposition 4, Statements 2 and 4, 

by passing to the limit as      , we have           So, we get               
 , and so the result follows.  Now, let  ∈   . There exists    ∈          such that   

          
Hence    is increasing on       ,  establishing the result   Next,    is a negative solution 

because       and   
    .  

 

Remark 7. It follows from Lemma 5 that             and here the solution    changes 

convexity (See Fig. 4). 

 

        
Figure 4.                                

 

Proposition 9.  Let          If  ∈     then there does not exist a nonpositive solution of 

the problem            . 

 

Proof: Let        ,  ∈    and let    be a nonpositive solution of the problem            . 

From Remark 4 and Propositions 6 and 8, there exist        ∈          such that        , 

  
          and   

         . Thus, the funtion    is decreasing on [      ]. We have 

 

    
                   

          
                 

           
           

     , 
 

and so                , which is a contradiction.  

 

Corollary 1. Let       . The problem            has infinitely many solutions which 

change the convexity and the sign at the same time (see Figs. 2-3).   
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  Proof.  The proof follows from Propositions 5, 7, 8, 9, and Remarks 3, 7.  

 

Theorem 1. Let             and      . 

(1) The problem             has infinitely many negative concave solutions on        , with 

      . 

(2)  The problem            has at least one negative convex solution and no negative convex-

concave solution on         

(3)  The problem            has no convex solutions on         

(4) The problem             has no convex solutions on         

 

Proof: The first result follows from Lemma 1. The second follows Remark 2, Lemma 2 and 

Proposition 8. The third result follows from Proposition 7 while the last result follows from 

Proposition 5. 

 

2.3.2 The case      . 

 

Let us divide the sets    and    into the following two subsets: 

 

                      ∈       
                 ; 

                      ∈                  
                      

        ; 
                      ∈               ; 
                      ∈                 
 

Lemma 6. If   ∈            , then there exists        , such that       . 

 

Proof: From Proposition 4, Statement 4, if  ∈   , then       ,   
       on        

and   
        as     . The function    is decreasing on       , and so we have 

      . If  ∈          then there exists   ∈          such that    
        or        = 

0. Since    is decreasing on       ,  it follows that        ≥   
       > 0.  

 

Remark 8. If      , then  ∈      and from Propositions 1 and 6,         Thus 

      , and the convex part of the solution    is positive (See Figs. 5-6). 

                            
       Figure 5.                                             Figure 6.                             

 

Lemma 7. If  ∈         and    
 

 
    then  the solution    is positive on       , and 

there exists        
       

 
, for      .  

 

Proof: Let  ∈        . By the definition of    and     , thanks to Proposition 4, Statement 

4 and Proposition 5, it follows that        and   
  is bounded. If we suppose there exists 
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    ∈          such that    is the first point where           ,   
       and    

       > 0. 

The function    is decreasing on [0,   ]. We have        =  
           Therefore     is 

strictly increasing on        and so we obtain   
 

 
  <   

     < 0. This is a contradiction. On 

the other hand, since the solution is positive on       , the function    is strictly decreasing 

for     . Thus, we obtain                , which implies that      
       

 
. 

 

Remark 9. If  ∈      and    
 

 
  , the solution    is positive on       , where    is the 

point such that      , with          and    is as in the definition of     . 

 

Proposition 10. Let  ∈     and    
 

 
    Then       =   

 

Proof: Let  ∈    and    
 

 
    Then there exists     ∈         with           and 

  
       . Assume on the contrary that   

       > 0, so the function    is strictly decreasing 

on [0;   ] and        =   
      > 0. Then for all  ∈ [0,   ],       It follows that    is 

strictly increasing on       , which implies that   
 

 
   <   

     < 0. This is a contradiction, 

and the proof is complete.  

 

Proposition 11. Let         and    
 

 
    hen       =   

 

Proof: Let        ,    
 

 
   and  ∈     . There exists     ∈         such that          

with        > 0,   
         and   

        , where    is as in definition of    and    is as in 

the definition of     . Since the function    is increasing on [    ,   ], we have 

 

 β  
      < 2         

        β  
      ≤ 2         

         β  
      <  β  

       
 

This implies that         >         and this is a contradiction (see Fig. 7 for    ). 

 
Figure 7.                      

 

Remark 10. There exists     , if      , and    
 

 
  , Then there exits    ∈          

such that         ,   
     < 0 and   

       < 0, so  ∈          . 

Since from Proposition 4, Statement 4 and Proposition 5, if  ∈       then       . 

We can divide the set      into the following two subsets: 
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                                     ∈         
                  

                                     ∈         
                  

 

Proposition 12. Let        . If    
 

 
  , then        = . 

 

Proof: Let             
 

 
   and  ∈          We deduce from Proposition 11 that the 

function    is increasing on        , where    is as in the definition of   , we then have for 

    , 

 

           
     <            

            
      ≤           

   (t)     
      + (   

       β)   
      

 

From Proposition 4, Items 2, 4 and 6, it follows that                   , 

which implies that           as     , which is a contradiction.  

 

Lemma 8. Let 1       . If  ∈               . Then there exists     
           

  
  such 

that       
 

Proof: Let 1       . If  ∈               . As we have seen above from Proposition 4 

Statements 2 and 4, either there exists     ∈          such that          or   
       = 0 if 

      . And if       , we have   
                 rom Proposition 4, Statement 

6, it follows that the function    is strictly increasing on        or on          We then get 

       +          , which implies that   
           

  
. 

 

Remark 11. From the previous proposition, we deduce that there exists      , such that 
              . Thus          (See Figs. 8-9). 

 

                           
     Figure 8.                                          Figure 9.                     

 

Theorem 2. Let             and        

(1) The problem             has infinitely many concave and convex-concave solutions on 

       , with       .  If, in  addition     
 

 
  , then the convex part of these solutions 

will be non-negative. 

(2)  The problem            has at least one convex solution on        . If, in addition, 

   
 

 
  , then this solution becomes non-negative. 

(3)  If      , the problem            has infinitely many positive solutions on       . 

(4) The problem             has no solution on        . 
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Proof: The first statement follows from  Lemma 1 and Remark 8. The second one follows 

from Remark 2, Lemma 2 and Lemma 7, while the third result follows from Propositions 5, 

11, 12 and Remark 11. The last result follows from Proposition 5. 

 

 

3. THE BOUNDARY VALUE PROBLEM           

 

 

In this section, where     , as we observed in Remark 1, Eq. (12) reduces to the 

following equation 

 

                 (14) 

 

and we consider the boundary value problem: 

 

                        

                 
       ∈   

            
        ∈      

  

 

Statements 2-5 of Proposition 4 remain valid in this case. For any function   twice 

differentiable over an interval  , let 

 

                                                               
 

Lemma 9. If   is a solution of Eq. (14) on an interval  , then the function     is constant on  . 
In other words, there exists  ∈    such that  

 

  ∈                         (15) 

 

Proof. We have 

 

                                                 

                                                                        
 

Remark 12. Let   ,   ,    and    be the sets defined in the second section and let us denote 

by    the solution of Eq. (14) satisfying the initial conditions         ,   
         and 

  
       . From Eq. (15), there exists        

       

 
  such that           ,          

and              
 

Lemma 10. For all    ∈  , we have         ] and   
        as        

 

Proof: Let  ∈   . Assume for the sake of contradiction that there exists    ∈         such 

that    
        for all        with   

       . From Eq. (14), we have   
        

    
        

         < 0. This is a contradiction, and so    is a concave decreasing solution 

and           as         
 

Proposition 13.  Let    be a solution of Eq. (14) on some right maximal interval        . If 
there exists    ∈         such that   

      = 0 and   
       < 0, then for all       ,   

      < 0. 
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Proof: Let    be a solution of (14) on some right maximal interval        . Let    ∈         
be such that   

      = 0 and   
       < 0. We suppose that there exists      , such that    is 

the first point where   
       = 0, it follows that   

  < 0 on        ] since we have        

        and hence    
             

          
        ), and this a contradiction.  

 

Proposition 14. The problem           has a unique solution. 

 

Proof: If   is a solution of          , by integrating Equation (15) between   and   , we 

obtain            
       

 
    .  Hence the problem           has at most one solution. 

On the other hand, if    is the solution of the initial value problem           on its right 

maximal interval of existence      ). Multiplying Eq. (14) by     and integrating between   

and   yields 

  ∈      ),      
   

         
 =   

 

 
 

 

Integrating this equation, letting           and using the fact that          we 

obtain 

  ∈      ),       
         

         
         

so that 

       
 

 
    

        

        
 

 

  
        

           
 

 

where   is a constant which depends on   and such that   
        

        
 . It is clear that 

         . Integrating again, we finally deduce that, for     , the problem           has 

exactly one solution convex given by 

 

        
   

   
 

   

        
 

 

Proposition 15. For all   ∈    the problem            has no solution. 

 

Proof: Let    be a solution of the problem             Then there exists    ∈         such that 

  
         since     is constant, hence     (0) =                  By passing to the limit 

as      and thanks to Proposition 4, Statements 2 and 4, we have    
             This is 

again a contradiction.  

 

Proposition 16. For all   ∈    the problem           has no solution and the problem 

          has no convex-concave solution. 

 

Proof: Let   be a solution of the problem             Then, there exists    ∈        such that 

  
       , since     is constant. Hence     (0) =                  By passing to the limit 

as      and thanks to Proposition 4, Items 2 and 4, we have                This is a 

contradiction. Also assume that   is a solution convex-concave of the problem          . 
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From Proposition 16 and as above,                  Hence, we have             , this is 

a contradiction, since          .  

 

Lemma 11. If  ∈   , then there exists    ∈          such that   
        and    

        . 

Moreover,   
        as      . 

 

Proof: This follows from Propositions 15 and 16. 

 

Theorem 3. Let   ∈   and       

(1)  The problem            has infinitely many solutions. 

(2)  The problem           has only one convex solution and no convex-concave solution. 

(3)  The problem           has no solution. 

(4)  The problem            has no solution. 

 

Proof: The first result follows from Lemma 9 and the second follows from Propositions 15 

and 16. The third statement follows from Proposition 16 and the last one follows from 

Proposition 15.  

 

 

4. CONCLUSION 

 

 

In this work, we have presented a numerous new and important results for a problem 

which arises when looking for similarity solutions to problem of boundary-layer theory . We 

have studied the existence, uniqueness and the sign of concave, convex and convex-concave 

solutions to the autonomous third order nonlinear differential equation 

 

                                                          ,  

 

where         depends on  , and    is a given continuous function. Associated with the 

above equation, we have the following boundary conditions 

 

                                ∈               < 0 and         = λ∈      ,  
 

according to the values of the real parameter    when       we have the problem 

           and for      we have the problem          , using the shooting method. 
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