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Abstract

Next Generation Sequencing is having an extremely strong impact in biological and medical research and
diagnostics, with applications ranging from gene expression quantification to genotyping and genome reconstruction.
Sequencing data is often provided as raw reads which are processed prior to analysis 1 of the most used
preprocessing procedures is read trimming, which aims at removing low quality portions while preserving the longest
high quality part of a NGS read. In the current work, we evaluate nine different trimming algorithms in four datasets
and three common NGS-based applications (RNA-Seq, SNP calling and genome assembly). Trimming is shown to
increase the quality and reliability of the analysis, with concurrent gains in terms of execution time and computational
resources needed.
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Introduction

Recent years have witnessed an avalanche of data produced
by high throughput short read sequencing, commonly called
Next Generation Sequencing (NGS). In particular, the usage of
Illumina (formerly known as Solexa) reads is nowadays the
basis for a series of biological applications, both in diagnostic
and research fields [1,2]. These include the de novo assembly
of genomes and transcriptomes and the alignment of short
reads over an existing reference [3,4], chimeric transcript
detection [5], haplotype inference [6], methylation detection [7],
etc.

While de novo assembly is mainly used to blindly reconstruct
an unknown genome or transcriptome, read alignment has
several purposes: when the original material is mRNA (RNA-
seq), it allows to precisely measure levels of transcripts and to
identify splicing isoforms [8]. In the case of DNA-seq, read
alignment is the foundation of variant detection as mismatches
or gaps in the alignment reveal, if supported by an adequate
number of reads, SNPs and short indels [9-12].

Illumina reads are commonly 25-250 nucleotide long
sequences produced by a reversible-terminator cyclic reaction
associated to base-specific colorimetric signals within the
sequencing machine. Reads can be separated (“single reads”)

or “paired”, in which case they are representing both
extremities of the same nucleotide fragment (usually 200-1000
bp long). These colorimetric signals are translated into base
calls by an internal Illumina software (CASAVA), represented in
the FASTQ format [13], where each nucleotide is associated to
an ASCII-encoded quality number corresponding to a PHRED
score (Q) [14], which is directly translated into the probability p
that the corresponding base call is incorrect by the following
equation:

p=10−Q/10

Q in recent Illumina runs ranges from 0 to 41 and therefore
the error rate at each position ranges from 1 to 0.000079433.
Whatever the original cause of low quality/high error chance
nucleotides (e.g., air bubbles, spot-specific signal noise,
malfunctioning laser/lens, etc.), the Q value is encoded and
stored together with the sequence information, and this
confidence information can be used for subsequent analysis,
together with the sequence information itself.

Ignoring the existence of low quality base calls may in fact be
detrimental for any NGS analysis, as it may add unreliable and
potentially random sequences to the dataset. This may
constitute a relevant problem for any downstream analysis
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pipeline and lead to false interpretations of data. For example,
in genome assembly the inclusion of low quality reads leads to
the generation of false k-mers (read substrings of fixed size)
[15], which in turn increases the complexity of the subsequent
assembly process [16].

There are two ways to deal with low quality nucleotides in
Illumina reads. The first approach aims at correcting reads after
superimposing them to each other, whereas low frequency
patterns are modified based on the most frequent sequences;
this approach usually works at the level of k-mers and is
adopted by several preprocessing tools, such as Quake [17]
and ALLPATHS-LG [18]. Some genome assembly programs
can autonomously exclude lowly supported k-mers from the
contig generation, e.g., ABySS [19] and ALLPATHS-LG [18].
However, the read correction approach cannot be applied
wherever sequence abundance is intrinsically not uniform, such
as in transcriptomics (RNA-Seq) [20], metagenomics [21] or
heterogeneous cancer DNA samples [22]. Also, a low depth of
coverage makes read correction strategies unfeasible, with
Quake requiring at least 15x [17] and ALLPATHS-LG
suggesting 100x as optimal coverage [18].

The second approach to deal with low quality nucleotides
does not aim at changing the original read dataset, but rather
at removing low quality bases, trying to surgically eliminate only
low quality regions in a procedure known as read “trimming”.
This preprocessing step is a non-trivial process, approached in
different ways by different algorithms, implementations and
tools, most of which are collected and described in this paper
(Table 1). The basic principle of read trimming is to operate an

educated estimate of read error rates trying to keep the longest
possible high quality subsequence.

Trimming has been broadly adopted in most recent NGS
studies, specifically prior to genome assembly [23],
transcriptome assembly [24], metagenome reconstruction [25],
RNA-Seq [26,27], epigenetic studies [7] and comparative
genomics [28]. Despite its popularity, neither a comprehensive
assessment of trimming effects on common NGS analyses nor
a wide comparison of the existing tools has been produced so
far. Several methods have been individually described in
literature [16,29,30] but their usefulness has been proven only
within particular cases of genome assembly.

In the present work, we describe the existing methods for
Illlumina read trimming, while introducing a novel optimized
implementation of the Mott’s trimming algorithm [14]. We will
assess these methods’ performances at different Q thresholds
over three fundamental areas of NGS investigation: de novo
genome assembly, RNA mapping, and genotyping (specifically,
SNP identification), using two publicly available datasets for
each category. We show how biological interpretation of data
can be greatly influenced by the (lack of) adoption of particular
trimming method/threshold combinations. Moreover, read
trimming highly affects usage of resources reducing
computational time and associated costs. The current work will
not focus on other commonly applied Illumina read
preprocessing methods, namely the already cited read
correction [17], duplicate removal [31], contaminant sequence
filtering [30] or adapter removal [32].

Table 1. Availability and characteristics of the trimming tools investigated in the current work.

Tool Version Link Language Algorithm family

Can work
directly on
gzip

Can work
on paired
end

PHRED format
autodetection

Works on
both read
ends Notes

Cutadapt 1.1
code.google.com/p/cutadapt/
downloads/list

Python and
C

Running sum yes no no no
Can also remove
adapters, multi-threaded

ConDeTri 2.2 code.google.com/p/condetri/ Perl Window based
yes (since
v2.2)

yes no no  

ERNE-FILTER 1.2
sourceforge.net/projects/
erne/files/

C++ Running sum yes yes yes yes
Can be combined with
contaminant removal,
multi-threaded

FASTX quality
trimmer

0.0.13.2
hannonlab.cshl.edu/
fastx_toolkit/download.html

C++ Window based no no no no
The default minimum read
length parameter (-p) is
set to zero

PRINSEQ 0:19:05
sourceforge.net/projects/
prinseq/files/

Perl Window based no no no yes
Also web interface for
medium-size data

Trimmomatic 0.22
www.usadellab.org/cms/
index.php?page=trimmomatic

Java Window based yes yes no yes
Can also remove
adapters

SolexaQA 1.13
sourceforge.net/projects/
solexaqa/files/

Perl

Window based
(Running sum
with -bwa
option)

no no yes no
Cannot specify minimum
read length to keep

Sickle 1.2
github.com/ucdavis-
bioinformatics/sickle

C Window based yes yes no yes  

doi: 10.1371/journal.pone.0085024.t001
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Results

We applied the nine trimming algorithms on four different
datasets (see Materials and Methods). The quality of these
datasets was assessed with FastQC (see File S1 and Figure
S1 for Q distribution plots) and measured by different metrics,
such as the average PHRED error score, GC content biases
and position-specific quality variations. The datasets vary
conspicuously, possessing almost perfect quality parameters
for the Yeast DNA-Seq dataset and somehow average-to-high
for Lovell raw reads (Figure S1). The RNA-Seq datasets are
characterized by the Arabidopsis thaliana reads as
representative of high quality reads, while in Homo sapiens-
derived data the error probability is both high and highly
variable across read length.

Effects of Read Trimming on Gene Expression Analysis
We tested the performance of nine different trimming

algorithms on two RNA-Seq datasets originating from human
and Arabidopsis (see materials and methods). We assessed
the number of reads and nucleotides aligning over the
respective reference genomes, allowing for gap openings of
the reads over spliced regions. It is evident how the trimming
process in all cases reduces the number of reads, while
increasing the percentage of the surviving dataset capable of
correctly aligning over the reference genome. In the case of the
low quality Homo sapiens dataset (Figure 1), while 72.2% of
the untrimmed dataset reads are aligned, the trimmed ones
reach values above 90%, with peaks in ConDeTri at 97.0%
(HQ=15, LQ=10) and SolexaQA (Q=5) at 96.7% (Table 2).
However, SolexaQA achieves the highest quality while keeping
the highest number of reads, and therefore seems to be the
optimal tool to maximize the tradeoff between loss of reads and
increase in quality, at least in low quality RNASeq datasets
such as the one analyzed here (Figure 2). For this dataset, we
could observe a pseudo-optimal tradeoff between read loss
and quality of the remaining reads, expressed as number of
reads aligned over the total number of reads (Figure 1), which
is between Q=20 and Q=30 for SolexaQA-BWA, Trimmomatic,
Sickle, Cutadapt and ERNE-FILTER. Other trimmers, such as
FASTX, being able to operate only from 3’end, do not achieve
the same performance as the other tools (Figure 2). While
retaining a similar ratio of correctly mapped reads (roughly
assessed by the percentage of reads mapping within UCSC
gene models), the loss of information is consistent when
compared to untrimmed datasets (Figure S2).

It is interesting to note that in general every tool shows
different optimal Q thresholds (Figure 2 and Table 2) for
maximizing the quality of the trimmed reads (expressed in this
case by percentage of mapping reads over the reference).
Also, every tool shows different trends between Q and
mappability (percentage of post-trimming reads mapped on the
reference genome): for some (such as SolexaQA and
ConDeTri) loose thresholds are enough to achieve the most
robust output. For other (such as FASTX and PRINSEQ), the
highest possible threshold seems the optimal solution in terms
of quality (with a concurrent loss of reads). Finally, some tools
(like Cutadapt, Sickle, SolexaQA-BWA and Trimmomatic)

possess an ideal intermediate Q threshold maximizing the
relative amount of surviving reads alignable on the reference
genome. In the case of the higher quality dataset originating
from Arabidopsis thaliana, all tools have a comparable
performance and no clear identifiable best Q for tradeoff
between mappability and read loss. Starting from an untrimmed
baseline of mappability of 82.8%, all tools reach a mappability
of above 98.5% with stringent thresholds (Q>30, see Table 2
and Table S1). In both cases however, trimming affects and
removes the most “unmappable” parts of the dataset, already
at lower thresholds. Carrying a trimmed but reliable subset of
the original RNA-Seq reads can reduce the need for disk space
and the time needed for the overall alignment process, as high-
error sequences would have already been eliminated.

Effects of read trimming on SNP identification
In order to assess the impact of trimming on SNP

identification we used reads originating from dihaploid genome
samples, specifically from the Prunus persica Lovell variety and
from the Saccharomyces cerevisiae YDJ25 strain. In such
genetic backgrounds, it is possible to evaluate any non-
homozygous nucleotide call as a direct estimate of false
positive SNP calling. In order to do so, we assessed the
Average Percentage of Minor Allele Calls as an index termed
APOMAC. At the same time, we measured the Average
Percentage of Non-reference Allele Calls APONAC), although
the latter is an underestimation of APOMAC, since it assumes
that the sequenced individual has a genome identical to the
reference sequence. The total non-homozygous nucleotide
presence, related to false positive SNP calling and assessed
by the APOMAC index, is -as expected- reduced by trimming
(Figure 3). All trimmers drastically reduce the percentage of
alternative allele nucleotides aligned over the reference
genomes, both in Prunus persica (Figure 3) and in yeast (Table
2 and Table S1), bringing this false positive call indicator from
30% to 10% or less of the total aligned nucleotides. This rather
spectacular loss of noise can be achieved with any trimmer
with a Q threshold equal to or above 20 (Table S1). Best
performing tools, in terms of APOMAC and APONAC, are
ConDeTri and SolexaQA, which quickly reduce the number of
minor allele calls. While increasing the quality of SNP calling,
the coverage loss due to trimming is minor: FASTX, SolexaQA-
BWA, PRINSEQ, Cutadapt and ERNE-FILTER at default Q
values all process the reads without a noticeable loss of
covered reference genome. This has been tested and reported
by different minimum coverage thresholds (Figure 4).

Effects of read trimming on de novo genome assembly
Read trimming affects only partially genome assembly

results and there is no big difference among results from the
different datasets (see Figure 5 and Table 2). Negative effects
are seen for high quality values (e.g. Q>30) on most datasets.
Trimmed datasets from ConDeTri, Trimmomatic, Sickle and
especially SolexaQA produce slightly more fragmented
assemblies and this is probably due to a more stringent
trimming that reflects also on lower computational needs (see
Figure 6). The assembler used, ABySS, models and deals with
sequencing errors; therefore, assembly of the untrimmed

Read Trimming Effects on NGS Data Analysis
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Figure 1.  Barplots indicating the performance of nine read trimming tools at different quality thresholds on a Homo
sapiens RNA-Seq dataset.  For ConDeTri, two basic parameters are necessary, and combinations of both are reported (which
explains the non-monotonic appearance of the barplots). Red bars indicate the percentage of reads aligning in the trimmed dataset.
Blue bars indicate the number of reads surviving trimming.
doi: 10.1371/journal.pone.0085024.g001
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dataset results best under certain metrics (average scaffold
length, longest scaffold, N50 in bp) but at the cost of a slightly
lower precision and a much higher computational demand.
Conversely, stringent trimming tends to heavily remove data
and decrease overall assembly quality.

Overall effects of read trimming
An overall analysis of the three computational biology

analyses investigated here allows us to draw three
conclusions. First, trimming is beneficial in RNA-Seq, SNP
identification and genome assembly procedures, with the best
effects evident for intermediate quality thresholds (Q between
20 and 30). Second, while all tools behave quite well
(compared to untrimmed scenarios), some datasets with
specific issues or low overall quality (Figure 2) benefit more
from the most recent algorithms that operate on both 5’ and 3’
ends of the read, such as ERNE-FILTER, or those allowing low
quality islands surrounded by high quality stretches, such as
ConDeTri. Third, the choice of an optimal threshold is always a
tradeoff between the amount of information retained (i.e,. the
number of surviving reads/nucleotides) and its reliability, i.e., in
RNA-Seq the alignable fraction, in SNP identification the
amount of true positive aligned nucleotides and in genome
assembly the percentage of the scaffolds correctly assembled
and mappable on the reference genome. Overall, trimming
gives also an advantage in terms of computational resources
used and execution time, assessed for genome assembly in
the present study (Figure 6) but evident also for the other
analyses (data not shown). The performance of trimming
seems to be dependent on the Q ditribution of the input
dataset. For example, we observe a sudden drop in called
SNPs above Q trimming thresholds of around 35 (Figure 3); in
facts, Q=35 is roughly the flection point in the Q distribution of
the Prunus persica dataset (Figure S1). On the other hand, for

the higher quality Saccharomyces cerevisiae dataset, the drop
in called SNPs is indeed present, but more gradual, and
observed at Q values above 36, while the Q distribution for this
datasets shows a flection point at Q=37 (Figure S1).

Discussion

It is clear that Next Generation Sequencing has become
increasingly valuable in scientific research as well as in
diagnostics. Data generated by this relatively novel approach,
taking the form of billions of short nucleotide sequences, is the
basis of contemporary Systems Biology and all studies that
deal with the systemic complexity of cells and organisms. NGS
gave researchers an unprecedented detail in studying the
nature and the dynamics of nucleic acids, whether to obtain the
continuous uninterrupted sequence of an organism genome or
to quantify the entire population of mRNAs in a particular
sample, aiming at the deeper understanding of expression-
related molecular networks.

Despite an explosion in the usage of NGS data, not much
literature deals with the best practices on how to treat short
reads produced during an NGS experiment, before their usage
in a particular biologically oriented analysis (e.g., genome
assembly, gene expression analysis). In this paper, we
investigated a much used but not well described step of quality
preprocessing of NGS raw sequences, the trimming, which
aims at keeping the highest possible information contained
within reads, discarding low quality sequences or parts of
sequences. Consequences of using untrimmed reads are
reflected in missing or wrong alignments that negatively affect
downstream analysis (e.g., transcriptome profiling, SNP, indel
and Copy Number Variant detection). Furthermore, low quality
untrimmed reads produce false k-mers that increase the

Table 2. Summary of comparisons between the trimming tools investigated in this study.

 RNASeq Genotyping Genome Assembly

 Arabidopsis dataset Human dataset Yeast dataset Peach dataset Yeast dataset Peach dataset

 
Max %Mapped Reads
(threshold)

Max %Mapped Reads
(threshold)

APOMAC at
default
threshold

APOMAC at
default
threshold N50 (bp)Accuracy Recall N50 (bp)Accuracy Recall

Untrimmed 82.774% 72.189% 0.2367% 0.2909% 9,095 99.196% 92.734% 18,093 95.116% 74.272%
ConDeTri 98.980% (HQ=40,LQ=35) 96.973% (HQ=15,LQ=10) 0.0485% 0.0851% 4,830 99.600% 91.834% 14,525 96.389% 75.090%
Cutadapt 99.422% (Q=40) 91.751% (Q=26) 0.0647% 0.1589% 6,256 99.692% 92.874% 17,653 95.349% 74.466%
ERNE-FILTER 98.687% (Q=38) 95.475% (Q=30) 0.0638% 0.1564% 6,214 99.691% 92.863% 17,665 95.374% 74.482%
FASTX 98.733% (Q=40) 87.733% (Q=40) 0.0655% 0.1614% 6,357 99.692% 92.892% 17,692 95.399% 74.510%
PRINSEQ 98.752% (Q=40) 88.616% (Q=40) 0.0652% 0.1599% 6,357 99.692% 92.890% 17,690 95.345% 74.465%
Sickle 99.422% (Q=40) 95.971% (Q=20) 0.0547% 0.1308% 5,382 99.446% 92.194% 17,074 95.495% 74.504%
SolexaQA 99.002% (Q=40) 96.743% (Q=5) 0.0644% 0.1581% 3,209 99.642% 89.770% 13,571 96.223% 74.490%
SolexaQA-BWA 98.705% (Q=38) 91.947% (Q=26) 0.0409% 0.0645% 6,256 99.692% 92.875% 17,662 95.328% 74.449%
Trimmomatic 99.422% (Q=40) 95.875% (Q=22) 0.0511% 0.1119% 4,784 99.579% 91.851% 16,141 95.766% 74.629%

By default threshold (genotyping and genome assembly columns) we set HQ=25,LQ=10 for ConDeTri, and Q=20 for the other tools. APOMAC: Average Percentage Of
Minor Allele Calls (see Materials and Methods). Accuracy: percentage of genome assembly that could be mapped to the reference genome. Recall: percentage of reference
genome covered by the assembly.
doi: 10.1371/journal.pone.0085024.t002
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chance of misassemblies and the amount of computational
resources needed.

We described the underlying algorithms guiding the
execution of nine amongst the most popular trimming programs
currently available. We tested their relative performance on
different publicly available datasets with different popular post-

processing tasks in mind, namely genome assembly, gene
expression analysis and SNP calling.

Our results show a non-obvious lack of overlap between
different trimming programs, which is not immediately
identifiable in the two different classes discernible by the
algorithms’ formulas. Despite case by case scenario, we
believe that our results show how trimming can increase the

Figure 2.  Fraction of reads mapped vs. number of reads in the quality trimmed Homo sapiens RNA-Seq dataset.  Each
symbol corresponds to a quality threshold. Peak Q parameters for each tool are reported.
doi: 10.1371/journal.pone.0085024.g002
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reliability of downstream analysis, while at the same time
reducing computational requirements (RAM, disk space and
execution time). However, different trimmers behave differently
and are highly dependent on the parameters used; in the
current paper, we explored the effects of the main quality
parameter threshold Q, showing how a Q set too high can
dramatically reduce the surviving dataset size, while a Q set
too low keeps too many noisy or plainly random reads,
decreasing dataset quality and unnecessarily increasing
computational requirements. Therefore, it is up to the
researcher to select the best tradeoff between read loss and
dataset quality. In the specific case of RNA-Seq, the tradeoff
between sensitivity (number of aligned reads) and specificity
(number of correctly aligned reads) seems to be always
detrimental when trimming the datasets (Figure S2); in such a
case, the modern aligners, like Tophat, seem to be able to
overcome low quality issues, therefore making trimming
unnecessary.

As for the generic question “what is the best trimming
algorithm?” no generic answer can be given, since this is highly
dependent on the dataset, downstream analysis and user-

decided parameter-dependent tradeoffs, as shown here.
Moreover we show how 5 algorithms (Cutadapt, ERNE-
FILTER, FASTX, PRINSEQ, and SolexaQA-BWA) exhibit a
common behavior, while the other 4 algorithms (ConDeTri,
Sickle, SolexaQA, and Trimmomatic) operate in more peculiar
ways (see File S2). Indeed there is a correlation between the
former trimmers and the results of the software that use the
trimmed reads: the better results for de-novo assembly, SNP
identification and gene-expressions derived from the window-
based tools (see Materials and methods). However, when
processing DNA-Seq data we can affirm that trimming should
be applied every time in order to improve quality and
performance; ideally, this should be done after a tuned and
intelligent comparison of several trimmers and parameters.
Also, as discussed in the Results, the general quality
distribution for the dataset to analyze should be checked before
the trimming process (Figure S1) in order to critically decide a
specific Q threshold which includes most of the dataset.

In conclusion, with this comprehensive comparison study on
trimming procedures of NGS data, we hope to have reduced

Figure 3.  Comparative assessment of variant detection based on Prunus persica reads aligned on the reference peach
genome.  Several read trimming method/threshold combinations are tested. The Average Percentage of Minor Allele Call
(APOMAC) or of Non-reference Allele Call (APONAC) are reported, together with the total number of high-confidence SNPs.
doi: 10.1371/journal.pone.0085024.g003
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the combinatorial space for finding the ideal match between
dataset/biological question and trimmer/parameters.

Materials and Methods

Trimming implementations
In the current paper we utilize a group of trimming programs,

all of them being publicly available and open-source (Table 1).
The tools can be classified in two main classes, based on the

algorithm type:

• Running sum algorithms (Cutadapt, ERNE-FILTER, and
SolexaQA with -bwa option);

• Window based algorithms (ConDeTri, FASTX, PRINSEQ,
Sickle, SolexaQA, and Trimmomatic).

In the following section we describe the general algorithms
implemented in each of these trimming programs. The
parameter Q is used in our comparative study as a variable
threshold to test the trimming properties of all the programs,
with the exception of ConDeTri, which requires two thresholds
hq and lq. In our analysis, for all trimmers, if the length of the
trimmed read drops below 70% of the original read [27], the
read is entirely discarded.

Running Sum Algorithms: Cutadapt
Cutadapt [32] implements the BWA trimming algorithm [9].

Given a quality threshold Q (option --quality-cutoff, default:
none), a running sum s is calculated from the 3’-end to the 5’-
end :

s i =s i+1+quality i −Q

Figure 4.  Number of covered nucleotides in the Prunus persica genome (total size: 227M bases) above minimum coverage
thresholds.  The analysis was performed on untrimmed reads and after trimming with 9 tools at Q=20 (for ConDeTri, default
parameters HQ=25 and LQ=10 were used).
doi: 10.1371/journal.pone.0085024.g004
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where quality(i) is the PHRED quality of the i-th base. The
formula for the 3’-end base (with i equaling the read length), is:

s i =quality i −Q

The position i where the running sum s(i) is minimal will be
chosen as the position to cut-off the 3’ bad quality region. No
base is trimmed at the 5’-end, unless if the number of the
surviving bases goes below a minimum size specified by the
parameter --minimum-length. In this case, the entire read is
discarded.

Running sum algorithms: SolexaQA (BWA
implementation)

The BWA algorithm implemented in SolexaQA and accessed
via the -bwa option [29] is basically identical to the one
implemented in Cutadapt. The Q value must be specified by
the –h option, with no default.

Running sum algorithms: ERNE-FILTER
ERNE-FILTER (erne.sourceforge.net), proposed in the

current manuscript, implements the PHRED/PHRAP modified
Mott’s trimming algorithm (www.phrap.org/phredphrap/
phred.html) and is described in the CLC workbench [33] user’s
manual. This algorithm is similar to the BWA algorithm
(implemented in Cutadapt and SolexaQA-bwa), though it runs
in the reads rightwards rather than leftwards.

Given a threshold value Q (option --min-phred-value-mott,
default: 20), the algorithm works in two steps. In the first step, it
computes the first index l where the quality is greater than Q. In
the second step, the program calculates S(l) = quality(l) - Q and
the running sum:

S i =S i−1+quality i −Q

when i is greater than l. The part of the sequence not
trimmed is the region between the position l and the last
position whose running sum is maximal. Everything before and
after is trimmed out.

Figure 5.  Comparative assessment of genome assembly metrics based on Prunus persica reads.  Several read trimming
method/threshold combinations are tested. Yellow bars report the N50 (relative to the untrimmed dataset N50). Blue bars report the
accuracy of the assembly (% of the assembled nucleotides that could be aligned on the reference Prunus persica genome). Red
bars report the recall of the assembly (% of the reference Prunus persica genome covered by the assembly).
doi: 10.1371/journal.pone.0085024.g005
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After that, if the good region length is lower than a threshold
(option --min-size, default: 25) or if the mean quality in the good
region is lower than a threshold (option --min-mean-phred-
quality, default: 15), then the read is discarded.

Window based algorithms: ConDeTri
ConDeTri [16] operates, like BWA algorithm-based tools,

from the 3’-end to the 5’-end of the read. It requires two quality
threshold values: HQ (“high quality”, specified by the parameter
-hq) and LQ (“low quality”, specified by the parameter -lq).

ConDeTri starts by removing all 3’-end bases with a score
below HQ (default: 25). However, up to ml (default: 1) single
bases with quality below HQ surrounded by high-quality bases
can be kept temporarily, unless more than one consecutive
base with quality below HQ is detected: in this situation, all
previously kept sequence is trimmed. The trimming itself stop
when a stretch of at least mh (default:5) consecutive bases is
detected. The trimmed read is kept if at least a fraction of its
bases (parameter –frac, default: 80%) has a quality score of at
least HQ, with no base having quality below LQ (default: 10).

The rationale is to dilute moderate error probability within long
stretches of correct sequences.

Window based algorithms: FASTX-Toolkit quality
trimmer

FASTX-Toolkit (hannonlab.cshl.edu/fastx_toolkit) is a suite of
programs for NGS data analysis. Its trimmer works as follows.
Given a threshold Q (required option -q, no default) the
algorithm searches within the whole sequence the longest
continuous stretch of bases with associated qualities lower
than Q. Then, all bases towards both ends of such a window
are trimmed out.

Window based algorithms: PRINSEQ
The algorithm implemented in PRINSEQ [30] is inherently

identical to the one implemented in FASTX-Toolkit quality
trimmer, with the exception that PRINSEQ can work from both
ends of the read. However, PRINSEQ has several different
options (around 30 classes) that can be tuned and combined
with the basic trimming. For example, a fixed read fragment

Figure 6.  Computational requirements necessary for full Prunus persica genome assembly (RAM peak and time) for
different combinations of read trimming tools and thresholds.  
doi: 10.1371/journal.pone.0085024.g006
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can be removed prior to the trimming itself, and special
operations can be applied for dataset-specific tasks (e.g., it is
possible to automatically remove polyA/polyT stretches from
RNA-Seq reads). The main quality thresholds can be controlled
independently for the two extremities: Qleft and Qright (options --
trim_qual_left and --trim_qual_right, no default values). In our
study, we tested several thresholds with the constraint Qleft =
Qright.

Window based algorithms: Sickle
Sickle (github.com/najoshi/sickle) works with an adaptive

window spanning the read from the 5'-end to the 3'-end, where
the window's size is 10% of the whole read length. Given a
quality threshold Q (option -q, default: 20), Sickle searches the
starting position i where the average quality of the bases in the
window is greater than or equal to Q: the first i-1 bases are
trimmed out. Then the window continues to slide to the 3'-end
until the average quality is greater or equal to Q. As soon as
the average quality drops below Q, the program identifies the
cut position to trim out bases from the 3'-end.

Window based algorithms: SolexaQA (Dynamic Trim
implementation)

The default algorithm implemented by SolexaQA was named
“Dynamic Trim” [29]. This method accepts an error probability p
(using option -p) or a quality value Q (using option -h). If no
user-specified parameters are passed, it uses the error
probability with a default of p=0.05 (equivalent to quality score
Q≈13). Given a quality value Q (or obtained by converting p
using (1)), the algorithm computes the longest contiguous
stretch of bases whose quality values are all greater than Q
and discards all other bases.

Window based algorithms: Trimmomatic
Trimmomatic [34] works with a user-defined window

spanning the read from 5' to 3' and removes bases only at 3'-
end. Given a window's length and a quality threshold Q (the
option SLIDINGWINDOW takes two parameters and it has no
default values), the algorithm cuts the 3'-end when the average
quality drops below Q.

All trimming tools were run on GNU/Linux machines at
varying Q thresholds (single Q for most, with Qleft = Qright for
PRINSEQ, combinations of HQ and LQ for ConDeTri).
Example usages for all tools are provided in File S3.

Datasets
Two distinct RNA-Seq samples were obtained from the

Sequence Read Archive (SRA) [35]. The first one is composed
by short Illumina reads (33 bp) derived from the Homo sapiens
ENCODE cell line HepG2 [36]. This cell line is characterized by
a relatively normal karyotype and is derived from liver
carcinoma (SRA entry SRR002073). The second sample is
derived from untreated Arabidopsis thaliana roots, and is
composed by longer reads (83 bp, SRA entry SRR420813).

For SNP identification and genome assembly tests we used
two different DNA-Seq sample sets. The first, obtained from a
single diploid inbred Prunus persica individual (the same used

for Sanger-based sequencing of the reference genome), is
available as SRA accession number SRX150254 [37], and is
constituted by 100 bp paired-end Illumina reads. The second
DNA-Seq sample contains 100 bp paired-end Illumina reads
from the Saccharomyces cerevisiae strain YDJ25, which is
nearly isogenic to the yeast strain used to build the reference
genome (S288C). The yeast reads were generated within a
large screening study of several yeast strains and it is available
at SRA entry SRR452441 [38].

FastQC [39] quality assessments for all these samples are
available in File S1.

Post-Processing Quality Assessments: Gene
expression analysis

Human reads were aligned to the Homo sapiens genome
sequence (hg19 v2) using Tophat v2.0.5 with default
parameters [40] under the guidance of the latest (downloaded
8-April-2013) hg19 UCSC gene annotation [41]. Arabidopsis
thaliana reads were aligned using the same tool with the latest
TAIR10 genome and gene annotation [42]. Numbers of
mapped and unmapped reads and nucleotides were obtained
analyzing the output alignment files generated by Tophat.

Post-Processing Quality Assessments: De novo
genome assembly

Raw and trimmed yeast and peach datasets were de novo
assembled with the parallel implementation of ABySS version
1.3.4 [19] with default parameters except: k=71, b=1000,
p=0.95 and s=500, in order to reliably maximize assembly and
fuse possible heterozygous regions in a single sequence [37].
Genome assembly was split in two phases in order to run the
first distributed phase of ABySS in a cluster using 8 nodes with
8 CPUs each and the second multi-threaded phase on a single
node with 8 CPUs. Running CPU time is the sum of all CPUs
time over the two phases and memory peak is the peak of
memory usage during the first phase (Table S1). Total scaffold
assembly size, number of sequences, average and maximum
length, N50 and L50 were computed for each assembly with
the GAM suite [43] and are reported in Table S1.

Scaffolds of each assembly were aligned to the
corresponding reference genome using NUCmer, part of the
software package MUMmer version 3.23 [44], with anchor
matches that are unique in both the reference and query (--
mum). Query sequences that aligned to the reference genome
at minimum 95% identity over at least 90% of query length
were extracted using show-tiling, still part of MUMmer, with
default parameters but –i 95 –v 90 –V 0 –a –c –g -1. Such
fragments represent a tiling path of queries and their sum was
defined “Assembly tiled” in (Table S1). The proportion of
assembly tiled over the whole assembly or the reference
genome represents, respectively, precision and recall.

The Prunus persica genome v1.0 was used as reference in
this paper, and is available at GenBank under the accession
number AKXU01000000 [37]. The reference Saccharomyces
cerevisiae genome (release R64) was obtained from the
Saccharomyces Genome Database [45].
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Post-Processing Quality Assessments: SNP
identification

Yeast and peach raw and trimmed reads were aligned over
the original genomes using BWA version 0.6.2 [9]. Single
Nucleotide Polymorphisms were then detected and counted
using VarScan v2.3.3 [11] with loose parameters (--min-
coverage 1 --min-reads2 1 --min-var-freq 0.01 --min-avg-qual
0). After the loose SNP call, Average Percentage Of Minor
Allele Calls (APOMAC) was calculated as the total number of
non-main allele nucleotides divided by the total number of
aligned nucleotides. Average Percentage Of Non-reference
Allele Calls (APONAC), which by definition is always greater
than or equal to APOMAC, was calculated as the total number
of non-reference allele nucleotides divided by the total number
of aligned nucleotides. SNPs were called via the internal
VarScan statistical framework with a p-value threshold of 0.05.
An additional filter is applied to these SNPs: they must fall
within nucleotide positions with coverage ranging between 0.5x
and 1.5x of the average coverage on the genome (calculated
every time for each dataset/trimmer/threshold combination) and
must have a minimum minor allele frequency (maf) of at least
30%.

Supporting Information

Figure S1.  Distributions of Q scores in the datasets
assessed in this study. Plots were generated using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc).
(TIF)

Figure S2.  Barplots indicating the percentage of reads
mapping within annotated UCSC gene models for the
human RNA-Seq dataset SRR002073. Three Q thresholds
are tested for each trimming tool; for ConDeTri, Q corresponds
to HQ and the LQ level was set to 10. The black line indicates
the total number of aligned reads at Q=25 (in Millions).
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File S1.  FastQC-generated quality plots for the datasets
analyzed in this study.
(ZIP)

File S2.  Comparative analysis of the overlaps of the
trimming tools investigated in the current paper.
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File S3.  Collection of scripts and example pipelines to run
the trimming tools.
(ZIP)

Table S1.  Complete results of the trimming analysis
performed in this study. Sheet 1-4 contains the results for the
four datasets: Prunus persica, Saccharomyces cerevisiae,
Homo sapiens and Arabidopsis thaliana. Sheet 5 contains
information on the total amount of aligned reads for the human
RNA-Seq experiment. Sheet 6 contains the results of the
coverage analysis used to generate Figure 4.
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