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Abstract.

Data mining evolved as a collection of applicative problems and efficient solution algo-
rithms relative to rather peculiar problems, all focused on the discovery of relevant infor-
mation hidden in databases of huge dimensions. In particular, one of the most investigated
topics is the discovery of association rules.

This work proposes a unifying model that enables a uniform description of the problem
of discovering association rules. The model provides a SQL-like operator, namedMINE
RULE, which is capable of expressing all the problems presented so far in the literature
concerning the mining of association rules. We demonstrate the expressive power of the
new operator by means of several examples, some of which are classical, while some others
are fully original and correspond to novel and unusual applications. We also present the
operational semantics of the operator by means of an extended relational algebra.

Keywords: association rules, data mining and relational databases

1. Introduction

Data Mining is a novel research area that develops techniques forknowledge discoveryin
massive amounts of data. In the last years, an increasing number of researchers has concen-
trated on the solution of a variety of data mining problems, ranging from classification of
data into disjoint groups (Agrawal et al., 1992, Weiss and Kulikowski, 1991), to discovery
of associations (Agrawal, Imielinski and Swami, 1993; Agrawal et al., 1995; Agrawal and
Srikant, 1994; Han and Fu, 1995; Park, Shen and Yu, 1995; Srikant and Agrawal, 1995) ,
sequential patterns (Agrawal and Srikant, 1995) and similarities in ordered data (Agrawal,
Faloutsos and Swami, 1993; Agrawal et al., 1995a; Agrawal et al., 1995c; Faloutsos, Ran-
ganathan and Monolopoulos, 1994). The common approach given to research in the field is
to concentrate on the development of specialized, efficient techniques for solving specific
data mining problems. This emphasis on algorithmic solutions is well motivated by the
concrete problem of efficiently managing large data collections, however has some draw-
backs; in particular, we believe that not enough emphasis has been placed on the equally
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important problem of specifying data mining problems from a purely logical and linguistic
perspective.

One of the most relevant problems in data mining is the discovery of association rules.
An association rule has the formX ⇒ Y, whereX andY are two sets of items. In this
paper we refer to the left hand side of the rule as thebodyand to the right hand side as the
head. The aim of rules is to provide an observationa posteriorion the most common links
between data. The frequency of such an observation in the data gives the measure of its
relevance. As the number of produced associations might be huge, and not all the discovered
associations are meaningful, two probability measures, calledsupportandconfidence, are
introduced to discard the less frequent associations in the database.

The problem was introduced in the application domain of the basket data analysis, pur-
chase data were grouped by the purchase transaction, and associations between two sets
of bought products (referred asitems) were found. But in general, data may be grouped
equally well by some different attribute. For example, when the same data set is examined
for searching sequential patterns in the sales of each individual customers, data are grouped
by customers; then each group is further partitioned by date. In both cases, the data mining
process consists in discovering associations between two sets of data found in the same
group. Thesupportis the joint probability to find in the same groupX andY; theconfi-
denceis the conditional probability to find in a groupY having foundX . Two thresholds,
respectively for support and confidence, are given by the user in order to discard the less
frequent association rules.

We have pointed out the similarities among these problems and defined a unique operator,
namedMINE RULE, that captures the majority of them. This new operator is designed as
an extension of the SQL language. The SQL syntax used in this paper is illustrative of the
features that are added in order to specify data mining operations. However, the proposed
language design was carefully studied; syntactic elements of theMINE RULE operator are
all justified by our study of the expressive needs of rules and of the syntactic clauses in SQL;
thus, well known SQL clauses (such asGROUP BY, FROM, WHERE, HAVING) are extensively
used in our operator, since its semantics is based on concepts such as grouping, tuple
selection predicates, etc.. The operator has similar objectives as theDATA CUBE operator
which was introduced in (Gray et al., 1996); althoughDATA CUBE andMINE RULE refer
to distinct problems they respond to the same need of giving a unified framework and
proposing a standard formulation for problems that have become very popular, concerning
multi-dimensional databases (forDATA CUBE) and data mining (forMINE RULE), before
being given a standard, unitary formulation.

The suitability of theMINE RULE operator requires to demonstrate two features. First,
the operator must capture most of the data mining problems which were so far informally
formulated as well as many other problems, whose formulation is made possible by the
operator itself. Second, the operator must be associated to efficient evaluation techniques,
that ensure the possibility of solving the specific data mining problems.

This paper is concerned with the first issue, namely the expressive power of theMINE
RULE operator, which is demonstrated by means of a very large number of examples. In
order to guarantee that these problems are unambiguously formulated, we give an inefficient
operational semantics, based on a relational algebra. We do not propose toextenda SQL
optimizer, but rather to integrate a SQL server with a specific data mining engine. A different
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paper ((Meo, Psaila and Ceri, 1998)) is focused upon an architecture and implementation
of the data mining operator, briefly summarized in the conclusions.

The paper is organized as follows: Section 2 introduces the operator by means of exam-
ples that span from the classical association rules, to rules for sequential patterns and for
taxonomic databases; Section 3 defines the semantics of theMINE RULE operator; finally
Section 4 draws the conclusions, and the Appendix reports the full syntax of the operator.

1.1. Related Work

The problem of discovering of association rules was introduced in (Agrawal, Imielinski
and Swami, 1993), in which associations between a set of items in the body of the rule
and a single item in the head are considered. Association rules are slightly generalized in
(Agrawal and Srikant, 1994), in order to enable more than one item in the head. Both these
works inspect data in a flat file. In (Houtsma and Swami, 1995, Houtsma and Swami, 1996)
data is contained in a relational database and rules are discovered by means of the creation
of temporary tables and the manipulation of them using SQL expressions.

In (Agrawal and Srikant, 1995) the problem of discovering of sequential patterns is intro-
duced: a sequential pattern is an association between sets of items, in which some temporal
properties between items in each set and between sets are satisfied. In particular, items in
a set have the same temporal reference, and an order between sets is established by means
of the temporal reference.

Association rules were extended to taxonomic databases in (Srikant and Agrawal, 1995).
A taxonomic database describes a hierarchy of the items stored in the database. In presence
of such a hierarchy, rules associate not only items, but also classes of items. An algorithm
that discovers association rules in taxonomic databases is provided by (Srikant and Agrawal,
1995). Other algorithms, in (Han and Fu, 1995), differ from the previous one for the fact
that they discover associations between classes inside a level of the hierarchy, i.e. a rule
associates only classes of the hierarchy that have the same distance from the root of the
hierarchy.

The definition of an operator for mining association rules in relational environments is
mentioned in (Imielinski and Mannila, 1996), where an operator, namedMINE is added
to the classicalSELECT clause. However, the proposal is not comparable with our work,
since the semantics of theMINE operator is less general and considers association rules as
a composition of Horn clauses.

2. Language by Examples

In this section, we introduce our mining operatorMINE RULE, showing its application to
mining problems based on a practical case. The practical case is the classical database
collecting purchase data of a big-store. When a customer buys a set of products (also
calleditems), the whole purchase is referred to as atransactionhaving a unique identifier,
a date and a customer code. Each transaction contains the set of bought items with the
purchased quantity and the price. The simplest way to organize this data is the table
Purchase, depicted in Figure 1. The transaction column (tr.) contains the identifier of
the customer transaction; the other columns correspond to the customer identifier, the type
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tr. customer item date price q.ty
1 cust1 ski pants 12/17/95 140 1
1 cust1 hiking boots 12/17/95 180 1
2 cust2 col shirts 12/18/95 25 2
2 cust2 brown boots 12/18/95 150 1
2 cust2 jackets 12/18/95 300 1
3 cust1 jackets 12/18/95 300 1
4 cust2 col shirts 12/19/95 25 3
4 cust2 jackets 12/19/95 300 2

Figure 1. ThePurchase table for a big-store.

of the purchased item, the date of the purchase, the unitary price and the purchased quantity
(q.ty).

2.1. Simple Association Rules

In literature, association rules were introduced in the context of the analysis of purchase
data, typically organized in a way similar to that of thePurchase table.

A rule describes regularities of purchased items in customer transactions. For example,
the rule

{brown boots, jackets} ⇒ {col shirts}
states that ifbrown boots andjackets are bought together in a transaction, alsocol
shirts is bought in the same transaction.In this simple kind of association rules, the body
is a set of items and the head is a single item. Note that the rule{brown boots, jackets} ⇒
{brown boots} is not interesting because it is a tautology: in fact if the head is implicated
by the body the rule does not provide new information. This problem has the following
formulation:

MINE RULE SimpleAssociations AS
SELECT DISTINCT 1..n item AS BODY, 1..1 item AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

The MINE RULE operator produces a new table, calledSimpleAssociations, where
each tuple corresponds to a discovered rule. TheSELECTclause defines the structure of rules:
the body is defined as a set ofitems whose cardinality is any positive integer, as specified
by 1..n; the head is defined as a set containing one single item, as specified by1..1 (note
that the annotations1..n and1..1 are optional in the syntax reported in Appendix; this
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tr. customer item date price q.ty
cust1 ski pants 12/17/95 140 1

1 cust1 hiking boots 12/17/95 180 1
cust2 col shirts 12/18/95 25 2

2 cust2 brown boots 12/18/95 150 1
cust2 jackets 12/18/95 300 1

3 cust1 jackets 12/18/95 300 1
cust2 col shirts 12/19/95 25 3

4 cust2 jackets 12/19/95 300 2

Figure 2. ThePurchase table grouped bytransaction.

BODY HEAD S. C.
{ski pants} {hiking boots} 0.25 1

{hiking boots} {ski pants} 0.25 1
{col shirts} {brown boots} 0.25 0.5
{col shirts} {jackets} 0.5 1

{brown boots} {col shirts} 0.25 1
{brown boots} {jackets} 0.25 1

{jackets} {col shirts} 0.5 0.66
{jackets} {brown boots} 0.25 0.33

{col shirts,brownboots} {jackets} 0.25 1
{col shirts,jackets} {brown boots} 0.25 0.5

{brown boots,jackets} {col shirts} 0.25 1

Figure 3. TheSimpleAssociations table containing association rules valid for data inPurchase table.

cardinalities are assumed by default when they are omitted). TheDISTINCT keyword states
that no replications are allowed inside body or head. This keyword is mandatory because
rules are meant to point out the presence of certain kinds of items, independently of the
number of their occurrences. Furthermore, theSELECT clause indicates that the resulting
table has four attributes:BODY, HEAD, SUPPORT andCONFIDENCE.

The MINE RULE operator inspects data in thePurchase table grouped by attribute
transaction, as specified by theGROUP BY clause. Figure 2 shows thePurchase ta-
ble after the grouping. Rules are extracted from within groups; their support is the number
of groups satisfying the rules divided by the total number of groups; their confidence is the
number of groups satisfying the rule divided by the number of groups satisfying the body.

The clauseEXTRACTING RULES WITH indicates that the operator produces only those
rules whose support is greater than or equal to the minimum support and the confidence
is greater than or equal to the minimum confidence. In this case, we have a minimum
threshold for support of0.1 and a minimum threshold for confidence of0.2.

Figure 3 shows the resultingSimpleAssociations table; observe that if we change the
minimum support to0.3, we then loose almost all rules of Figure 3 except those having
0.5 as support.
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Variants of Simple Association Rules.Several variants of the basic case of simple asso-
ciation rules are possible; in the following, we discuss them.

If we are interested only in extracting rules from a portion of the source table instead of
the whole table, a selection on the source table is necessary. Similarly to the classical SQL
FROM clause, in our language it is possible to specify an optionalWHERE clause associated
to theFROM clause. This clause creates a temporary table by selecting tuples in the source
table that satisfy theWHERE clause; then, rules are extracted from this temporary table. For
example, if we are interested only in purchases of items that cost no more than $150, we
write:

MINE RULE SimpleAssociations AS
SELECT DISTINCT 1..n item AS BODY, 1..1 item AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase

WHERE price <= 150
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

If rules must be extracted only from within groups with a certain property, it is possible
to use the classical SQLHAVING clause associated to theGROUP BY clause. Inside this
clause, either aggregate functions (such asCOUNT, MIN, MAX, AVG, SUM) or predicates on the
grouping attributes can be used. For instance, if we like to extract rules from purchases of
no more than six items, we write:

MINE RULE SimpleAssociations AS
SELECT DISTINCT 1..n item AS BODY, 1..1 item AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY transaction

HAVING COUNT(*) <= 6
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

In (Srikant and Agrawal, 1995) the case of simple association rules is extended togener-
alized association rules, i.e. rules with an arbitrary number of elements in the head. Our
operator treats also this case, by means of a different specification for the cardinality of the
head, that becomes1..n instead of1..1.

MINE RULE GenAssociations AS
SELECT DISTINCT 1..n item AS BODY, 1..n item AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

With theMINE RULE operator it is possible to group the source table by whichever at-
tributes; this fact changes the meaning of extracted rules. For example, if thePurchase
table were grouped bycustomer instead of the usualtransaction, rules would describe
regularities among customers, independently of the purchase transactions. Thus, we ana-
lyze the customer behaviour without paying attention to the transactions in which items are
purchased. The problem is formalized as follows:
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MINE RULE CustomerAssociations AS
SELECT DISTINCT item AS BODY, 1..n item AS HEAD, SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY customer
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

The set of attributes chosen for grouping must be disjoint from the sets of attributes that
are selected for body and head. Otherwise, no rule with valid support would be found, since
each rule would be present in one single group. For example look at the following wrong
instruction:

MINE RULE WrongAssociations AS
SELECT DISTINCT 1..n item AS BODY, 1..1 item, date AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY date
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

In this specification, body is made by a set ofitems while head is made by a singleitem
followed by itsdate. Grouping is also done bydate and the rules will containitems
selected from within sets of purchases made in the same dates. Since the grouping attribute
appears as head attribute, no rule will be found in more than one group. The result is that all
the rules have the same support, which is equal to 1 divided by the total number of groups.

2.2. Association Rules with Clustering

So far, rules were extracted from within groups. We now extend this simple model by
assuming that tuples in a group are further partitioned into sub-groups by some non-grouping
attributes; we refer to each sub-group as acluster, and to the attributes that define clusters as
clustering attributes; all tuples in a cluster have the same values of the clustering attributes.
We extract rules so that their body and head refer to clusters within the same group; support
and confidence are still computed on groups, since rules still describe regularities among
groups.

For instance, consider thePurchase table; we restrict the association rules of the ex-
ampleCustomerAssociations of the previous Section, so thatitems purchased by some
customer may generate association rules only if they are bought in the same day.This
problem can be specified as follows:

MINE RULE ClusteredByDate AS
SELECT DISTINCT 1..n item AS BODY, 1..n item AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY customer
CLUSTER BY date
EXTRACTING RULES WITH SUPPORT: 0.01, CONFIDENCE: 0.2

The rule extraction process proceeds in the following way. At first, thePurchase table is
grouped bycustomer; next, groups are clustered bydate, obtaining the table of Figure 4.
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cust date item tr. price q.ty
ski pants 1 140 1

cust1 12/17/95 hiking boots 1 180 1
12/18/95 jackets 3 300 1

col shirts 2 25 2
12/18/95 brown boots 2 150 1

cust2 jackets 2 300 1
col shirts 4 25 3

12/19/95 jackets 4 300 2

Figure 4. ThePurchase table grouped bycustomer and clustered bydate.

group body cluster head cluster
cust date item t. pr. q date item t. pr. q

ski pants 1 140 1 ski pants 1 140 1
12/17/95 h boots 1 180 1 12/17/95 h boots 1 180 1

ski pants 1 140 1
cust1 12/17/95 h boots 1 180 1 12/18/95 jackets 3 300 1

ski pants 1 140 1
12/18/95 jackets 3 300 1 12/17/95 h boots 1 180 1
12/18/95 jackets 3 300 1 12/18/95 jackets 3 300 1

col shirts 2 25 2 col shirts 2 25 2
12/18/95 b boots 2 150 1 12/18/95 b boots 2 150 1

jackets 2 300 1 jackets 2 300 1
col shirts 2 25 2

cust2 12/18/95 b boots 2 150 1 12/19/95 col shirts 4 25 3
jackets 2 300 1 jackets 4 300 2

col shirts 2 25 2
12/19/95 col shirts 4 25 3 12/18/95 b boots 2 150 1

jackets 4 300 2 jackets 2 300 1
col shirts 4 25 3 col shirts 4 25 3

12/19/95 jackets 4 300 2 12/19/95 jackets 4 300 2

Figure 5. Table of Figure 4 after the associations between clusters

At this point, in each group, the cross product of clusters is created, obtaining the table
of Figure 5; the figure shows the two groups with their cluster pairs. For instance, the
first group, corresponding to customercust1, has four cluster pairs resulting from the
cross-product of its two clusters, respectively corresponding to the dates ‘12/17/95’ and
‘12/18/95’.

For each group, rules are now extracted only from within pairs of clusters, the left cluster
for the body and the right cluster for the head: the effect is that both the body and the
head of a rule contain items purchased in the same date. For instance, consider the second
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pair of clusters contained in the group of customercust1; from this pair, it is possible
to form the rules associating the only possible head{jackets} coming form the clus-
ter ‘12/18/95’ to the bodies{ski pants}, {hiking boots}, {ski pants, hiking boots}.
These ones come from all the possible subsets of the tuples extracted from the first clus-
ter of the pair. So the rules{ski pants} ⇒ {jackets}, {hiking boots} ⇒ {jackets},
{ski pants, hiking boots} ⇒ {jackets} are extracted (since they also have enough sup-
port and confidence).

Tautologies are possible when rules are extracted from identical clusters which are paired.
For instance, consider the first pair of clusters contained in the group ofcust1; from this
pair, it is possible to extract the rules{ski pants} ⇒ {ski pants} and{hiking boots} ⇒
{hiking boots} which are tautologies, since they do not provide new information because
body and head refer to the same date. In contrast, the rule{col shirts, brown boots,
jackets} ⇒ {col shirts, jackets}, extracted from the second pair of clusters contained
in the group of customercust2, is not a tautology, because items in the head refer to a
different date w.r.t. the items in the body.

Observe that the set of clustering attributes must be disjoint from the set of grouping
attributes and from the attributes used for the body and head of the rules. Indeed, the notions
of groups and clusters are preliminary to the construction of rules: groups and clusters are
both formed before the creation of bodies and heads with the purpose of defining the actual
partitions from which rules must be extracted. Thus, no overlapping may exists between
grouping, clustering and rule attributes.

Let us consider a variant of the previous example, extracting rules thatdescribe tem-
porally ordered purchases, i.e. the items in the body are purchased previously than the
items in the head.This is similar to the problem of findingsequential patternsintroduced
in (Agrawal and Srikant, 1995): the temporal constraint is a condition on the clustering
attributes; it is specified by means of an optionalHAVING clause associated to theCLUSTER
BY clause. This predicate is used to discard couples of clusters before forming rules. Inside
this predicate, we can use correlation variablesBODY andHEAD to denote the left and right
cluster, as described by Figure 5. The refined problem is described as follows:

MINE RULE OrderedSets AS
SELECT DISTINCT 1..n item AS BODY, 1..n item AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY customer
CLUSTER BY date

HAVING BODY.date < HEAD.date
EXTRACTING RULES WITH SUPPORT: 0.01, CONFIDENCE: 0.2

TheHAVING clause following theCLUSTER BY clause specifies which couples of clusters
must be kept; for the particular case, it produces the table of Figure 6, from which the
rules of Figure 7 are produced. These are a subset of the association rules produced by the
ClusteredByDate mining expression.

Thecluster conditionis allowed to contain not only predicates on theclustering attributes,
but also aggregate functions on clusters. As an example of use of aggregate functions in the
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group body cluster head cluster
cust date item t. pr. q date item t. pr. q

ski pants 1 140 1
cust1 12/17/95 h boots 1 180 1 12/18/95 jackets 3 300 1

col shirts 2 25 2
cust2 12/18/95 b boots 2 150 1 12/19/95 col shirts 4 25 3

jackets 2 300 1 jackets 4 300 2

Figure 6. Table of Figure 5 after the selection of couples of clusters.

cluster condition, consider the following instruction, which refines the extraction of ordered
sets by discarding body clusters whose average price is less than $50.

MINE RULE RefinedOrderedSets AS
SELECT DISTINCT 1..n item AS BODY, 1..n item AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY customer
CLUSTER BY date

HAVING BODY.date < HEAD.date AND AVG(BODY.price)>=50
EXTRACTING RULES WITH SUPPORT: 0.01, CONFIDENCE: 0.2

Note that aggregate functions in the cluster condition are allowed to refer to all attributes
except forgroupingor aclustering attributes.

If clusters are not specified, each group contains only the trivial cluster. Thus, for each
group, the trivial cluster is coupled with itself, and rules are extracted from within this single
couple. This shows that the semantics of rule extraction without clustering is a particular
case of the semantics with clustering. We recall thatclustersare indeedsub-groupsinside
groups.

2.3. Association Rules with Mining Condition

Let us further refine the exampleOrderedSets discussed in the previous Section. For
example, we are interested in rules such thatthe body contains only items whose price is
greater than or equal to$100, and the head contains only items whose price is less than
$100. It is not possible to express this requirement by means of the clauses that were
introduced so far. In fact, theWHERE predicate associated to theFROM clause changes the
structure of the source table, modifying also the definition of support and confidence; thus,
selection predicates are not appropriate for expressing conditions upon rules. TheHAVING
predicate of theGROUP BY clause discards groups, and this is not the case. TheCLUSTER
BY clause cannot be used as well, because the requirement does not specify that items
in the body and in the head must have the same price; consequently, also the associated
HAVING clause is useless. Thus, it is necessary to introduce another selection predicate,
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BODY HEAD S. C.
{ski pants} {jackets} 0.5 1

{hiking boots} {jackets} 0.5 1
{ski pants,hikingboots} {jackets} 0.5 1

{col shirts} {col shirts} 0.5 1
{col shirts} {jackets} 0.5 1
{col shirts} {col shirts, 0.5 1

jackets}
{brown boots} {col shirts} 0.5 1
{brown boots} {jackets} 0.5 1
{brown boots} {col shirts, 0.5 1

jackets}
{jackets} {col shirts} 0.5 0.5
{jackets} {jackets} 0.5 0.5
{jackets} {col shirts, 0.5 0.5

jackets}
{col shirts,brownboots} {col shirts} 0.5 1

{col shirts, {jackets} 0.5 1
brown boots}
{col shirts, {col shirts, 0.5 1

brown boots} jackets}
{col shirts,jackets} {col shirts} 0.5 1

{col shirts, {jackets} 0.5 1
jackets}

{col shirts, {col shirts, 0.5 1
jackets} jackets}

{brown boots,jackets} {col shirts} 0.5 1
{brown boots,jackets} {jackets} 0.5 1

{brown boots, {col shirts, 0.5 1
jackets} jackets}

Figure 7. The output tableOrderedSets.

calledmining condition, that must be applied when rules are actually mined. In fact, for
each couple of clusters, a rule is extracted if there is a cross product of tuples of the left and
right cluster that projected on the body and head attributes gives the rule; the new predicate
selects tuples from each cross-product, thereby reducing their cardinality and the extracted
rules.

In our operator, the mining condition is specified by means of an optionalWHERE clause
placed between theSELECTand theFROM clauses. As inside theHAVINGpredicate associated
to theCLUSTER BY clause, we can use correlation variablesBODY andHEAD to denote tuples
of the left and right cluster. This predicate differs from theHAVING clauses because this
is a tuple predicate, while HAVING clauses introducegroup and cluster predicates. The
problem can be specified as follows:

MINE RULE FilteredOrderedSets AS
SELECT DISTINCT item AS BODY, 1..n item AS HEAD, SUPPORT, CONFIDENCE
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BODY HEAD S. C.
{brown boots} {col shirts} 0.5 1

{jackets} {col shirts} 0.5 0.5
{brown boots,jackets} {col shirts} 0.5 1

Figure 8. The output tableFilteredOrderedSets.

WHERE BODY.price >= 100 AND HEAD.price < 100
FROM Purchase
GROUP BY customer
CLUSTER BY date

HAVING BODY.date<HEAD.date
EXTRACTING RULES WITH SUPPORT: 0.01, CONFIDENCE: 0.2

For understanding mining conditions, consider again the table in Figure 6; we said that
rules are actually mined from this intermediate table. It is not possible to extract rules
satisfying the requirement from the couple of clusters in the group of customercust1,
because the item in the right cluster costs more than $100, and it is not allowed to appear
in the head. Consider now the couple of clusters in the group of customercust2. In the
left cluster, only itemsbrown boots andjackets cost more than $100, and are allowed to
appear in the body; in the right hand side cluster, only itemcol shirts costs less than $100,
and is allowed to appear in the head. Thus, the resulting tableFilteredOrderedSets
contains only three rules, as described in Figure 8.

The mining condition should refer to all attributes except for grouping or clustering
attributes, thus it can refer to attributes used in the body or head of the rules, or to other
attributes (in the above case, attributeprice).

Observe that the mining condition cannot be expressed as a selection on the extracted rule
set, because:

• It may refer to attributes not appearing as rule attributes.

• It is applied to pairs of tuples before the extraction, thus changing the rule’s support
and confidence. Then tuples are considered for extracting rules, and if the condition is
false, rules are not extracted; as an effect, the support and confidence are affected.

The mining condition can be also used without clusters. For example, let us suppose now
thatwe are interested in rules such that the items in the body are purchased previously than
the items in the head.Observe that we do not want that items in the body or in the head be
bought in the same date; hence, clusters are not useful. The problem can be specified as
follows:

MINE RULE OrderedItems AS
SELECT DISTINCT 1..n item AS BODY, 1..1 item AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.date < HEAD.date
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FROM Purchase
GROUP BY customer
EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

The resulting tableOrderedItems is a superset of tableOrderedSets: since clusters
are missing, new sets of items for the body and the head are allowed.

2.4. Association Rules with Generalizations

Items can be structured hierarchically, forming complex taxonomies. Each taxonomy can
be represented as a hierarchy tree, where each node corresponds to a class of items and
its sons are its sub-classes; leaf nodes correspond to items in the database. If there is an
ordered path from a nodea to a nodeb, a is calledancestorof b, andb is calleddescendant
of a. Using the case of purchases as an example, let us suppose to have a hierarchy of
classes on the attributeitem of thePurchase table, as shown in Figure 9. The hierarchy
is described by tableItemHierarchy, shown in Figure 10.

Each tuple represents a pair connecting a node to one of its ancestors; the attributelevel
indicates the number of levels that separate the node from the ancestor in the hierarchy.
Observe that each node is considered ancestor of itself, with the corresponding level set to
0.

2.4.1. Hierarchies in the Mining Condition Hierarchies can be used in the mining
condition to restrict the association rules that can be extracted from the source table, in such
a way that the rules refer to specific portions of the hierarchy.

For example, consider thePurchase table. Suppose that you want to extract rules
that associate items which areboots with items which arepants. This is similar to the
examples discussed in Section 2.3, with the additional problem that the information about
the hierarchy is not contained in the source table. The mining condition queries the table
ItemHierarchy to select only items for the body havingboots as ancestor, and items for
the head havingpants as ancestor:

MINE RULE BootsPantsRules AS
SELECT DISTINCT item AS BODY,item AS HEAD, SUPPORT, CONFIDENCE
WHERE HEAD.item IN (SELECT node

FROM ItemHierarchy WHERE ancestor =‘pants’)
AND BODY.item IN (SELECT node

FROM ItemHierarchy WHERE ancestor =‘boots’)
FROM Purchase
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.2, CONFIDENCE: 0.5

For the data in thePurchase table of Figure 1, only the rule{hiking boots} ⇒
{ski pants}, havingsupport = 0.25 andconfidence = 1, is extracted.

2.4.2. Hierarchies in the Source TableAssociation rules can be generalized, in order
to obtain rules that associate classes. A generalized rule can be obtained from a rule that
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Figure 9. Hierarchy tree of items.

associates leaves of the hierarchy, by replacing each leaf with one of its ancestors. For
example, the simple association rule:

{hiking boots} ⇒ {ski pants}
can be generalized as:

{hiking boots} ⇒ {pants}, {hiking boots} ⇒ {clothes},
{boots} ⇒ {ski pants}, {boots} ⇒ {pants}, {boots} ⇒ {clothes},
{shoes} ⇒ {ski pants}, {shoes} ⇒ {pants} and{shoes} ⇒ {clothes}

The generalized rules are characterized by values of support which are greater than the
values of the specialized rules. Consequently, it is not possible to obtain all the generalized
rules from the specialized rules. Instead, in order to extract generalized association rules,
we need to join the taxonomic information with the source table in theFROM clause of
the MINE RULE operator. For example, the following specificationextracts generalized
association rulesfrom within thePurchase table using theItemHierarchy table.

MINE RULE GeneralizedRules AS
SELECT DISTINCT ancestor AS BODY, 1..n ancestor AS HEAD,

SUPPORT, CONFIDENCE
FROM (SELECT *

FROM Purchase, ItemHierarchy
WHERE node=item)

GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.3, CONFIDENCE: 0.5

The join of thePurchase andItemHierarchy tables is shown in Figure 11, and a portion
of the resulting table is shown in Figure 12; note that rules contain the attributeancestor
in the body and in the head instead of the attributeitem; this way the leaves of the hierarchy
are not lost, because in theItemHierarchy table each node is ancestor of itself with level
0.

Refining Rules. The above formulation presents some problems. For instance, in Figure 12
consider the rule{clothes} ⇒ {boots, shoes}. This rule comes from the third, fifth and
sixth tuple of the table in Figure 11; in particular the head comes from the fifth and the
sixth tuple. However, if we look at attributeitem of these two tuples, this is the same
(hiking boots): this fact is not surprising, since the considered table is obtained joining
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node ancestor level
hiking boots hiking boots 0
hiking boots boots 1
hiking boots shoes 2
brown boots brown boots 0
brown boots normalboots 1
brown boots boots 2
brown boots shoes 3
... ... ...

Figure 10.ItemHierarchy table containing a description of the hierarchy defined onitem.

tr. customer date item price q.ty ancestor level
1 customer1 12/17/95 ski pants 150 1 ski pants 0
1 customer1 12/17/95 ski pants 150 1 pants 1
1 customer1 12/17/95 ski pants 150 1 clothes 2
1 customer1 12/17/95 hiking boots 180 1 hiking boots 0
1 customer1 12/17/95 hiking boots 180 1 boots 1
1 customer1 12/17/95 hiking boots 180 1 shoes 2
... ... ... ... ... ... ...

Figure 11.Source table for extracting generalized association rules.

thePurchase and theItemHierarchy tables in theFROM clause. Now observe that the
head of the rule contains two ancestors (boots andshoes) of the same itemhiking boots.
Thus, the head (and the rule) isredundant.

Also hidden tautologies are possible: for instance, rule{boots} ⇒ {shoes} comes from
the same two tuples of Figure 11, which derive from the same itemhiking boots. Thus,
the rule istautological.

The problem of avoiding redundant and tautological rules in presence of hierarchies can be
solved in two ways: first, by introducing theCLUSTER BY clause and the mining condition;
second, by adding theHAVING clause to theCLUSTER BY clause, without using the mining
condition. These formulations, however, extract different rules.

• Adding theCLUSTER BY clause and the mining condition.
First, we observe that the different ancestors of the same item are in the hierarchy tree at
different levels. Consequently, if we cluster bylevel, we force each body or head to be
composed ofancestors at the same level in the hierarchy tree, avoiding redundancies.
In the end, themining condition

BODY.item~=HEAD.item

discards tautological rules, in which bodies and heads refer to the same item. Conse-
quently, we obtain the following formulation:
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BODY HEAD S. C.
{ski pants} {hiking boots} 0.25 1
{ski pants} {boots} 0.25 1
{ski pants} {shoes} 0.25 1
{clothes} {hiking boots} 0.25 0.25
{clothes} {boots} 0.5 0.5
{clothes} {shoes} 0.5 0.5
{clothes} {boots, shoes} 0.25 0.5

... ... ... ...

Figure 12.TableGeneralizedRules containing generalized association rules.

MINE RULE RefinedGeneralizedRules AS
SELECT DISTINCT 1..n ancestor AS BODY, 1..n ancestor AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.item~=HEAD.item
FROM (SELECT *

FROM Purchase, ItemHierarchy
WHERE node=item)

GROUP BY transaction
CLUSTER BY level
EXTRACTING RULES WITH SUPPORT: 0.3 , CONFIDENCE: 0.5

• Adding theCLUSTER BY andHAVING clauses.
First of all, observe that clustering bylevel, and introducing acluster conditionlike

BODY.level = HEAD.level,

if we are under the hypothesis that the tree is balanced, we fall into the case of the
so calledmultiple level association rules(Han and Fu, 1995). In this case, rules only
associate elements of the same level of the hierarchy (e.g.{boots} ⇒ {pants}); thus,
redundancies and tautologies are automatically avoided, and the mining condition is no
longer necessary. The complete specification for this case is the following.

MINE RULE MultipleLevelRules AS
SELECT DISTINCT 1..n ancestor AS BODY, 1..n ancestor AS HEAD,

SUPPORT, CONFIDENCE
FROM (SELECT *

FROM Purchase, ItemHierarchy
WHERE node=item)

GROUP BY transaction
CLUSTER BY level

HAVING BODY.level=HEAD.level
EXTRACTING RULES WITH SUPPORT: 0.3 , confidence: 0.5
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2.4.3. Hierarchies in a HAVING clauseHierarchies may be also used in theHAVING
clause of theGROUP BY clause or of theCLUSTER BY clause. Consider the new table
PurchasedWithBrands, that is defined on the same attributes of tablePurchase plus an
extra attribute calledbrand, which denotes the brand of the purchased item; in our database,
the same item can appear with different brands.

Consider now the following problem:extract all rules on brands, such that brands in the
body refer to a pant, and brands in the head refer to a shoe; keeps only rules with support
0.3 and confidence 0.5.

The following specification captures the case:

MINE RULE BrandRules AS
SELECT 1..n brand AS BODY, 1..n brand AS HEAD, SUPPORT, CONFIDENCE
FROM PurchaseWithBrands
GROUP BY customer
CLUSTER BY item

HAVING BODY.item IN (SELECT node
FROM ItemHierarchy
WHERE ancestor=’pants’)

AND HEAD.item IN (SELECT node
FROM ItemHierarchy
WHERE ancestor=’shoes’)

EXTRACTING RULES WITH SUPPORT: 0.3 , CONFIDENCE: 0.5

Observe that the hierarchy is used to filter cluster pairs such that the body cluster is a
descendant of’pants’, while the head cluster is a descendant of’shoes’.

2.4.4. Generalized Use of HierarchiesThe use of hierarchies in the mining condition
and in the source table, permits to refine the previous problem of generalized association
rules, obtaining a smaller number of rules. For example, suppose we are interested in
extracting generalized association rules that have sub-classes ofboots in the body and sub-
classes ofpants in the head.This problem requires that the hierarchy is used at first in the
source table to produce generalized association rules, and second in the mining condition
to reduce the number of extracted rules.

MINE RULE GeneralizedBootsPantsRules AS
SELECT DISTINCT ancestor AS BODY, 1..n ancestor AS HEAD,

SUPPORT, CONFIDENCE
WHERE HEAD.ancestor IN (SELECT node

FROM ItemHierarchy WHERE ancestor =‘pants’)
AND BODY.ancestor IN (SELECT node

FROM ItemHierarchy WHERE ancestor =‘boots’)
FROM (SELECT * FROM Purchase, ItemHierarchy

WHERE node=item)
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.3, CONFIDENCE: 0.5
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2.5. Final Example

We show some final examples in which we specify an unconventional problem that can
be solved by extracting association rules. Let us suppose we are interested in rules that
associate a customer with a set of customers, such thatcustomers in the head buys the
same product previously bought by the customer in the body.We call this problem the
word of moutheffect. By means of theMINE RULE operator, we can write the following
specification.

MINE RULE WordOfMouth AS
SELECT DISTINCT 1..1 customer AS BODY,
1..n customer AS HEAD, SUPPORT, CONFIDENCE
WHERE BODY.date <= HEAD.date
FROM Purchase
GROUP BY item
EXTRACTING RULES WITH SUPPORT: 0.01, CONFIDENCE: 0.05

At first, thePurchase table is grouped byitem, because we want to extract rules that
describe a repeated behaviour w.r.t. purchased items. Second, the table is clustered by
date, and theHAVING predicate specifies that rules must be extracted from couples of
clusters temporally ordered. Finally, rules having one single customer in the body and
multiple customers in the head are extracted. A hypothetical rule might be:{Jennifer} ⇒
{Janet, Barbara}. Note that we have set lower minimum thresholds for support and
confidence, sinceword of moutheffect is not expected to be very evident in the global
population.

2.6. Discussion

In conclusions, we have considered four kinds of rules.

• Simple Association Rules.They require theFROM clause, theGROUP BY clause and the
SELECT clause.

• Association Rules from Filtered Groups.They add to simple association rules the
HAVING clause inside theGROUP BY clause, which filters groups from which rules are
extracted.

• Association Rules with Clustering.They add to simple association rules theCLUSTER
BY clause, and possibly the associatedHAVING clause, which partitions each group in
clusters and couples them to each other, keeping only those cluster couples satisfying
theHAVING clause, if specified.

• Association Rules with Mining Condition.They add to simple association rules the
WHERE clause associated to theSELECT clause, also calledmining condition, a tuple
predicate that must be satisfied by every tuple from which rules are extracted.

The four classes of problems discussed above put in evidence that theHAVING clause
of the GROUP BY clause, theCLUSTER BY clause, and theWHERE clause for the mining



MINING ASSOCIATION RULES 213

  rule selection
(mining condition)

cluster selection
  (CLUSTER BY)

group selection
  (GROUP BY)

Figure 13.Orthogonality of the MINE RULE clauses.

condition expressorthogonalaspects of the semantics of extracted association rules, w.r.t.
the mining problems they are designed for (see Figure 13). Observe that the case ofsimple
association rulesis a particular case of the other three classes of discussed problems.

Due to the orthogonality, a mining application can be designed as an arbitrary composition
of the mandatory and optional clauses, thus it can be viewed as a point in the 3-dimensional
space depicted in figure.

3. Semantics of the Operator

The aim of this section is to provide a formal semantics for theMINE RULE operator. The
semantics is procedurally described by means of an extended relational algebra: this tech-
nique is able to describe how to transform the source table in order to discover association
rules.

3.1. New Relational Operators

In the following sections, we use relational tables with complex attributes, i.e. attributes
which are themselves relations. An example of nested relation is tableT2 in Figure 14,
whose schema is

(a, b, s:table(c, d)).

The schema contains three attributes, wherea andb are simple attributes, whiles is in
turn a table whose schema contains two simple attributes, namedc andd. Observe the
instance ofT2 depicted in figure: in the first two tuples, attributes contains two tuples; in
the last tuple ofT2, attributes has only one tuple, even though it is still a table.

In order to operate on extended relations, we use the traditional relational algebra (de-
scribed in (Ullman, 1988)) extended with special operators. The relational algebra provides
operators like selection, projection, union, intersection, difference, cartesian product, join
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Table 1.Traditional Relational Operators.

Selection σ(predicate) T Difference T1 − T2

Projection π(attributeList) T Cartesian Prod. T1 × T2

Union T1 ∪ T2 Join T1 ./[predicate] T2

Intersection T1 ∩ T2 Natural Join T1 ./ T2

and natural join (summarized in Table 1); their semantics is adapted to extended relations,
as in (Atzeni and De Antonellis, 1993). Hereafter, we introduce the new operators.

• Group by: Γ(grouping attributes;new attribute) T , partitions the relation by dis-
tinct values of the grouping attributes. The schema of the result contains thegrouping
attributesand a new set valued attribute (callednew attribute) whose schema contains
all other attributes ofT . Values in thenew attributeare structured as a subtable for
each distinct value of thegrouping attributes.

• Unnest: η(attribute name) T , is the opposite of thegroup byoperator; if the unnested
complex attribute is empty in a tuplet, there are no tuples fort in the resulting table.

• Extend: E(attribute name; expression) T , extends the schema of the operand with
a new attribute calledattribute name; for each tuple, the value to be assigned to the new
attribute is obtained evaluating the generic algebraic expression denoted asexpression.

• Substitute: Σ(attribute name; expression) T , substitutes the value of the attribute
indicated byattribute namewith the result ofexpression, evaluated for each tuple. The
resulting type ofattribute namemay be different with respect to the initial type, due to
expression.

• Rename: ρ(old attribute names;new attribute names) T , changes the names of
the attributes listed asold attribute namesinto the names listed asnew attribute names;
attribute types do not change.

• Powerset: P(powerset name) T produces a relation whose schema is obtained by
introducing a single attribute, namedpowerset name, that is in turn a relation with
the same schema of the original relationT . Tuples of the results are relations which
correspond to the power-set ofT , hence each relation corresponds to a non-empty subset
of T .

As an example, Figure 14 reports some extended relations that are derived from relation
T1, by means of the following expressions.

T2 = Γ(a, b; s) T1

T3 = E(t;COUNT (s)) T2

T4 = Σ(s;π(d) s) T3

T5 = ρ(a, b, s;x, y, z) T4

T6 = P(p) σ(d = d1) T1

RelationT2 is obtained grouping relationT1 by attributesa andb. RelationT3 is obtained
from relationT2 extending its schema with a new attributet; for each tuple, attributet is set
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to the value obtained counting the elements contained in the complex attributes of the same
tuple. RelationT4 is derived from relationT3 by substituting the complex attributes with the
result of the expression; for each tuple, the expression projects the same complex attribute
s on its internal attributed, obtaining a table with one column instead of the previous two
columns. RelationT5 is obtained by relationT4 renaming attributesa, b ands asx, y and
z. In the end, relationT6 is obtained fromT1 by means of the power-set operator, applied
on the 2 tuples havingd1 as value of the attributed; observe that each tuple ofT6 contains
an element of the power-set, i.e. attributep is a relation defined on the schema ofT1.

As a practical example, consider tablePurchase of Figure 1; Figure 2 shows the table
after it is grouped bytransaction. This operation can be algebraically described as
Grouped = Γ(transaction;Group) Purchase, thus obtaining the following schema,
which is the same of the table in Figure 2:

(transaction,Group:table(customer,item,date,price,quantity)).

Observe that by unnesting attributeGroup, the expressionη(Group) Grouped, obtains
tablePurchase again.

3.2. Algebraic Semantics of the MINE RULE Operator

In this section, the semantics of theMINE RULE operator is formally defined by means of
the algebraic operators introduced in Section 3.1. The idea is that the source relation which
rules have to be extracted from passes through several transformations; the final result of
this process is the relation containing a rule for each tuple, with associated attributes for
support and confidence.

In order to simplify the description of the semantics and improve its clarity, we divide
the transformation process in distinct steps. Each step is defined as a function that is given
a name and a list of input relations, and produces either a derived relation or a number; an
algebraic equation assigns the result of a function to a variable, that can be either a relation
or a numeric variable. The collection of equations necessary to describe the procedural
semantics of the operator is the following algebraic system.



AllGroups = CountAllGroups(Table)
Clustered ≡ MakeClusterPairs(Table)
Bodies ≡ ExtractBodies(Table, AllGroups)
Rules ≡ ExtractRules(Clustered, Bodies, AllGroups)

The meaning of the equations in the system can be summarized as follows:

1. at first, functionCountAllGroups computes the number of groups (w.r.t. the attribute
list in theGROUP BY clause) in the source relation;

2. the second equation transforms the source relation into a new one containing couples
of clusters (defined by theCLUSTER BY clause);

3. at this point, the third equation extracts all possible rule bodies, that are used to evaluate
the confidence of each extracted rule;

4. finally, the fourth equation extracts all rules that have sufficient support and confidence.
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T1 =

a b c d

a1 b1 c1 d1

a1 b1 c2 d2

a1 b2 c1 d1

a1 b2 c1 d3

a1 b2 c3 d3

T2 =

a b s : table
( c d )

a1 b1 { c1 d1

c2 d2 }
a1 b2 { c1 d1

c1 d3 }
a2 b2 { c3 d3 }

T3 =

a b s : table t
( c d )

a1 b1 { c1 d1 2
c2 d2 }

a1 b2 { c1 d1 2
c1 d3 }

a2 b2 { c3 d3 } 1

T4 =

a b s : table t
( d )

a1 b1 { d1 2
d2 }

a1 b2 { d1 2
d3 }

a2 b2 { d3 } 1

T5 =

x y z : table t
( d )

a1 b1 { d1 2
d2 }

a1 b2 { d1 2
d3 }

a2 b2 { d3 } 1

T6 =

p : table
( a b c d )
{ a1 b1 c1 d1 }
{ a1 b2 c2 d1 }
{ a1 b1 c1 d1

a1 b2 c1 d1 }

Figure 14.Examples of Extended Relations.

In the following, we make use of the example in Section 2.2 producing tableOrderedSets
as running example.

Counting Groups: the first equation in the system counts the groupsAllGroups present
in the source relation: this number is necessary to evaluate the support of rules. Function
CountAllGroups projects the source table on the grouping attributes (the list of grouping
attributes is calledGBAttrList and it contains the attributes appearing in theGROUP BY
clause of theMINE RULE operator); then, it counts the tuples remained after the projection.

CountAllGroups( Table ) ≡
≡ COUNT (π(GBAttrList) Table)

Making Couples of Clusters: the second equation of the system transforms the source
relation into a new one such that each tuple corresponds to a couple of clusters. Recall that
if the CLUSTER BY clause is not specified, for each group the trivial cluster is coupled to
itself; otherwise, the list of coupling attributes appearing in the clause (in the following this
list is indicated asClAttrList) is used to obtain clusters and couple them.
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MakeClusterPairs(Table) ≡
≡ η(ClusterPairs) (3)

E(ClusterPairs; MakePairs(Group)) (2)
σ(GroupCondition) Γ(GBAttrList; Group) Table (1)

1. At first, line (1) of functionMakeClusterPairs groups the source relation by the
grouping attributes, in order to apply the predicateGroupCondition that discards
groups not satisfying it. It obtains a new intermediate relation where each tuple has the
grouping attributes and a complex attribute calledGroup: this is a relation that contains
all the tuples in the source relation belonging to that group; its schema is obtained from
the schema of the source relation removing the grouping attributes. In the running
example, onlycustomer is specified as grouping attribute; then, Line (1) obtains a
relation with the following schema:

(customer,Group:table(transaction,item,date,price,quantity)).

2. Then at line (2), by means of sub-functionMakePairs hereafter reported, each tuple
is further extended with a complex attribute, calledClusterPairs: this is the set of
couples of clusters contained in the group corresponding to the tuple.

MakePairs(Group) ≡
≡ ρ(BODY, HEAD; BCluster, HCluster)

( ρ(foreach a ∈ ClAttrList; BODY.a)
Γ(ClAttrList; BODY ) Group )

./[ClusterCondition]
( ρ(foreach a ∈ ClAttrList; HEAD.a)

Γ(ClAttrList; HEAD) Group )

Sub-functionMakePairs receives the tableGroup as input parameter, i.e. the tuples
contained in a group without the grouping attributes. The sub-function is divided in
two parts. The first part groups tableGroup by the clustering attributes, in order to
obtain the clusters contained in the group; in the resulting table, each topmost tuple
corresponds to a cluster with associated the tuples it contains in the new complex at-
tribute BODY . Afterwards, since these are clusters from which rule bodies might
be extracted, each clustering attributea ∈ ClAttrList is renamed asBODY.a. The
second part of the function obtains clusters for rule heads, and renames each clustering
attributea ∈ ClAttrList asHEAD.a.
Finally, the two intermediate relations are joined to form all couples of clusters sat-
isfying the coupling conditionClusterCondition possibly coming from theHAVING
clause associated to theCLUSTER BY clause. The renaming of clustering attributes
is made with the purpose to use the predicateClusterCondition in making couples
of clusters: in factClusterCondition refers tobody clusters with the correlation
nameBODY and toheadclusters withHEAD. In the following we will refer to the set of
clustering attributes renamed with prefixBODY andHEAD asBClAttrList and
HClAttrList respectively.
Finally, after the join, the complex attributesBODY and HEAD are renamed as
BCluster andHCluster, respectively.

For instance, in the running example the clustering attribute isdate; thus, the schema
of the relation produced from this function is:
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(BODY.date,HEAD.date,
BCluster:table(transaction,item,price,quantity),
HCluster:table(transaction,item,price,quantity)).

3. Coming back to the description of functionMakeClusterPairs, at Line (3) the unnest
operator unnests the attributeClusterPairs: this operation puts cluster pairs to the
topmost level, obtaining a tuple for each group and cluster pair. The final schema of
relationClustered for the running example is the following:

Clustered:table(customer,BODY.date,HEAD.date,
BCluster:table(transaction,item,price,quantity),
HCluster:table(transaction,item,price,quantity)).

Extracting Bodies: relationBodies contains all possible bodies contained in the clusters
actually present in the source relationTable. We need to know the set of bodies in order to
evaluate the confidence of rules.

ExtractBodies(Table, AllGroups) ≡
≡ σ(COUNT (BodyGroups)/AllGroups > minSupport) (9)

Γ(BodySet; BodyGroups) (8)
π(GBAttrList, BodySet) (7)
Σ(BodySet; π(BSchema) BodySet) (6)
η(BCluster) (5)
Σ(BCluster;P(BodySet) BCluster) (4)
Γ(GBAttrList, ClAttrList; BCluster) (3)
η(BGroup) (2)
σ(GroupCondition) Γ(GBAttrList; BGroup) Table (1)

FunctionExtractBodies proceeds as follows.

1. Line (1) groups again the source table by the grouping attribute, in order to apply the
predicate on groups, namedGroupCondition, i.e. theHAVING clause associated to
theGROUP BY clause; then, line (2) unnests the complex attributeBGroup, in order to
obtain the source relation without invalid groups.

2. Line (3) groups again the result of line (2) by the grouping and clustering attributes,
together, in order to partition valid groups into clusters, from which bodies are extracted:
a new complex attribute,BCluster, is created. The schema, for the running example,
obtained at line (3) is:

(customer, date, BCluster:table(transaction,item,price,quantity)).

3. Line (4) substitutes each cluster with all the subsets that can be formed from its tuples,
i.e. its power set computed by thepower setoperator,P(BodySet) . An example of
the schema at this point is the following:

(customer, date, BCluster:table(BodySet:table(transaction,item,
price,quantity))).

The complex attributeBCluster is then unnested (Line (5)), in order to put its internal
attributeBodySet to the topmost level. Then, attributeBodySet is projected on the
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attributes appearing in the body schemaBSchema to obtain bodies. For the running
example, the body schema is simplyitem and the schema of the table, obtained at this
point, is the following:

(customer,date, BodySet:table(item)).

4. Finally, at Line (7) the relation is projected on the grouping attributes, denoted as
GBAttrList, and the attributeBodySet. At Line (8) the relation is grouped by
BodySet, in order to have in each tuple only one body and in the complex attribute,
BodyGroups, the set of groups in which the body is present. Bodies with insufficient
support are discarded at Line (9) in which the value of minimum support inserted by the
user is denoted byminSupport. The schema of relationBodies, result of the function
ExtractBodies, is the following for the running example:

Bodies:table(BodySet:table(item), BodyGroups:table(customer)).

Extracting Rules: the last equation of the system extracts rules by means of function
ExtractRules. This function uses sub-functions in order to simplify the description of the
process.

ExtractRules(Clustered, Bodies, AllGroups) ≡
≡ AddConfidence(Bodies,

AddSupport(AllGroups,
CollectRules(DiscardTautologies(
MakeRules(MakeSubsets(Clustered)))))

1. At first, functionMakeRules callsMakeSubsets to extract from the relation named
Clustered the subsets of tuples contained in clusters.

MakeSubsets(Clustered) ≡
≡ η(PairsOfSubsets) (3)

π(GBAttrList, BClAttrList, HClAttrList, PairsOfSubsets) (2)
E(PairsOfSubsets; MakePairsOfSubsets(BCluster, HCluster)) (1)
Clustered

For each tuple, corresponding to a couple of clusters, at Line (1) it adds a new complex
attribute, calledPairsOfSubsets, that contains ordered pairs of subsets of tuples
contained in the couple of clusters.

Couples of subsets are computed by sub-functionMakePairsOfSubsets: it extracts
subsets for body and head by means of the power set operator, and produces the cartesian
product of these subsets.

MakePairsOfSubsets(BCluster, HCluster) ≡
≡ P(BODY ) BCluster × P(HEAD) HCluster

At Line (2) a projection is made in order to get rid of attributesBCluster andHCluster
no longer needed.

At Line (3) the complex attributePairsOfSubsets is unnested, in order to have one
pair of subsets for each tuple. The resulting table is namedCoupledSubsets and, for
the running example, is:
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CoupledSubsets:table(customer,BODY.date,HEAD.date,
BODY:table(transaction,item,price,quantity),
HEAD:table(transaction,item,price,quantity)).

Observe that this schema is similar to the schema of relationClustered, except for
the fact that attributesBGroup andHGroup becomeBODY andHEAD due to the
functionMakePairsOfSubsets.

2. After functionMakeSubsets terminates, functionExtractRules makes a call to sub-
functionMakeRules that actually extracts rules from the pairs of subsets.

MakeRules(CoupledSubsets) ≡
≡ Σ(HEAD;π(HSchema) HEAD) (4)

Σ(BODY ;π(BSchema) BODY ) (3)
σ(BadBH = ∅) (2)
E(BadBH;BODY ./[¬MiningCond] HEAD) (1)
CoupledSubsets

This function extracts rules only from couples of subsets that satisfy themining condi-
tion. For each tuple, corresponding to a couple of subsets, at Line (1) the subsetBODY
is joined with the subsetHEAD in order to check for the presence of couples of tuples
that do not satisfy the mining condition. At Line (2), if the resulting attributeBadBH
is empty, the couple of subsets is selected, because the mining condition is satisfied.
Finally, the actual body and head are computed (Lines (3) and (4)), by means of a
projection on body and head schema, respectively. Observe that after Lines (3) and (4),
attributeBODY has the body schema (in our running exampleBODY:table(item)),
and attributeHEAD has the head schema (in the exampleHEAD:table(item)).
The result of functionMakeRules is tableClustersWithRules whose schema is the
following:

ClustersWithRules:table(customer, BODY.date, HEAD.date,
BODY:table(item), HEAD:table(item)).

3. Tautological rules are now discarded by sub-functionDiscardTautologies. Tautolo-
gies are possible when a rule comes from a couple of the same cluster and the head
schema is contained in the body schema. If we denote the intersection of the two
schemas asCSchema (CSchema = BSchema ∩ HSchema), the condition for
schema containment mentioned above can be indicated withCSchema = HSchema.

DiscardTautologies(ClustersWithRules) ≡
≡ π(GBAttrList, BODY, HEAD) (5)

(σ(Taut = ∅) (4)
E(Taut;π(CSchema) BODY ∩ π(CSchema) HEAD) (3)
σ(CSchema = HSchema ∧ ∀a ∈ ClAttrList : BODY.a = HEAD.a) (2)
ClustersWithRules) ∪
(σ(CSchema 6= HSchema ∨ ∃a ∈ ClAttrList : BODY.a 6= HEAD.a) (1)
ClustersWithRules)
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The function is divided in two groups: Line (1) takes rules which are certainly not
tautological (i.e. the head schema is not contained in the body schema or the rule does
not come from a couple of the same cluster); Line (2) to (4) take possibly tautological
rules and discard those ones containing tautologies (tautological rules have non-empty
intersection of body and head).
The result at this point is the tableGroupsWithRules that has the following schema:

GroupsWithRules:table(customer,BODY:table(item), HEAD:table(item)).

4. After rules are extracted, sub-functionCollectRules associates to each rule the new
complex attributeGroupSet having the set of group identifiers that contain the rule.
This is done grouping the input relation by attributesBODY andHEAD.

CollectRules(GroupsWithRules) ≡
≡ Γ(BODY, HEAD; GroupSet) GroupsWithRules

The resulting table isRulesWithoutSupport whose schema for the running example
is:

RulesWithoutSupport:table(BODY:table(item), HEAD:table(item),
GroupSet:table(customer)).

5. Finally, it is necessary to add support and confidence to rules and discard those ones
with insufficient support and confidence. This is done by functionsAddSupport and
AddConfidence.

AddSupport(AllGroups, RulesWithoutSupport) ≡
≡ π(BODY, HEAD, SUPPORT )

σ((SUPPORT ≥ minSupport)
E(SUPPORT ;COUNT (GroupSet)/AllGroups)
RulesWithoutSupport

AddConfidence(Bodies, RulesWithSupport) ≡
≡ π(BODY, HEAD, SUPPORT, CONFIDENCE)

σ(CONFIDENCE ≥ minConf)
E(CONFIDENCE;COUNT (GroupSet)/COUNT (BodyGroups))
(RulesWithSupport ./ Bodies)

For each rule, functionAddSupport simply adds the new attributeSUPPORT count-
ing the groups containing the rule and dividing it by the number of groups in the source
relation (AllGroups). The resulting table isRulesWithSupport whose schema for
the running example is:

RulesWithSupport:table(BODY:table(item), HEAD:table(item), SUPPORT)

Conversely, functionAddConfidence compares the confidence of each rule with the
minimum valueminConf given by the user; functionAddConfidence is a bit more
complicated, because for each rule it needs to know the number of groups containing
only the body; observe that it is possible to solve the problem by joining relation
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RulesWithSupport with relationBodies, computed by the third line of the algebraic
system.

The final result is tableRules containing extracted rules with support and confidence.
Its schema for the running example is:

Rules:table(BODY:table(item),HEAD:table(item),SUPPORT,CONFIDENCE)

4. Conclusions

This paper has proposed a unifying model describing the problem of discovering associ-
ation rules, one of the most relevant topics in data mining. The model is based on a new
operator, namedMINE RULE, designed as an extension of the SQL language. The operator
is introduced by means of examples applied to the classical case of purchase data, which
is taken as running example: these usual problems are formulated using the new operator
and provide examples of its applications; then novel examples are proposed showing un-
conventional cases of association rules. As a second step, criteria of application design are
discussed, based on the orthogonality property characterizing the clauses of our operator;
the application of these criteria to a practical case is also discussed. Finally the procedural
semantics of the operator is given by means of an extended relational algebra.

In (Meo, Psaila and Ceri, 1998) we study the efficient implementation of data mining
algorithms. We propose an architecture where data mining is tightly integrated with a SQL
server; we identify the computations which are best performed by the SQL server and the
computations that require a specialized data mining engine. For the former computations,
we describe the syntax-driven translation of data mining expressions into SQL expressions,
showing that most of the clauses of our operator are really related to (and can be evaluated
by) existing query primitives. For the latter computations, we identify a uniform interface
to a collection of data mining algorithms covering all the power of theMINE RULE operator.
We demonstrate the efficiency of the porposed solution on several case studies.

We are also investigating formal properties of the operator, in order to understand the
expressive power and equivalence transformations or containment properties of twoMINE
RULE expressions.

Finally, we are defining a framework which makes the user able to definetemplates, i.e.
classes ofMINE RULE specifications where several elements of the specification, such as
table names, attribute names, constants and so on, are left undetermined; by means of a
design tool (under development too), the user chooses a particular template, and target the
template to its own database, in order to obtain a fully definedMINE RULE specification
that corresponds to his/her particular needs.

Appendix Syntax

This appendix presents the full syntax of theMINE RULE statement. In the syntax, square
brackets denote optionality; productions<FromList> and <WhereClause> denote the
standard SQL clausesFROM andWHERE which are not further expanded (the keywordsBODY
andHEAD can be used as correlation variables in theWHERE clause for theSELECT clause and
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in theHAVING clause for theCLUSTER BY clauses);<TableName> and<AttributeName>
denote identifiers,<Number> denotes a positive integer,<real> denotes real numbers.

<MineRuleOp> := MINE RULE <TableName> AS
SELECT DISTINCT <BodyDescr>, <HeadDescr> [, SUPPORT] [,CONFIDENCE]
[WHERE <WhereClause>]
FROM <FromList> [ WHERE <WhereClause> ]
GROUP BY <Attribute> <AttributeList>

[ HAVING <HavingClause> ]
[ CLUSTER BY <Attribute> <AttributeList>

[ HAVING <HavingClause> ] ]
EXTRACTING RULES WITH SUPPORT:<real>, CONFIDENCE:<real>

<BodyDescr>:= [ <CardSpec> ] <AttrName> <AttrList> AS BODY
/* default cardinality for Body: 1..n */
<HeadDescr>:= [ <CardSpec> ] <AttrName> <AttrList> AS HEAD
/* default cardinality for Head: 1..1 */
<CardSpec>:= <Number> .. (<Number> | n)
<AttributeList>:={,<AttributeName>}
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