
An Extensive Formal Security Analysis of the

OpenID Financial-grade API

Daniel Fett

yes.com AG

mail@danielfett.de

Pedram Hosseyni

University of Stuttgart, Germany

pedram.hosseyni@sec.uni-stuttgart.de

Ralf Küsters

University of Stuttgart, Germany

ralf.kuesters@sec.uni-stuttgart.de

Abstract—Forced by regulations and industry demand, banks
worldwide are working to open their customers’ online banking
accounts to third-party services via web-based APIs. By using
these so-called Open Banking APIs, third-party companies, such
as FinTechs, are able to read information about and initiate
payments from their users’ bank accounts. Such access to
financial data and resources needs to meet particularly high
security requirements to protect customers.

One of the most promising standards in this segment is the
OpenID Financial-grade API (FAPI), currently under develop-
ment in an open process by the OpenID Foundation and backed
by large industry partners. The FAPI is a profile of OAuth 2.0
designed for high-risk scenarios and aiming to be secure against
very strong attackers. To achieve this level of security, the FAPI
employs a range of mechanisms that have been developed to
harden OAuth 2.0, such as Code and Token Binding (including
mTLS and OAUTB), JWS Client Assertions, and Proof Key for
Code Exchange.

In this paper, we perform a rigorous, systematic formal analy-
sis of the security of the FAPI, based on an existing comprehensive
model of the web infrastructure—the Web Infrastructure Model
(WIM) proposed by Fett, Küsters, and Schmitz. To this end, we
first develop a precise model of the FAPI in the WIM, including
different profiles for read-only and read-write access, different
flows, different types of clients, and different combinations of
security features, capturing the complex interactions in a web-
based environment. We then use our model of the FAPI to
precisely define central security properties. In an attempt to
prove these properties, we uncover partly severe attacks, breaking
authentication, authorization, and session integrity properties.
We develop mitigations against these attacks and finally are able
to formally prove the security of a fixed version of the FAPI.

Although financial applications are high-stakes environments,
this work is the first to formally analyze and, importantly, verify
an Open Banking security profile.

By itself, this analysis is an important contribution to the
development of the FAPI since it helps to define exact security
properties and attacker models, and to avoid severe security risks
before the first implementations of the standard go live.

Of independent interest, we also uncover weaknesses in the
aforementioned security mechanisms for hardening OAuth 2.0.
We illustrate that these mechanisms do not necessarily achieve
the security properties they have been designed for.

I. INTRODUCTION

Delivering financial services has long been a field exclusive

to traditional banks. This has changed with the emergence of

FinTech companies that are expected to deliver more than 20%

of all financial services in 2020 [1]. Many FinTechs provide

services that are based on access to a customers online banking

account information or on initiating payments from a customers

bank account.

For a long time, screen scraping has been the primary

means of these service providers to access the customer’s

data at the bank. Screen scraping means that the customer

enters online banking login credentials at the service provider’s

website, which then uses this data to log into the customer’s

online banking account by emulating a web browser. The

service provider then retrieves account information (such as

the balance or recent activities) and can trigger, for example, a

cash transfer, which may require the user to enter her second-

factor authentication credential (such as a TAN) at the service

provider’s web interface.

Screen scraping is inherently insecure: first of all, the service

provider gets to know all login credentials, including the

second-factor authentication of the customer. Also, screen

scraping is prone to errors, for example, when the website

of a bank changes.

Over the last years, the terms API banking and Open

Banking have emerged to mark the introduction of standardized

interfaces to financial institutions’ data. These interfaces enable

third parties, in particular FinTech companies, to access users’

bank account information and initiate payments through well-

defined APIs. All around the world, API banking is being

promoted by law or by industry demand: In Europe, the

Payment Services Directive 2 (PSD2) regulation mandates

all banks to introduce Open Banking APIs by September

2019 [2]. The U.S. Department of the Treasury recommends

the implementation of such APIs as well [3]. In South Korea,

India, Australia, and Japan, open banking is being pushed by

large financial corporations [4].

One important open banking standard currently under de-

velopment for this scenario is the OpenID Financial-grade

API (FAPI).1 The FAPI [5] is a profile (i.e., a set of concrete

protocol flows with extensions) of the OAuth 2.0 Authorization

Framework and the identity layer OpenID Connect to provide

a secure authorization and authentication scheme for high-

risk scenarios. The FAPI is under development at the OpenID

Foundation and supported by many large corporations, such

as Microsoft and the largest Japanese consulting firm, Nomura

Research Institute. The OpenID Foundation is also cooperating

1In its current form, the FAPI does not (despite its name) define an API
itself, but defines a security profile for the access to APIs.

453

2019 IEEE Symposium on Security and Privacy

© 2019, Daniel Fett. Under license to IEEE.
DOI 10.1109/SP.2019.00067



with other banking standardization groups: The UK Open

Banking Implementation Entity, backed by nine major UK

banks, has adopted the FAPI security profile.

The basic idea behind the FAPI is as follows: The owner

of the bank account (resource owner, also called user in what

follows) visits some website or uses an app which provides

some financial service. The website or app is called a client

in the FAPI terminology. The client redirects the user to the

authorization server, which is typically operated by the bank.

The authorization server asks for the user’s bank account

credentials. The user is then redirected back to the client with

some token. The client uses this token to obtain bank account

information or initiate a payment at the resource server, which

is typically also operated by the bank.

The FAPI aims to be secure against much stronger attackers

than its foundations, OAuth 2.0 and OpenID Connect: the FAPI

assumes that sensitive tokens leak to an attacker through the

user’s browser or operating system, and that endpoint URLs

can be misconfigured. On the one hand, both assumptions

are well motivated by real-world attacks and the high stakes

nature of the environment where the FAPI is to be used. On

the other hand, they directly break the security of OAuth 2.0

and OpenID Connect.

To provide security against such strong attackers, the FAPI

employs a range of OAuth 2.0 security extensions beyond those

used in plain OAuth 2.0 and OpenID Connect: the FAPI uses

the so-called Proof Key for Code Exchange (PKCE)2 extension

to prevent unauthorized use of tokens. For client authentication

towards the authorization server, the FAPI employs JWS Client

Assertions or mutual TLS. Additionally, OAuth token binding3

or certificate-bound access tokens4 can be used as holder-of-

key mechanisms. To introduce yet another new feature, the

FAPI is the first standard to make use of the so-called JWT

Secured Authorization Response Mode (JARM).

The FAPI consists of two main so-called parts, here also

called modes, that stipulate different security profiles for read-

only access to resource servers (e.g., to retrieve bank account

information) and read-write access (e.g., for payment initiation).

Both modes can be used by confidential clients, i.e., clients

that can store and protect secrets (such as web servers), and

by public clients that cannot securely store secrets, such

as JavaScript browser applications. Combined with the new

security features, this gives rise to many different settings and

configurations in which the FAPI can run (see also Figure 3).

This, the expected wide adoption, the exceptionally strong

attacker model, and the new security features make the FAPI

a particularly interesting, challenging, and important subject

for a detailed security analysis. While the security of (plain)

OAuth 2.0 and OpenID Connect has been studied formally

and informally many times before [6]–[21], there is no such

analysis for the FAPI—or any other open banking API—so

far. In particular, there are no results in the strong attacker

2Pronounced pixie, RFC 7636.
3https://tools.ietf.org/html/draft-ietf-oauth-token-binding-07
4https://tools.ietf.org/html/draft-ietf-oauth-mtls-11

model adopted for the FAPI, and there has been no formal

security analysis of the additional OAuth security mechanisms

employed by the FAPI (PKCE, JWS Client Assertions, mTLS

Client Authentication, OAuth Token Binding, Certificate-

Bound Access Tokens, JARM), which is of practical relevance

in its own right.

In this paper, we therefore study the security of the FAPI

in-depth, including the OAuth security extensions. Based on a

detailed formal model of the web, we formalize the FAPI with

its various configurations as well as its security properties. We

discover four previously unknown and severe attacks, propose

fixes, and prove the security of the fixed protocol based on

our formal model of the FAPI, again considering the various

configurations in which the FAPI can run. Importantly, this also

sheds light on new OAuth 2.0 security extensions. In detail,

our contributions are as follows:

Contributions of this Paper: We build a detailed formal

model of the FAPI based on a comprehensive formal model

of the web infrastructure proposed by Fett et al. in [22], which

we refer to as the Web Infrastructure Model (WIM). The WIM

has been successfully used to find vulnerabilities in and prove

the security of several web applications and standards [6], [7],

[22]–[24]. It captures a wide set of web features from DNS

to JavaScript in unrivaled detail and comprehensiveness. In

particular, it accounts for the intricate inner workings of web

browsers and their interactions with the web environment. The

WIM is ideally suited to identify logical flaws in web protocols,

detect a range of standard web vulnerabilities (like cross-site

request forgery, session fixation, misuse of certain web browser

features, etc.), and even to find new classes of web attacks.

Based on the generic descriptions of web servers in the WIM,

our models for FAPI clients and authorization servers contain

all important features currently proposed in the FAPI standards.

This includes the flows from both parts of the FAPI, as well

as the different options for client authentication, holder-of-key

mechanisms, and token binding mentioned above.

Using this model of the FAPI, we define precise security

properties for authorization, authentication, and session in-

tegrity. Roughly speaking, the authorization property requires

that an attacker is unable to access the resources of another

user at a bank, or act on that user’s behalf towards the bank.

Authentication means that an attacker is unable to log in at

a client using the identity of another user. Session integrity

means that an attacker is unable to force a user to be logged

in at a client under the attackers identity, or force a user to

access (through the client) the attacker’s resources instead of

the user’s own resources (session fixation).

During our first attempts to prove these properties, we

discovered four unknown attacks on the FAPI. With these

attacks, adversaries can gain access to the bank account of

a user, break session integrity, and, interestingly, circumvent

certain OAuth security extensions, such as PKCE and Token

Binding, employed by the FAPI.

We notified the OpenID FAPI Working Group of the attacks

and vulnerabilities found by our analysis and are working

together with them to fix the standard. To this end, we first

454



developed mitigations against the vulnerabilities. We then,

as another main contribution of our work and to support

design decisions during the further development of the FAPI,

implemented the fixes in our formal model and provided the

first formal proof of the security of the FAPI (with our

fixes applied) within our model of the FAPI, including all

configurations of the FAPI and the various ways in which the

new OAuth security extensions are employed in the FAPI (see

Figure 3). This makes the FAPI the only open banking API to

enjoy a thorough and detailed formal security analysis.

Our findings also show that (1) several OAuth 2.0 security

extensions do not necessarily achieve the security properties

they have been designed for and that (2) combining these

extensions in a secure way is far from trivial. These results are

relevant for all web applications and standards which employ

such extensions.

Structure of this Paper: We first, in Section II, recall

OAuth 2.0 and OpenID Connect as the foundations of the

FAPI. We also introduce the new defense mechanisms that

set the FAPI apart from “traditional” OAuth 2.0 and OpenID

Connect flows. This sets the stage for Section III where we go

into the details of the FAPI and explain its design and features.

In Section IV, we present the attacks on the FAPI (and the

new security mechanisms it uses), which are the results of our

initial proof attempts, and also present our proposed fixes. The

model of the FAPI and the analysis are outlined in Section V,

along with a high-level introduction to the Web Infrastructure

Model we use as the basis for our formal model and analysis of

the FAPI. We conclude in Section VI. The appendix contains

further details. Full details and proofs are provided in our

technical report [25].

II. OAUTH AND NEW DEFENSE MECHANISMS

The OpenID Financial-grade API builds upon the OAuth 2.0

Authorization Framework [26]. Compared to the original

OAuth 2.0 protocol, the FAPI aims at providing a much higher

degree of security. For achieving this, the FAPI security profiles

incorporate mechanisms defined in OpenID Connect [27]

(which itself builds upon OAuth 2.0), and importantly, security

extensions for OAuth 2.0 developed only recently by the IETF

and the OpenID Foundation.

In the following, we give a brief overview of both OAuth 2.0

and OpenID Connect, and their security extensions used

(among others) within the FAPI, namely Proof Key for Code

Exchange, JWS Client Assertions, OAuth 2.0 Mutual TLS for

Client Authentication and Certificate Bound Access Tokens,

OAuth 2.0 Token Binding and the JWT Secured Authorization

Response Mode. The FAPI itself is presented in Section III.

A. Fundamentals of OAuth 2.0 and OpenID Connect

OAuth 2.0 and OpenID Connect are widely used for various

authentication and authorization tasks. In what follows, we first

explain OAuth 2.0 and then briefly OpenID Connect, which

is based on OAuth 2.0.

1 POST /startPOST /start

2 ResponseResponse

Redirect to AS /authorization_endpointRedirect to AS /authorization_endpoint

(client_id, redirect_uri, state)(client_id, redirect_uri, state)

3 GET /authorization_endpoint (Authorization Request)GET /authorization_endpoint (Authorization Request)

(client_id, redirect_uri, state)(client_id, redirect_uri, state)

4 resource owner authenticatesresource owner authenticates

5 ResponseResponse

Redirect to C /redirect_uri (code, state)Redirect to C /redirect_uri (code, state)

6 GET /redirect_uri (Authorization Response)GET /redirect_uri (Authorization Response)

(code, state)(code, state)

7 POST /token_endpoint (Token Request)POST /token_endpoint (Token Request)

(code, client_id, [client authentication])(code, client_id, [client authentication])

8 ResponseResponse

(access token)(access token)

9 GET /resourceGET /resource

(access token)(access token)

10 ResponseResponse

(resource)(resource)

Browser (B) Client (C) Authorization Server (AS)

Authorization Server (AS)

Resource Server (RS)

Client (C) Resource Server (RS)Browser (B)

Figure 1. Overview of the OAuth Authorization Code Flow

1) OAuth 2.0: On a high level, OAuth 2.0 allows a resource

owner, or user, to enable a client, a website or an application,

to access her resources at some resource server. In order for

the user to grant the client access to her resources, the user

has to authenticate herself at an authorization server.

For example, in the context of the FAPI, resources include

the user’s account information (like balance and previous trans-

actions) at her bank or the initiation of a payment transaction

(cash transfer). The client can be a FinTech company which

wants to provide a financial service to the user via access to

the user’s bank account. More specifically, the client might

be the website of such a company (web server client) or

the company’s app on the user’s device. The resource and

authorization servers would typically be run by the user’s bank.

One client can make use of several authorization and resource

servers.

RFC 6749 [26] defines multiple modes of operation for

OAuth 2.0, so-called grant types. We here focus on the

authorization code grant since the other grant types are not

used in the FAPI.

Figure 1 shows the authorization code grant, which works

as follows: The user first visits the client’s website or opens

455



the client’s app on her smartphone and selects to log in or to

give the client access to her resources (Step 1 ). The client

then redirects the user to the so-called authorization endpoint

at the authorization server (AS) in Steps 2 and 3 . (Endpoints

are URIs used in the OAuth flow.) In this redirection, the client

passes several parameters to the AS, for example, the client

id which identifies the client at the AS, a state value that

is used for CSRF protection,5 a scope parameter (not shown

in Figure 1) that describes the permissions requested by the

client, and a redirection URI explained below. Note that if

the client’s app is used, the redirection from the app to the

AS (Step 2 ) is done by opening the website of the AS in a

browser window. The AS authenticates the user (e.g., by the

user entering username and password) in Step 4 and asks for

her consent to give the client access to her resources. The

AS then creates a so-called authorization code (typically a

nonce) and redirects the user back to the so-called redirection

endpoint of the client via the user’s browser in Steps 5 and
6 . (If the client’s app is used, a special redirect URI scheme,

e.g., some-app://, is used which causes the operating system

to forward the URI to the client’s app.) At the AS, one or

more redirection endpoints for a client are preregistered.6 In

Step 2 , the client chooses one of these preregistered URIs. The

authorization response (Step 5 ) is a redirection to this URI,

with the authorization code, the state value from the request,

and optionally further values appended as URI parameters.

When receiving the request resulting from the redirection in

Step 6 , the client first checks that the state value is the same

as the one in the authorization request, typically by looking

it up in the user’s session with the client. If it is not the

same, then the client suspects that an attacker tried to inject an

authorization code into the client’s session (cross-site request

forgery, CSRF) and aborts the flow (see also Footnote 5).

Otherwise, the client now exchanges the code for an access

token at the so-called token endpoint of the AS in Steps 7 and
8 . For this purpose, the client might be required to authenticate

to the AS (see below). With this access token, the client can

finally access the resources at the resource server (RS), as

shown in Steps 9 and 10 .

The RS can use different methods to check the validity

of an access token presented by a client. The access token

can, for example, be a document signed by the AS containing

all necessary information. Often, the access token is not a

structured document but a nonce. In this case, the RS uses

Token Introspection [28], i.e., it sends the access token to the

introspection endpoint of the AS and receives the information

associated with the token from the AS. An RS typically has

only one (fixed) AS, which means that when the RS receives

an access token, it sends the introspection request to this AS.

5The state value is a nonce. The client later ensures that it receives the same
nonce in the authorization response. Otherwise, an attacker could authenticate
to the AS with his own identity and use the corresponding authorization
response for logging in an honest user under the attacker’s identity with a
CSRF attack. This attack is also known as session swapping.

6Without preregistration, a malicious client starting a login flow with the
client id of an honest client could receive a code associated with the honest
client.

Public and Confidential Clients: Depending on whether a

client can keep long-term secrets, it is either called a public

or a confidential client. If the client is not able to maintain

secrets, as is typically the case for applications running on end-

user devices, the client is not required to authenticate itself

at the token endpoint of the AS. These kinds of clients are

called public clients. Clients able to maintain secrets, such as

web server clients, must authenticate to the token endpoint (in

Step 7 of Figure 1) and are called confidential clients.

For confidential clients, client authentication ensures that

only a legitimate client can exchange the authorization code

for an access token. OAuth 2.0 allows for several methods for

client authentication at the token endpoint, including sending

a password or proving possession of a secret [26, Section 2.3].

For public clients, other measures are available, such as PKCE

(see below), to obtain a sufficient level of security.

2) OpenID Connect: OAuth 2.0 is built for authorization

only, i.e., the client gets access to the resources of the user

only if the user consented to this access. It does not per se

provide authentication, i.e., proving the identity of the user to

the client. This is what OpenID Connect [27] was developed

for. It adds an id token to OAuth 2.0 which is issued by the

AS and contains identity information about the end-user. ID

tokens can be issued in the response from the authorization

endpoint (Step 5 of Figure 1) and/or at the token endpoint

(Step 8 of Figure 1). They are signed by the AS and can be

bound to other parameters of the response, such as the hash

of authorization codes or access tokens. Therefore, they can

also be used to protect responses against modification.

B. Proof Key for Code Exchange

The Proof Key for Code Exchange (PKCE) extension (RFC

7636) was initially created for OAuth public clients and

independently of the FAPI. Its goal is to protect against the use

of intercepted authorization codes. Before we explain how it

works, we introduce the attack scenario against which PKCE

should protect according to RFC 7636.

This attack starts with the leakage of the authorization

code after the browser receives it in the response from the

authorization endpoint (Step 5 of Figure 1). A multitude of

problems can lead to a leak of the code, even if TLS is used

to protect the network communication:

• On mobile operating systems, multiple apps can register

themselves onto the same custom URI scheme (e.g.,

some-app://redirection-response). When receiving the au-

thorization response, the operating system may forward

the response (and the code) to a malicious app instead of

the honest app (see [29, Section 1] and [30, Section 8.1]).

• Mix-up attacks, in which a different AS is used than the

client expects (see [6] for details), can be used to leak an

authorization code to a malicious server.

• As highlighted in [7], a Referer header can leak the code

to an adversary.

• The code can also appear in HTTP logs that can be

disclosed (accidentally) to third parties or (intentionally)

to administrators.

456



In a setting with a public client (i.e., without client authenti-

cation at the token endpoint), an authorization code leaked to

the attacker can be redeemed directly by the attacker at the

authorization server to obtain an access token.

RFC 7636 aims to protect against such attacks even if not

only the authorization response leaks but also the authorization

request as well. Such leaks can happen, for example, from

HTTP logs (Precondition 4b of Section 1 of RFC 7636) or

unencrypted HTTP connections.

PKCE works as follows: Before sending the authorization

request, the client creates a random value called code verifier.

The client then creates the code challenge by hashing the

verifier7 and includes the challenge in the authorization request

(Step 2 of Figure 1). The AS associates the generated

authorization code with this challenge. Now, when the client

redeems the code in the request to the token endpoint (Step 7

of Figure 1), it includes the code verifier in the token request.

This message is sent directly to the AS and protected by TLS,

which means that the verifier cannot be intercepted. The idea is

that if the authorization code leaked to the attacker, the attacker

still cannot redeem the code to obtain the access token since

he does not know the code verifier.

C. Client Authentication using JWS Client Assertions

As mentioned above, the goal of client authentication is to

bind an authorization code to a certain confidential client such

that only this client can redeem the code at the AS. One method

for client authentication is the use of JWS Client Assertions

[27, Section 9], which requires proving possession of a key

instead of sending a password directly to the authorization

server, as in plain OAuth 2.0.

To this end, the client first generates a short document

containing its client identifier and the URI of the token

endpoint. Now, depending on whether the client secret is a

private (asymmetric) or a symmetric key, the client either signs

or MACs this document. It is then appended to the token

request (Step 7 of Figure 1). As the document contains the URI

of the receiver, attacks in which the attacker tricks the client

into using a wrong URI are prevented, as the attacker cannot

reuse the document for the real endpoint (cf. Section III-C4).

Technically, the short document is encoded as a JSON Web

Token (JWT) [31] to which its signature/MAC is attached to

create a so-called JSON Web Signature (JWS) [32].

D. OAuth 2.0 Mutual TLS

OAuth 2.0 Mutual TLS for Client Authentication and Cer-

tificate Bound Access Tokens (mTLS) [33] provides a method

for both client authentication and token binding.

OAuth 2.0 Mutual TLS Client Authentication makes use of

TLS client authentication8 at the token endpoint (in Step 7

of Figure 1). In TLS client authentication, not only the server

7If it is assumed that the authorization request never leaks to the attacker,
it is sufficient and allowed by RFC 7636 to use the verifier as the challenge,
i.e., without hashing.

8As noted in [33], Section 5.1 this extension supports all TLS versions with
certificate-based client authentication.

authenticates to the client (as is common for TLS) but the client

also authenticates to the server. To this end, the client proves

that it knows the private key belonging to a certificate that is

either (a) self-signed and preconfigured at the respective AS

or that is (b) issued for the respective client id by a predefined

certificate authority within a public key infrastructure (PKI).

Token binding means binding an access token to a client

such that only this client is able to use the access token at

the RS. To achieve this, the AS associates the access token

with the certificate used by the client for the TLS connection

to the token endpoint. In the TLS connection to the RS (in

Step 9 of Figure 1), the client then authenticates using the

same certificate. The RS accepts the access token only if the

client certificate is the one associated with the access token.9

E. OAuth 2.0 Token Binding

OAuth 2.0 Token Binding (OAUTB) [34] is used to bind

access tokens and/or authorization codes to certain TLS

connections. It is based on the Token Binding protocol [35]–

[38] and can be used with all TLS versions. In the following,

we first sketch token binding in general before we explain

OAuth 2.0 Token Binding.

1) Basics: For simplicity of presentation, in the following,

we assume that a browser connects to a web server. The

protocol remains the same if the browser is replaced by another

server. (In the context of OAuth 2.0, in some settings in fact

the client takes the role of the browser as explained below.)

At its core, token binding works as follows: When a web

server indicates (during TLS connection establishment) that

it wants to use token binding, the browser making the HTTP

request over this TLS connection creates a public/private key

pair for the web server’s origin. It then sends the public key to

the server and proves possession of the private key by using

it to create a signature over a value unique to the current TLS

connection. Since the browser re-uses the same key pair for

future connections to the same origin, the web server will be

able to unambiguously recognize the browser in future visits.

Central for the security of token binding is that the private

key remains secret inside the browser. To prevent replay attacks,

the browser has to prove possession of the private key by

signing a value that is unique for each TLS session. To this

end, token binding uses the Exported Keying Material (EKM)

of the TLS connection, a value derived from data of the TLS

handshake between the two participants, as specified in [38].

As long as at least one party follows the protocol, the EKM

will be unique for each TLS connection.

We can now illustrate the usage of token binding in the

context of a simplified protocol in which a browser B requests

a token from a server S: First, B initiates a TLS connection

to S, where B and S use TLS extensions [36] to negotiate the

use of token binding and technical details thereof. Browser B

then creates a public/private key pair (kB,S,k
′
B,S) for the origin

of S, unless such a key pair exists already. The public key kB,S

9As mentioned above, the RS can read this information either directly from
the access token if it is a signed document, or uses token introspection to
retrieve the data from the AS.

457



(together with technical details about the key, such as its bit

length) is called Token Binding ID (for the specific origin).

When sending the first HTTP request over the established

TLS connection, B includes in an HTTP header the so-called

Token Binding Message:

TB-Msg[kB,S,sig(EKM,k′B,S)] (1)

It contains both the Token Binding ID (i.e., essentially kB,S) and

the signed EKM value from the TLS connection, as specified

in [39]. The server S checks the signature using kB,S as included

in this message and then creates a token and associates it with

the Token Binding ID as the unique identifier of the browser.

When B wants to redeem the token in a new TLS connection

to S, B creates a new Token Binding Message using the same

Token Binding ID, but signs the new EKM value:

TB-Msg[kB,S,sig(EKM,k′B,S)] (2)

As the EKM values are unique to each TLS connection, S

concludes that the sender of the message knows the private

key of the Token Binding ID, and as the sender used the same

Token Binding ID as before, the same party that requested the

token in the first request is using it now.

The above describes the simple situation that B wants to

redeem the token received from S again at S, i.e., from the

same origin. In this case, we call the token binding message

in (1) a provided token binding message. If B wants to redeem

the token received from S at another origin, say at C, then

instead of just sending the provided token message in (1), B

would in addition also send the so-called referred token binding

message, i.e., instead of (1) B would send

TB-prov-Msg[kB,S,sig(EKM,k′B,S)],

TB-ref-Msg[kB,C,sig(EKM,k′B,C)].
(3)

Note that the EKM is the same in both messages, namely the

EKM value of the TLS connection between B and S (rather

than between B and C, which has not happened yet anyway).

Later when B wants to redeem the token at C, B would use

kB,C in its (provided) token message to C.

2) Token Binding for OAuth: In the following, we explain

how token binding is used in OAuth in the case of app clients.

The case of web server clients is discussed below.

The flow is shown in Figure 2. Note that in this case, token

binding is used between the OAuth client and the authorization

and resource servers; the browser in Figure 1 is not involved.

The client has two token binding key pairs, one for the AS

and one for the RS (if these key pairs do not already exist,

the client creates them during the flow). When sending the

authorization request (Step 2 of Figure 2), the client includes

the hash of the Token Binding ID it uses for the AS as a PKCE

challenge (cf. Section II-B). When exchanging the code for

an access token in Step 7 , the client proves possession of the

private key of this Token Binding ID, and the AS only accepts

the request when the hash of the Token Binding ID is the

same as the PKCE challenge. Therefore, the code can only be

exchanged by the participant that created the authorization

1 POST /startPOST /start

2 ResponseResponse

Redirect to AS /authorization_endpointRedirect to AS /authorization_endpoint

(client_id, . . . , hash(kC,AS))(client_id, . . . , hash(kC,AS))

3 GET /authorization_endpointGET /authorization_endpoint

(client_id, . . . , hash(kC,AS))(client_id, . . . , hash(kC,AS))

4 resource owner authenticatesresource owner authenticates

5 ResponseResponse

Redirect to C /redirect_uri (code, state)Redirect to C /redirect_uri (code, state)

6 GET /redirect_uriGET /redirect_uri

(code, state)(code, state)

7 POST /token_endpointPOST /token_endpoint

(code, . . . ,(code, . . . ,

TB-prov-Msg[kC,AS,sig1], TB-ref-Msg[kC,RS,sig′1])TB-prov-Msg[kC,AS,sig1], TB-ref-Msg[kC,RS,sig′1])

8 ResponseResponse

(access token)(access token)

9 GET /resourceGET /resource

(access token, TB-prov-Msg[kC,RS,sig2])(access token, TB-prov-Msg[kC,RS,sig2])

10 ResponseResponse

(resource)(resource)

Browser Client Authorization Server

Create (kC,AS,k
′
C,AS)Create (kC,AS,k
′
C,AS)

Create (kC,RS,k
′
C,RS)Create (kC,RS,k
′
C,RS)

Authorization Server

Resource Server

Client Resource ServerBrowser

Figure 2. OAUTB for App Clients

request. Note that for this purpose the AS only takes the

provided token binding message sent to the AS in Step 7

into account. However, the AS also checks the validity of the

referred token binding message (using the same EKM value)

and associates kC,RS with the token issued by the AS in Step 8 .

The token binding ID kC,RS is used in Step 9 by the client to

redeem the token at the RS. The RS then checks if this is the

same token binding ID that is associated with the access token.

This information can be contained in the access token if it is

structured and readable by the RS or via token introspection.

Altogether, Token Binding for OAuth (in the case of app

clients) is supposed to bind both the authorization code and

the access token to the client. That is, only the client who

initiated the flow (in Step 2 ) can redeem the authorization

code at the AS and the corresponding access token at the RS,

and hence, get access to the resource at the RS.

3) Binding Authorization Codes for Web Server Clients:

In the case that the client is a web server, the binding of

the authorization code to the client is already done by client

458



authentication, as a web server client is always confidential (cf.

Section II-A1). Therefore, the client does not include the hash

of a Token Binding ID in the authorization request (Step 2 of

Figure 2). Instead, the mechanism defined in OAUTB aims at

binding the authorization code to the browser/client pair. (The

binding of the access token to the client is done in the same

way as for an app client).

More precisely, for web server clients, the authorization code

is bound to the token binding ID that the browser uses for the

client. For this purpose, the client includes an additional HTTP

header in the first response to the browser (Step 2 of Figure 2),

which signals the browser that it should give the token binding

ID it uses for the client to the authorization server. When

sending the authorization request to the authorization server in

Step 3 , the browser thus includes a provided and a referred

token binding message, where the referred message contains

the token binding ID, that the browser later uses for the

client (say, kB,C). When generating the authorization code, the

authorization server associates the code with kB,C.

When redirecting the code to the client in Step 6 , the

browser includes a token binding message for kB,C, thereby

proving possession of the private key.

When sending the token request in Step 7 , the client

includes kB,C. We highlight that the client does not send a

token binding message for kB,C since the client does not know

the corresponding private key (only the browser does).

The authorization server checks if this key is the same

token binding ID it associated the authorization code with, and

therefore, can check if the code was redirected to the client

by the same browser that made the authorization request. In

other words, by this the authorization code is bound to the

browser/client pair.

F. JWT Secured Authorization Response Mode

The recently developed JWT Secured Authorization Re-

sponse Mode (JARM) [40] aims at protecting the OAuth

authorization response (Step 5 of Figure 1) by having the AS

sign (and optionally encrypt) the response. The authorization

response is then encoded as a JWT (see Section II-C). The

JARM extension can be used with any OAuth 2.0 flow.

In addition to the regular parameters of the authorization

response, the JWT also contains its issuer (identifying the AS)

and its audience (client id). For example, if combined with

the Authorization Code Flow, the response JWT contains the

issuer, audience, authorization code, and state values.

By using JARM, the authorization response is integrity pro-

tected and injection of leaked authorization codes is prevented.

III. THE OPENID FINANCIAL-GRADE API

The OpenID Financial-grade API [5] currently comprises

two implementer’s drafts. One defines a profile for read-

only access, the other one for read-write access. Building on

Section II, here we describe both profiles and the various

configurations in which these profiles can run (see Figure 3).

Furthermore, we explain the assumptions made within the FAPI

standard and the underlying OAuth 2.0 extensions.

Read-Only

JWS mTLS

OAUTB

Web Server TB

mTLS
Client

Authentication
JWS

Holder of Key

Mechanism

OAUTB for

Code Binding

App

Web Server

JARM (Code Flow) Hybrid FlowCode Flow

PKCE

FAPI

Read-Write

pub

App TB

pubconf conf

OAUTB mTLS

App TB

Figure 3. Overview of the FAPI. One path (terminated by a box with
rounded corners) describes one possible configuration of the FAPI.
The paths marked with PKCE use PKCE. JARM and Hybrid flows
both allow for the configurations shown.

A. Financial-grade API: Read-Only Profile

In the following, we explain the Read-Only flow as described

in [41]. The Read-Only profile aims at providing a secure way

for accessing data that needs a higher degree of protection

than regular OAuth, e.g., for read access to financial data.

The Read-Only flow is essentially an OAuth Authorization

Code flow (cf. Section II). Additionally, the client can request

an ID Token (see Section II-A2) from the token endpoint by

adding a scope parameter to the authorization request (Step 2

of Figure 1) with the value openid.

In contrast to regular OAuth and OpenID Connect, the client

is required to have a different set of redirection URIs for

each authorization server. This separation prevents mix-up

attacks, where the authorization response (Step 6 in Figure 1)

comes from a different AS than the client expects (see [6] and

[42] for more details on mix-up attacks). When receiving the

authorization response, the client checks if the response was

received at the redirection URI specified in the authorization

request (Step 2 in Figure 1).

One of the main additions to the regular OAuth flow is

the use of PKCE as explained in Section II-B. The PKCE

challenge is created by hashing a nonce.

The FAPI furthermore requires confidential clients to

authenticate at the token endpoint (in Step 7 of Figure 1)

using either JWS Client Assertions (cf. Section II-C) or

Mutual TLS (cf. Section II-D). Public clients do not use client

authentication.

B. Financial-grade API: Read-Write Profile

The Read-Write profile [43] aims at being secure under

stronger assumptions than the Read-Only profile, in order to

459



be suitable for scenarios such as write access to financial data.

The full set of assumptions is described in Section III-C.

The flow can be either an OpenID Connect (OIDC)

Hybrid flow, which means that both the authorization response

(Step 5 in Figure 1) and the token response (Step 8 in

Figure 1) contain an id token (see Section II-A2), or any other

OAuth-based flow used together with JARM (see Section II-F).

When using the Hybrid flow, the FAPI profile also requires

that the hash of the state value is included in the first id token.

In addition to the parameters of the Read-Only flow, the au-

thorization request prepared by the client (Step 2 of Figure 1)

is required to contain a request JWS, which is a JWT, signed

by the client, containing all request parameters together with

the audience of the request (cf. Section II-C).

One of the main security features of the profile is the

binding of the authorization code and the access token

to the client, which is achieved by using either mTLS

(cf. Section II-D) or OAUTB (OAuth 2.0 Token Binding, see

Section II-E). A public client is required to use OAUTB, while

a confidential client can use either OAUTB or mTLS.

If the client is a confidential client using mTLS, the request

does not contain a PKCE challenge. When using OAUTB, the

client uses a variant of PKCE, depending on whether the

client is a web server client or an app client (cf. Section II-E).

In the case of a confidential client, the client authentication

at the token endpoint is done in the same way as for the

Read-Only flow, i.e., by using either JWS Client Assertions

(cf. Section II-C) or Mutual TLS (cf. Section II-D).

C. Overview of Assumptions and Mitigations

In the following, we explain the conditions under which

the FAPI profiles and the OAuth extensions aim to be secure

according to their specifications.

1) Leak of Authorization Response: As described in Sec-

tion II-B in the context of PKCE, there are several scenarios

in which the authorization response (Step 6 of Figure 1), and

hence, the authorization code, can leak to the attacker (in clear),

in particular in the case of app clients. In our model of the

FAPI, we therefore assume that the authorization response is

given to the attacker if the client is an app. At first glance,

leakage of the authorization code is indeed mitigated by the

use of PKCE since an attacker does not know the code verifier,

and hence, cannot redeem the code at the AS. However, our

attack described in Section IV-C shows that the protection

provided by PKCE can be circumvented.

2) Leak of Authorization Request: The Read-Only profile

of the FAPI explicitly states that the PKCE challenge should

be created by hashing the verifier. The use of hashing should

protect the PKCE challenge even if the authorization request

leaks (e.g., by leaking HTTP logs, cf. Section II-B), and

therefore, we assume in our model that the authorization

request (Step 2 of Figure 1) leaks to the attacker.

3) Leak of Access Token: In the Read-Write profile, it is

assumed that the access token might leak due to phishing [43,

Section 8.3.5]. In our model, we therefore assume that the

access token might leak in Step 5 of Figure 1. This problem

is seemingly mitigated by using either mTLS or OAUTB,

which bind the access token to the legitimate client, and hence,

only the legitimate client should be able to redeem the access

token at the RS even if the access token leaked. The FAPI

specification states: “When the FAPI client uses MTLS or

OAUTB, the access token is bound to the TLS channel, it is

access token phishing resistant as the phished access tokens

cannot be used.” [43, Section 8.3.5]. However, our attack

presented in Section IV-A shows that this is not the case.

4) Misconfigured Token Endpoint: An explicit design deci-

sion by the FAPI working group was to make the Read-Write

profile secure even if the token request (Step 7 of Figure 1)

leaks. The FAPI specification describes this attack as follows:

“In this attack, the client developer is social engineered into

believing that the token endpoint has changed to the URL that

is controlled by the attacker. As the result, the client sends

the code and the client secret to the attacker, which will be

replayed subsequently.” [43, Section 8.3.2].

Therefore, we make this assumption also in our FAPI

model. Seemingly, this problem is mitigated by code binding

through client authentication or OAUTB, which means that

the attacker cannot use the stolen code at the legitimate token

endpoint. “When the FAPI client uses MTLS or OAUTB, the

authorization code is bound to the TLS channel, any phished

client credentials and authorization codes submitted to the

token endpoint cannot be used since the authorization code is

bound to a particular TLS channel.” [43, Section 8.3.2]. Note

that in the FAPI the client does not authenticate by using the

client secret as a password, but by proving possession (either

using JWS Client Assertions or mTLS), which means that the

attacker cannot reuse credentials.

However, our attack presented in Section IV-B shows that

this intuition is misleading.

IV. ATTACKS

As already mentioned in the introduction, in Section V we

present our rigorous formal analysis of the FAPI based on

the Web Infrastructure Model. Through this formal analysis of

the FAPI with the various OAuth 2.0 extensions it uses, we

not only found attacks on the FAPI but also on some of the

OAuth 2.0 extensions, showing that (1) these extensions do

not achieve the security properties they have been designed

for and (2) that combining these extensions in a secure way is

far from trivial. Along with the attacks, we also propose fixes

to the standards. Our formal analysis presented in Section V

considers the fixed versions.

We start by describing two attacks on Token Binding,

followed by an attack on PKCE, and one vulnerability hidden

in the assumptions of PKCE.

We emphasize that our attacks work even if all communica-

tion uses TLS and even if the attacker is merely a web attacker,

i.e., does not control the network but only certain parties.

As already mentioned in the introduction, we notified the

OpenID FAPI Working Group of the attacks found by our

analysis and are working together with them to fix the standard.

460



A. Cuckoo’s Token Attack

As explained in Section III-C3, the Read-Write profile of the

FAPI aims at providing security even if the attacker obtains an

access token, e.g., due to phishing. Intuitively, this protection

seems to be achieved by binding the access token to the client

via mTLS (see Section II-D) or OAUTB (see Section II-E).

However, these mechanisms prevent the attacker only from

directly using the access token in the same flow. As illustrated

next, in a second flow, the attacker can inject the bound access

token and let the client (to which the token is bound) use this

token, which enables the attacker to access resources belonging

to an honest identity.

This attack affects all configurations of the Read-Write

profile (see Figure 3). Also, the Read-Only profile is vulnerable

to this attack; this profile is, however, not meant to defend

against stolen access tokens.

We note that the underlying principle of the attack should

be relevant to other use-cases of token binding as well, i.e.,

whenever a token is bound to a participant, the involuntary

use of a leaked token (by the participant to which the token

is bound) should be prevented.

1 POST /startPOST /start

2 ResponseResponse

Redirect to AS (client_id, redirect_uri, state)Redirect to AS (client_id, redirect_uri, state)

3 GET /redirect_uriGET /redirect_uri

(code, state, id token1)(code, state, id token1)

4 POST /token_endpointPOST /token_endpoint

(code, client_id)(code, client_id)

5 ResponseResponse

(access token, id token2)(access token, id token2)

6 GET /resourceGET /resource

(access token)(access token)

7 ResponseResponse

resourceresource

Attacker (User) Client Attacker (AS)

Attacker (AS)

Resource Server

Attacker (User) Client Resource Server

Figure 4. Cuckoo’s Token Attack

Figure 4 depicts the attack for the OIDC Hybrid Flow,

i.e., when both responses of the AS contain id tokens (see

Section III-B). The attack works analogously for the code flow

in combination with JARM (see Section III-B).

As explained, we assume that the attacker already obtained

(phished) an access token issued by an honest AS to an honest

client for accessing resources of an honest user. We also

assume that the honest client supports the use of several ASs (a

common setting in practice, as already mentioned in Section II),

where in this case one of the ASs is dishonest.10

First, the attacker starts the flow at the client and chooses his

own AS. Since he is redirected to his own AS in Step 2 , he can

skip the user authentication step and return an authorization

response immediately. Apart from that, the flow continues

normally until Step 4 , where the client sends the code to the

attacker AS. In Step 5 , the attacker AS returns the previously

phished access token together with the second id token.

Until here, all checks done by the client pass successfully,

as the attacker AS adheres to the protocol. The only difference

to an honest authorization server is that the attacker AS returns

a phished access token. In Step 6 , the resource server receives

the (phished) access token and provides the client access to

the honest resource owner’s resources for the phished access

token,11 which implies that now the attacker has access to

these resources through the client.

To prevent the use of leaked access tokens, the client should

include, in the request to the RS, the identity of the AS the

client received the access token from. The client can take

this value from the second id token. Now, the RS would only

continue the flow if its belief is consistent with the one of the

RS. We apply an analogous fix for flows with JARM. These

fixes are included in our model and shown to work in Section V.

B. Access Token Injection with ID Token Replay

As described in Section III-C3, the Read-Write profile aims

to be secure if an attacker acquires an access token for an

honest user. The profile also aims to be secure even if the token

endpoint URI is changed to an attacker-controlled URI (see

Section III-C4). Now, interestingly, these two threat scenarios

combined in this order are the base for the attack described

in the following. In this attack, the attacker returns an access

token at the misconfigured token endpoint. While the attack

looks similar to the previous attack at first glance, here the

attacker first interacts with the honest AS and later replays

an id token at the token endpoint. Both attacks necessitate

different fixes. The outcome, however, is the same, and, just

as the previous attack, this attack affects all configurations of

the Read-Write profile, even if JARM is used. We explain the

attack using the Hybrid Flow.

Figure 5 shows how the attack proceeds. The attacker

initiates the Read-Write flow at the client and follows the

regular flow until Step 6 . As the authorization response was

10We highlight that we do not assume that the attacker controls the AS that
issued the access token (i.e., the AS at which the honest user is registered). This
means that the (honest) user uses an honest client and an honest authorization
server.

11Which RS is used in combination with an AS depends on the configuration
of the client, which is acquired through means not defined in OAuth. Especially
in scenarios where this configuration is done dynamically, a dishonest AS
might be used in combination with an honest RS. But also if the client is
configured manually, as is often the case today, it might be misconfigured or
social engineered into using specific endpoints. Recall from Section II-A that
the access token might be a document signed by the (honest) AS containing
all information the RS needs to process the access token. Alternatively, and
more common, the RS performs token introspection, if the access token is
just a nonce. The RS typically uses only one AS (in this case, the honest AS)
to which it will send the introspection request.

461



1 POST /startPOST /start

2 ResponseResponse

Redirect to AS /authorization_endpointRedirect to AS /authorization_endpoint

(client_id, redirect_uri, state)(client_id, redirect_uri, state)

3 GET /authorization_endpointGET /authorization_endpoint

(client_id, redirect_uri, state)(client_id, redirect_uri, state)

4

attacker authenticatesattacker authenticates

5 ResponseResponse

Redirect to C /redirect_uri (code, state, id token)Redirect to C /redirect_uri (code, state, id token)

6 GET /redirect_uriGET /redirect_uri

(code, state, id token)(code, state, id token)

7 POST /token_endpointPOST /token_endpoint

(code, client_id, [client authentication])(code, client_id, [client authentication])

8 ResponseResponse

(access token, id token)(access token, id token)

9 GET /resourceGET /resource

access tokenaccess token

10 ResponseResponse

resourceresource

Attacker (User) Client Authorization Server

Authorization Server

Attacker (Token EP)

Attacker (Token EP)

Resource Server

Client Resource ServerAttacker (User)

Figure 5. Access Token Injection with ID Token Replay Attack

created by the honest AS, the state and all values of the id token

are correct and the client accepts the authorization response.

In Step 7 , the client sends the token request to the

misconfigured token endpoint controlled by the attacker. The

value of the code and the checks regarding client authentication

and proof of possession of keys are not relevant for the attacker.

In Step 8 , the attacker sends the token response containing

the phished access token. As the flow is an OIDC Hybrid Flow,

the attacker is required to return an id token. Here, he returns

the same id token that he received in Step 5 , which is signed

by the honest AS. The client is required to ensure that both

id tokens have the same subject and issuer values, which in

this case holds true since they are identical.

The client sends the access token to the honest resource

server, by which the attacker gets read-write access to the

resource of the honest resource owner through the client.

As we show in our security analysis (see Section V), this

scenario is prevented if the second id token is required to

contain the hash of the access token that is returned to the

client, as the attacker cannot create id tokens with a valid

signature of the AS. A similar fix also works for flows with

JARM. The fixes are already included in our model.

C. PKCE Chosen Challenge Attack

As detailed in Section III-C1, the FAPI uses PKCE in

order to protect against leaked authorization codes. This is

particularly important for public clients as these clients, unlike

confidential ones, do not authenticate to an AS when trying to

exchange the code for an access token.

Recall that the idea of PKCE is that a client creates a PKCE

challenge (hash of a nonce), gives it to the AS, and when

redeeming the authorization code at the AS, the client has to

present the correct PKCE verifier (the nonce). This idea works

when just considering an honest flow in which the code leaks

to the attacker, who does not know the PKCE verifier. However,

our attack shows that the protection can be circumvented by

an attacker who pretends to be an honest client.

This attack affects public clients who use the Read-Only

profile of the FAPI. It works as follows (see Figure 6): As

in RFC 7636, two apps are installed on a user’s device, an

honest app and a malicious app. The honest app is a client

of an honest AS with the client identifier hon_client_id and

the redirection URI hon_redir_uri. The malicious app is not

registered at the AS.

The Read-Only flow starts at the malicious app, which

prompts the user to log in. Now, the malicious app prepares an

authorization request containing the client id and a redirect URI

of the honest client (Step 2 ). At this point, the malicious app

also creates a PKCE verifier and includes the corresponding

challenge in the authorization request.

The flow continues until the browser receives the autho-

rization response in Step 5 . As the redirection URIs are

preregistered at the AS, the redirection URI in the authorization

request was chosen from the set of redirect URIs of the honest

app, and therefore, the authorization response is redirected to

the honest client after the browser receives it.

As described in Sections II-B and III-C1, at this point, the

authorization response with the authorization code might leak

to the attacker (Step 6 ). The malicious app is now able to

exchange the code (associated with the honest client) at the

token endpoint in Steps 7 and 8 , as it knows the correct

PKCE verifier and, as the honest app is a public client, without

authenticating to the AS.

To prevent this scenario, an honest AS must ensure that

the PKCE challenge was created by the client with the id

hon_client_id. To achieve this, for public clients in the Read-

Only flow we use the same mechanism that the FAPI uses for

public clients in the Read-Write flow, namely the authorization

request should contain a signed JWT (see also Section II-C,

although JWTs are now used in a different way). This ensures

that the client stated in the request actually made the request,

and hence, no other client should know the PKCE verifier. Note

that by using signed JWTs for public clients the FAPI assumes

that public clients can store some secrets (which might, for

462



1 POST /startPOST /start

2 ResponseResponse

Redirect to ASRedirect to AS

(hon_client_id, hon_redirect_uri, pkce_cc)(hon_client_id, hon_redirect_uri, pkce_cc)

3 GET /authorization_endpointGET /authorization_endpoint

(hon_client_id, hon_redirect_uri, pkce_cc)(hon_client_id, hon_redirect_uri, pkce_cc)

4

honest user authenticateshonest user authenticates

5 ResponseResponse

Redirect to Client (code, state)Redirect to Client (code, state)

6 LeakageLeakage

code, statecode, state

7 POST /token_endpointPOST /token_endpoint

(code, pkce_cv)(code, pkce_cv)

8 ResponseResponse

access tokenaccess token

9 GET /resourceGET /resource

access tokenaccess token

10

resourceresource

Browser Attacker (Client) Authorization Server

Authorization Server

Resource Server

Browser Resource ServerAttacker (Client)

Figure 6. PKCE Chosen Challenge Attack

example, be protected by user passwords). Our fix is already

included in the model and our analysis (Section V) shows that

it works.

D. Authorization Request Leak Attacks

As explained in Section III-C2, the PKCE challenge is

created such that PKCE is supposed to work even if the

authorization request leaks (see also Section II-B).

However, if a leak of the authorization request occurs not

only the PKCE challenge leaks to the attacker but also the

state value, since both values are contained in the authorization

request. Our attack shows that an attacker who knows the state

value can circumvent the CSRF protection the state value was

supposed to provide. As a result of the attack, the honest user

is logged in under the identity of the attacker and uses the

resources of the attacker, which breaks session integrity. The

details of this attack are presented in Appendix A.

This is a well-known class of attacks for plain OAuth

flows [44], but it is important to highlight that the protections

designed into the FAPI do not sufficiently protect most flows

against such attacks, even though PKCE explicitly foresees the

attack vector.

To prevent this attack, one essentially has to prevent CSRF

forgery in this context. However, this is non-trivial because of

the very strong attacker model considered by the OpenID FAPI

Working Group: leaks and misconfigurations are assumed to

occur at various places. As further explained in Appendix A,

just assuming that the authorization request does not leak to

the attacker would not fix the problem in general; one at

least would have to assume that the authorization response

does not leak either. Making these assumptions, however,

of course contradicts the OpenID FAPI Working Group’s

intention, namely providing security even in the presence of

very strong attackers.

Fortunately, we can prove that regular FAPI web server

clients which use OAUTB are not vulnerable to this attack

even in the presence of the strong attackers assumed by the

OpenID FAPI Working Group and throughout this paper. More

specifically, we can prove session integrity of the FAPI for such

clients (and strong attackers), which in particular excludes the

above attack (see Section V). For all other types of clients, our

attack works, and there does not seem to be a fix which would

not massively change the flows, and hence, the standards, as

argued in Appendix A. In this sense, our results for session

integrity appear to be the best we can obtain for the FAPI.

V. FORMAL SECURITY ANALYSIS

In this section, we present our formal analysis of the FAPI.

We start by very briefly recalling the Web Infrastructure Model

(WIM), followed by a sketch of our formal model of the

FAPI, which as already mentioned uses the WIM as its basic

web infrastructure model. We then introduce central security

properties the FAPI is supposed to satisfy, along with our main

theorem stating that these properties are satisfied.

Since we cannot present the full formal details here, we

provide some more details in the appendix, with full details

and proofs provided in our technical report [25]. This includes

the precise formalization of clients, authorization servers, and

resource servers, as well as full detailed proofs.

A. The Web Infrastructure Model

The Web Infrastructure Model (WIM) was introduced by

Fett, Küsters, and Schmitz in [22] (therefore also called the

FKS model) and further developed in subsequent work. The

appendix of [45] provides a detailed description of the model; a

comparison with other models and a discussion of its scope and

limitations can be found in [22]–[24]. We here only give a brief

overview of the WIM following the description in [7], with

some more details presented in Appendix B. As explained there,

we slightly extend the WIM, among others to model OAUTB.

We choose the WIM for our work because, as mentioned in

the introduction, the WIM is the most comprehensive model

of the web infrastructure to date.

The WIM is designed independently of a specific web

application and closely mimics published (de-facto) standards

and specifications for the web, for example, the HTTP/1.1 and

HTML5 standards and associated (proposed) standards. Among

463



others, HTTP(S) requests and responses,12 including several

headers, such as cookie, location, referer, authorization, strict

transport security (STS), and origin headers, are modeled. The

model of web browsers captures the concepts of windows,

documents, and iframes, including the complex navigation

rules, as well as modern technologies, such as web storage, web

messaging (via postMessage), and referrer policies. JavaScript

is modeled in an abstract way by so-called scripts which can

be sent around and, among others, can create iframes, access

other windows, and initiate XMLHttpRequests.

The WIM defines a general communication model, and,

based on it, web systems consisting of web browsers, DNS

servers, and web servers as well as web and network attackers.

The main entities in the model are (atomic) processes, which

are used to model browsers, servers, and attackers. Each

process listens to one or more (IP) addresses. Processes

communicate via events, which consist of a message as well

as a receiver and a sender address. In every step of a run, one

event is chosen non-deterministically from a “pool” of waiting

events and is delivered to one of the processes that listens to the

event’s receiver address. The process can then handle the event

and output new events, which are added to the pool of events,

and so on. The WIM follows the Dolev-Yao approach (see,

e.g., [46]). That is, messages are expressed as formal terms

over a signature Σ which contains constants (for addresses,

strings, nonces) as well as sequence, projection, and function

symbols (e.g., for encryption/decryption and signatures).

A (Dolev-Yao) process consists of a set of addresses the

process listens to, a set of states (terms), an initial state, and

a relation that takes an event and a state as input and (non-

deterministically) returns a new state and a sequence of events.

The relation models a computation step of the process. It is

required that the output can be computed (formally, derived in

the usual Dolev-Yao style) from the input event and the state.

The so-called attacker process records all messages it

receives and outputs all events it can possibly derive from

its recorded messages. Hence, an attacker process carries out

all attacks any Dolev-Yao process could possibly perform.

Attackers can corrupt other parties, browsers, and servers.

A script models JavaScript running in a browser. Scripts

are defined similarly to Dolev-Yao processes, but run in and

interact with the browser. Similar to an attacker process, an

attacker script can (non-deterministically) perform every action

a script can possibly perform within a browser.

A system is a set of processes. A configuration of a system

is a tuple of the form (S,E,N) where S maps every process

of the system to its state, E is the pool of waiting events,

and N is a sequence of unused nonces. In what follows, s
p
0

denotes the initial state of process p. Systems induce runs,

i.e., sequences of configurations, where each configuration

is obtained by delivering one of the waiting events of the

preceding configuration to a process, which then performs a

computation step.

12We note that the WIM models TLS at a high level of abstraction such
that messages are exchanged in a secure way.

A web system formalizes the web infrastructure and web

applications. It contains a system consisting of honest and

attacker processes. Honest processes can be web browsers, web

servers, or DNS servers. Attackers can be either web attackers

(who can listen to and send messages from their own addresses

only) or network attackers (who may listen to and spoof all

addresses and therefore are the most powerful attackers). A

web system further contains a set of scripts (comprising honest

scripts and the attacker script).

In our FAPI model, we need to specify only the behavior

of servers and scripts. These are not defined by the WIM

since they depend on the specific application, unless they

become corrupted, in which case they behave like attacker

processes and attacker scripts. We assume the presence of a

strong network attacker which also controls all DNS servers

(but we assume a working PKI).

B. Sketch of the Formal FAPI Model

A FAPI web system (with a network attacker), denoted by

FAPI , is a web system (as explained in Section V-A) and can

contain an unbounded finite number of clients, authorization

servers, resource servers, browsers, and a network attacker.

Note that a network attacker is the most powerful attacker,

which subsumes all other attackers. Except for the attacker, all

processes are initially honest and can become (dynamically)

corrupted by the attacker at any time.

In a FAPI web system, clients, authorization servers, and

resource servers act according to the specification of the FAPI

presented in Section III. (As mentioned in Section V-A, the

behavior of browsers is fixed by the standards. Their modeling

is independent of the FAPI and already contained in the

WIM.) Our models for clients and servers follow the latest

recommendations regarding the security of OAuth 2.0 [42] to

mitigate all previously known attacks. The model also contains

the fixes pointed out in Section IV, as otherwise, we would not

be able to prove the desired security properties (see below).

The primary goal of the FAPI is to provide a high degree of

security. Its flows are intended to be secure even if information

leaks to an attacker. As already outlined in Section III-C, we

model this by sending the authorization response (in the case

of an app client), the access token (in the case of a Read-

Write flow), and the authorization request to an arbitrary (non-

deterministically chosen) IP address. Furthermore, in the Read-

Write profile, the token request can be sent to an arbitrary URI.

Importantly, one FAPI web system contains all possible

settings in which the FAPI can run, as depicted in Figure 3, in

particular, we consider all OAuth 2.0 extensions employed in

the FAPI. More precisely, every client in a FAPI web system

runs one of the possible configurations (i.e., it implements

on one path in Figure 3). Different clients may implement

different configurations. Every authorization and resource

server in a FAPI web system supports all configurations at

once. When interacting with a specific client, a server just

chooses the configuration the client supports. In our model,

the various endpoints (authorization, redirection, token), the

information which client supports which FAPI configuration,

464



client credentials, etc. are preconfigured and contained in the

initial states of the processes. How this information is acquired

is out of the scope of the FAPI.

We emphasize that when proving security properties of the

FAPI, we prove these properties for all FAPI web systems,

where different FAPI web systems can differ in the number of

clients and servers, and their preconfigured information.

Furthermore, we note that there is no notion of time

in the WIM, hence, tokens do not expire. This is a safe

overapproximation as it gives the attacker more power.

To give a feel for our formal FAPI model, an excerpt of the

model is provided in Appendix C.

C. Security Properties and Main Theorem

In the following, we define the security properties the FAPI

should fulfill, namely authorization, authentication, and session

integrity. These properties have been central to also OAuth 2.0

and OpenID Connect [6], [7]. But as mentioned, the FAPI

has been designed to fulfill these properties under stronger

adversaries, therefore using various OAuth extensions. While

our formulations of these properties are inspired by those for

OAuth 2.0 and OpenID Connect, they had to be adapted and

extended for the FAPI, e.g., to capture properties of resource

servers, which previously have not been modeled. We also

state our main theorem.

We give an overview of each security property. For the

authorization property, we provide an in-depth explanation,

together with the formal definition. Appendix D contains a

proof sketch for the authorization property. Full details and

proofs of all properties are given in our technical report [25].

1) Authorization: Informally speaking, for authorization we

require that an attacker cannot access resources belonging to

an honest user (browser). A bit more precise, we require that

in all runs ρ of a FAPI web system FAPI if an honest resource

server receives an access token that is associated with an honest

client, an honest authorization server, and an identity of an

honest user, then access to the corresponding resource is not

provided to the attacker in any way. We highlight that this

does not only mean that the attacker cannot access the resource

directly at the resource server, but also that the attacker cannot

access the resource through a client.

In order to formalize this property, we first need to define

what it means for an access token to be associated with a client,

an AS, and a user identity (see below for an explanation of

this definition).

Definition 1 (Access Token associated with C, AS and ID).

Let c be a client with client id clientId issued to c by

the authorization server as, and let id ∈ IDas, where IDas

denotes the set of identities governed by as. We say that

an access token t is associated with c, as and id in state

S of the configuration (S,E,N) of a run ρ of a FAPI web

system, if there is a sequence s ∈ S(as).accessTokens such

that s ≡ 〈id,clientId, t,r〉, s ≡ 〈MTLS, id,clientId, t,key,rw〉 or

s ≡ 〈OAUTB, id,clientId, t,key′,rw〉, for some key and key′.

Intuitively, an access token t is associated with a client c,

authorization server as, and user identity id, if t was created

by the authorization server as and if the AS has created t for

the client c and the identity id.

More precisely, the access token is exchanged for an

authorization code (at the token endpoint of the AS), which

is issued for a specific client. This is also the client to which

the access token is associated with. The user identity with

which the access token is associated is the user identity that

authenticated at the AS (i.e., logged in at the website of the

AS). In the model, the AS associates the access token with

the client identifier and user identity by storing a sequence

containing the identity, the client identifier and the access

token (i.e., 〈id,clientId, t,r〉, 〈MTLS, id,clientId, t,key,rw〉 or

〈OAUTB, id,clientId, t,key′,rw〉). Furthermore, the last entry of

the sequence indicates if the client is using the Read-Only or

the Read-Write flow. In addition to this, for the Read-Write

flow, the AS stores whether the access token is bound via

mTLS or OAUTB (along with the corresponding key with

which the access token is associated).

We can now define authorization formally, again the expla-

nation of this definition follows below.

Definition 2 (Authorization Property). We say that the FAPI

web system with a network attacker FAPI is secure w.r.t. au-

thorization iff for every run ρ of FAPI , every configuration

(S,E,N) in ρ , every authorization server as ∈ AS that is

honest in S with sas
0 .resource_servers being domains of

honest resource servers used by as, every identity id ∈ IDas

for which the corresponding browser, say b, is honest in S,

every client c ∈ C that is honest in S with client id clientId

issued to c by as, every resource server rs ∈ RS that is

honest in S such that id ∈ srs
0 .ids (set of IDs handled by rs),

srs
0 .authServ∈ dom(as) (set of domains controlled by as) and

with domrs ∈ sas
0 .resource_servers (with domrs ∈ dom(rs)),

every access token t associated with c, as and id and every

resource access nonce r ∈ srs
0 .rNonce[id]∪ srs

0 .wNonce[id] it

holds true that:

If r is contained in a response to a request m sent to rs with

t ≡ m.header[Authorization], then r is not derivable from

the attackers knowledge in S.

As outlined above, the authorization property states that if

the honest resource server receives an access token associated

with a client identifier, authorization server, and user identifier,

then the corresponding resource access is not given to the

attacker. Access to resources is modeled by nonces called

resource access nonces. For each user identity, there is one set

of nonces representing read access, and another set representing

write access. In our model of the FAPI, when a resource server

receives an access token associated with a user from a client,

the resource server returns to the client one of the resource

access nonces of the user, which in turn the client forwards

to the user’s browser. The above security property requires

that the attacker does not obtain such a resource access nonce

(under the assumptions state in the property). This captures

that there should be no direct or indirect way for the attacker

465



to access the corresponding resource. In particular, the attacker

should not be able to use a client such that he can access the

resource through the client.

For the authorization property to be meaningful, we require

that the involved participants are honest. For example, we

require that the authorization server at which the identity is

registered is honest. If this is not the case (i.e., the attacker

controls the AS), then the attacker could trivially access

resources. The same holds true for the client for which the

access token is issued: If the user chooses a client that is

controlled by the attacker, then the attacker can trivially access

the resource (as the user authorized the attacker client to do so).

In our model of the FAPI, the client (non-deterministically)

chooses a resource server that the authorization server supports

(this can be different for each login flow). As in the Read-Only

flow, the access token would trivially leak to the attacker if the

resource server is controlled by the attacker, we require that the

resource servers that the AS supports are honest. Furthermore,

in the WIM, the behavior of the user is subsumed in the

browser model, therefore, we require that the browser that

is responsible for the user identity that is involved in the flow

should be honest. Otherwise, the attacker could trivially obtain

the credentials of the user.

2) Authentication: Informally speaking, the authentication

property states that an attacker should not be able to log in at

a client under the identity of an honest user. More precisely,

we require that in all runs ρ of a FAPI web system FAPI

if in ρ a client considers an honest user (browser) whose ID

is governed by an honest AS to be logged in (indicated by

a service token which a user can use at the client), then the

adversary cannot obtain the service token.

3) Session Integrity: There are two session integrity prop-

erties that capture that an honest user should not be logged in

under the identity of the attacker and should not use resources

of the attacker. As shown in Section IV-D, session integrity is

not given for all configurations available in the FAPI. Therefore,

we show a limited session integrity property that captures

session integrity for web server clients that use OAUTB.

Nonetheless, our session integrity property here is stronger

than those used in [6], [7] in the sense that we define (and

prove) session integrity not only in the presence of web

attackers, but also for the much stronger network attacker.

(This is enabled by using the __Secure- prefix for cookies.)

Session Integrity for Authorization for Web Server Clients

with OAUTB: Intuitively, this property states that for all runs

ρ of a FAPI web system FAPI , if an honest user can access

the resource of some identity u (registered at AS as) through

the honest web server client c, where c uses OAUTB as the

holder of key mechanism, then (1) the user started the flow at

c and (2) if as is honest, the user authenticated at the as using

the identity u.

Session Integrity for Authentication for Web Server Clients

with OAUTB: Similar to the previous property, this property

states that for all runs ρ of a FAPI web system FAPI , if an

honest user is logged in at the honest client c under some

identity u (registered at AS as), with c being a web server

client using OAUTB as the holder of key mechanism, then (1)

the user started the flow at c and (2) if as is honest, the user

authenticated at the as using the identity u.

By Session Integrity for Web Server Clients with OAUTB

we denote the conjunction of both properties.

Now, our main theorem says that these properties are

satisfied for all FAPI web systems.

Theorem 1. Let FAPI be a FAPI web system with a network

attacker. Then, FAPI is secure w.r.t. authorization and authen-

tication. Furthermore, FAPI is secure w.r.t. session integrity

for web server clients with OAUTB.

We emphasize that the FAPI web systems take into account

the strong attacker the FAPI is supposed to withstand as

explained in Section III-C. Such attackers immediately break

plain OAuth 2.0 and OpenID Connect. This, together with the

various OAuth 2.0 security extensions which the FAPI uses

and combines in different ways, and which have not formally

been analyzed before, makes the proof challenging.

VI. CONCLUSION

In this paper, we performed the first formal analysis of

an Open Banking API, namely the OpenID Financial-grade

API. Based on the Web Infrastructure Model, we built a

comprehensive model comprising all protocol participants

(clients, authorization servers, and resource servers) and all

important options employed in the FAPI: clients can be app

clients or web server clients and can make use of either the

Read-Only or the Read-Write profile. We modeled all specified

methods for authenticating at the authorization server and both

mechanisms for binding tokens to the client, namely, Mutual

TLS and OAuth 2.0 Token Binding. We also modeled PKCE,

JWS Client Assertions, and the JWT Secured Authorization

Response Mode (JARM).

Based on this model, we then defined precise security

properties for the FAPI, namely authorization, authentication,

and session integrity. While trying to prove these properties for

the FAPI, we found several vulnerabilities that can enable an

attacker to access protected resources belonging to an honest

user or perform attacks on session integrity. We developed

fixes against these attacks and formally verified the security

of the (fixed) OpenID FAPI.

This is an important result since the FAPI enjoys wide

industry support and is a promising candidate for the future

lead in open banking APIs. Financial-grade applications entail

very high security requirements that make a thorough formal

security analysis, as performed in this paper, indispensable.

Our work also constitutes the very first analysis of various

OAuth security extensions, namely PKCE, OAuth mTLS,

OAUTB, JARM, and JWS Client Assertions.

Acknowledgements. This work was partially supported by

Deutsche Forschungsgemeinschaft (DFG) through Grant KU

1434/10-2.

466



REFERENCES

[1] “Blurred Lines: How FinTech Is Shaping Financial Services,” 2016. PwC
Global Fin-Tech Report.

[2] European Union, “DIRECTIVE (EU) 2015/2366 OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL.” https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32015L2366&from=DE.

[3] S. T. Mnuchin and C. S. Phillips, “A Financial System That Creates
Economic Opportunities – Nonbank Financials, Fintech, and Innovation.”
https://home.treasury.gov/sites/default/files/2018-08/A-Financial-
System-that-Creates-Economic-Opportunities---Nonbank-Financials-
Fintech-and-Innovation_0.pdf.

[4] M. Leszcz, “The UK Open Banking Implementation Entity Adopts
the OpenID Foundation Financial-Grade API (FAPI) Specification
& Certification Program.” https://openid.net/2018/07/12/the-uk-open-
banking-implementation-entity-adopts-the-openid-foundation-financial-
grade-api-fapi-specification-certification-program/.

[5] OpenID Financial-grade API Working Group, “OpenID Foundation
Financial-grade API (FAPI).” Aug. 23, 2018. https://bitbucket.org/openid/
fapi/src/ceb0f829bc532e9c540efaa94f6f96d007371ca2/.

[6] D. Fett, R. Küsters, and G. Schmitz, “A Comprehensive Formal Security
Analysis of OAuth 2.0,” in Proceedings of the 23nd ACM SIGSAC

Conference on Computer and Communications Security (CCS 2016),
pp. 1204–1215, ACM, 2016.

[7] D. Fett, R. Küsters, and G. Schmitz, “The Web SSO Standard OpenID
Connect: In-Depth Formal Security Analysis and Security Guidelines,”
in IEEE 30th Computer Security Foundations Symposium (CSF 2017),
IEEE Computer Society, 2017.

[8] A. Kumar, “Using automated model analysis for reasoning about security
of web protocols,” in Proceedings of the 28th Annual Computer Security

Applications Conference on - ACSAC’12, Association for Computing
Machinery (ACM), 2012.

[9] C. Bansal, K. Bhargavan, and S. Maffeis, “Discovering Concrete Attacks
on Website Authorization by Formal Analysis,” in 25th IEEE Computer

Security Foundations Symposium, CSF 2012 (S. Chong, ed.), pp. 247–
262, IEEE Computer Society, 2012.

[10] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Discov-
ering Concrete Attacks on Website Authorization by Formal Analysis,”
Journal of Computer Security, vol. 22, no. 4, pp. 601–657, 2014.

[11] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating SDKs: Uncovering Assumptions Underlying Secure Authen-
tication and Authorization,” in Proceedings of the 22th USENIX Security

Symposium, Washington, DC, USA, August 14-16, 2013, pp. 399–314,
USENIX Association, 2013.

[12] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh, “Formal
Verification of OAuth 2.0 Using Alloy Framework,” in CSNT ’11

Proceedings of the 2011 International Conference on Communication

Systems and Network Technologies, pp. 655–659, Proceedings of the
International Conference on Communication Systems and Network
Technologies, 2011.

[13] S. Chari, C. S. Jutla, and A. Roy, “Universally Composable Security
Analysis of OAuth v2.0,” IACR Cryptology ePrint Archive, vol. 2011,
p. 526, 2011.

[14] S.-T. Sun and K. Beznosov, “The Devil is in the (Implementation) Details:
An Empirical Analysis of OAuth SSO Systems,” in ACM Conference

on Computer and Communications Security, CCS’12 (T. Yu, G. Danezis,
and V. D. Gligor, eds.), pp. 378–390, ACM, 2012.

[15] W. Li and C. J. Mitchell, “Security issues in OAuth 2.0 SSO implemen-
tations,” in Information Security - 17th International Conference, ISC

2014, Hong Kong, China, October 12-14, 2014. Proceedings, pp. 529–
541, 2014.

[16] R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu, “Model-based
Security Testing: An Empirical Study on OAuth 2.0 Implementations,”
in Proceedings of the 11th ACM on Asia Conference on Computer and

Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June

3, 2016, pp. 651–662, ACM, 2016.

[17] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. R. B. Butler, “More
Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant OAuth
2.0 Implementations,” in Detection of Intrusions and Malware, and

Vulnerability Assessment - 12th International Conference, DIMVA 2015,

Milan, Italy, July 9-10, 2015, Proceedings, vol. 9148 of Lecture Notes

in Computer Science, pp. 239–260, Springer, 2015.

[18] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “OAuth
Demystified for Mobile Application Developers,” in Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security - CCS ’14, pp. 892–903, 2014.

[19] M. Shehab and F. Mohsen, “Towards Enhancing the Security of
OAuth Implementations in Smart Phones,” in 2014 IEEE International

Conference on Mobile Services, Institute of Electrical & Electronics
Engineers (IEEE), 6 2014.

[20] W. Li and C. J. Mitchell, “Analysing the Security of Google’s Imple-
mentation of OpenID Connect,” in Proceedings of the 13th International

Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment (DIMVA), vol. 9721, pp. 357–376, 2016.

[21] V. Mladenov, C. Mainka, J. Krautwald, F. Feldmann, and J. Schwenk,
“On the security of modern Single Sign-On Protocols: Second-Order
Vulnerabilities in OpenID Connect,” CoRR, vol. abs/1508.04324v2, 2016.

[22] D. Fett, R. Küsters, and G. Schmitz, “An Expressive Model for the
Web Infrastructure: Definition and Application to the BrowserID SSO
System,” in 35th IEEE Symposium on Security and Privacy (S&P 2014),
pp. 673–688, IEEE Computer Society, 2014.

[23] D. Fett, R. Küsters, and G. Schmitz, “SPRESSO: A Secure, Privacy-
Respecting Single Sign-On System for the Web,” in Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications

Security, Denver, CO, USA, October 12-6, 2015, pp. 1358–1369, ACM,
2015.

[24] D. Fett, R. Küsters, and G. Schmitz, “Analyzing the BrowserID SSO
System with Primary Identity Providers Using an Expressive Model of
the Web,” in Computer Security - ESORICS 2015 - 20th European Sym-

posium on Research in Computer Security, Vienna, Austria, September

21-25, 2015, Proceedings, Part I, vol. 9326 of Lecture Notes in Computer

Science, pp. 43–65, Springer, 2015.

[25] D. Fett, P. Hosseyni, and R. Küsters, “An Extensive Formal Se-
curity Analysis of the OpenID Financial-grade API,” Tech. Rep.
arXiv:1901.11520, arXiv, 2019. Available at http://arxiv.org/abs/1901.
11520.

[26] D. Hardt (ed.), “RFC6749 – The OAuth 2.0 Authorization Framework.”
IETF. Oct. 2012. https://tools.ietf.org/html/rfc6749.

[27] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,
“OpenID Connect Core 1.0 incorporating errata set 1.” OpenID Foun-
dation. Nov. 8, 2014. http://openid.net/specs/openid-connect-core-1_0.
html.

[28] J. Richer (ed.), “RFC7662 – OAuth 2.0 Token Introspection.” IETF. Oct.
2015. https://tools.ietf.org/html/rfc7662.

[29] N. Sakimura (Ed.), J. Bradley, and N. Agarwal, “Proof Key for Code
Exchange by OAuth Public Clients.” RFC 7636 (Proposed Standard),
Sept. 2015.

[30] W. Denniss and J. Bradley, “OAuth 2.0 for Native Apps,” RFC, vol. 8252,
pp. 1–21, 2017.

[31] M. Jones, J. Bradley, and N. Sakimura, “RFC7519 – JSON Web Token
(JWT).” IETF. May 2015. https://tools.ietf.org/html/rfc7519.

[32] M. Jones, J. Bradley, and N. Sakimura, “RFC7515 – JSON Web
Signature (JWS).” IETF. May 2015. https://tools.ietf.org/html/rfc7515.

[33] B. Campbell, J. Bradley, N. Sakimura, and T. Lodderstedt, “OAuth 2.0
Mutual TLS Client Authentication and Certificate Bound Access Tokens,”
Internet-Draft draft-ietf-oauth-mtls-09, Internet Engineering Task Force,
June 2018. Work in Progress.

[34] M. Jones, B. Campbell, J. Bradley, and W. Denniss, “OAuth 2.0 Token
Binding - draft-ietf-oauth-token-binding-07.” https://www.ietf.org/id/
draft-ietf-oauth-token-binding-07.txt.

[35] A. Popov, M. Nystrom, D. Balfanz, A. Langley, and J. Hodges, “The
Token Binding Protocol Version 1.0.” RFC 8471, Oct. 2018.

[36] A. Popov, M. Nystrom, D. Balfanz, and A. Langley, “Transport Layer
Security (TLS) Extension for Token Binding Protocol Negotiation.” RFC
8472, Oct. 2018.

[37] A. Popov, M. Nystrom, D. Balfanz, A. Langley, N. Harper, and J. Hodges,
“Token Binding over HTTP.” RFC 8473, Oct. 2018.

[38] E. Rescorla, “Keying Material Exporters for Transport Layer Security
(TLS).” RFC 5705, Mar. 2010.

[39] A. Popov, M. Nystrom, D. Balfanz, A. Langley, N. Harper, and J. Hodges,
“Token Binding over HTTP,” internet-draft, Internet Engineering Task
Force, June 2018. Work in Progress.

[40] T. Lodderstedt (ed.), “JWT Secured Authorization Response Mode
for OAuth 2.0 (JARM).” Aug. 23, 2018. https://bitbucket.org/openid/
fapi/src/ceb0f829bc532e9c540efaa94f6f96d007371ca2/Financial_API_
JWT_Secured_Authorization_Response_Mode.md.

[41] OpenID Financial-grade API Working Group, “Financial API - Part
1: Read-Only API Security Profile.” Aug. 23, 2018. https://bitbucket.

467



org/openid/fapi/src/ceb0f829bc532e9c540efaa94f6f96d007371ca2/
Financial_API_WD_001.md.

[42] T. Lodderstedt, J. Bradley, A. Labunets, and D. Fett, “OAuth 2.0 Security
Best Current Practice,” 10 2018. https://tools.ietf.org/html/draft-ietf-
oauth-security-topics.

[43] OpenID Financial-grade API Working Group, “Financial API - Part 2:
Read and Write API Security Profile.” Aug. 23, 2018. https://bitbucket.
org/openid/fapi/src/ceb0f829bc532e9c540efaa94f6f96d007371ca2/
Financial_API_WD_002.md.

[44] T. Lodderstedt (ed.), M. McGloin, and P. Hunt, “RFC6819 – OAuth
2.0 Threat Model and Security Considerations.” IETF. Jan. 2013. https:
//tools.ietf.org/html/rfc6819.

[45] D. Fett, R. Küsters, and G. Schmitz, “The Web SSO Standard OpenID
Connect: In-Depth Formal Analysis and Security Guidelines,” Tech. Rep.
arXiv:1704.08539, arXiv, 2017. Available at http://arxiv.org/abs/1704.
08539.

[46] M. Abadi and C. Fournet, “Mobile Values, New Names, and Secure
Communication,” in Proceedings of the 28th ACM Symposium on

Principles of Programming Languages (POPL 2001), pp. 104–115, ACM
Press, 2001.

[47] A. Barth and M. West, “Cookies: HTTP State Management Mechanism.”
https://httpwg.org/http-extensions/rfc6265bis.html.

APPENDIX A

AUTHORIZATION REQUEST LEAK ATTACK – DETAILS

We here provide further details about the authorization

request leak attack, which was only sketched in Section IV-D.

A concrete instantiation of this attack is shown in Figure 7,

where the scenario is based on the Read-Only flow of a public

client. As explained below, similar attacks also work for all

other configurations of the FAPI (except for web server clients

which use OAUTB, for which, as mentioned, we show that

they are not susceptible in Section V).

In the Authorization Request Leak Attack, the client sends

the authorization request to the browser in Step 2 , where it

leaks to the attacker in Step 3 . From here on, the attacker

behaves as the browser and logs himself in (Step 5 ), hence,

the authorization code received in Step 6 is associated with

the identity of the attacker.

The state value used in the authorization request aims

at preventing Cross-Site Request Forgery (CSRF) attacks.

However, as the state value leaks, this protection does not

work. For showing that this is the case, we assume that a CSRF

attack happens. If, for example, the user is visiting a website

that is controlled by the attacker, then the attacker can send,

from the browser of the user, a request to the AS containing

the code and the state value (Step 8 ). As the state received

by the client is the same that it included in the authorization

request, the client continues the flow and uses the code to

retrieve an access token in Steps 9 and 10 .

This access token is associated with the attacker, which

means that the honest user is accessing resources belonging to

the attacker.

As a result, the honest user can be logged in under the

identity of the attacker if the authorization server returns an

id token. In the case of the Read-Write flow, the honest user

can modify resources of the attacker: for example, she might

upload personal documents to the account of the attacker.

As noted above, this attack might happen for all configura-

tions, except for the Read-Write flow when the client is a web

server client using OAUTB (see Figure 3).

1 POST /startPOST /start

2 ResponseResponse

Redirect to AS (client_id, redirect_uri, state)Redirect to AS (client_id, redirect_uri, state)

3 LeakageLeakage

(client_id, redirect_uri, state)(client_id, redirect_uri, state)

4 GET /authorization_endpointGET /authorization_endpoint

(client_id, redirect_uri, state) (Authorization Request)(client_id, redirect_uri, state) (Authorization Request)

5

attacker authenticatesattacker authenticates

6 ResponseResponse

Redirect to C (code, state)Redirect to C (code, state)

7 CSRFCSRF

Redirect to C (code, state)Redirect to C (code, state)

8 GET /redirect_uriGET /redirect_uri

(code, state)(code, state)

9 POST /tokenPOST /token

(code)(code)

10 ResponseResponse

(access token)(access token)

AttackerBrowser Client Authorization Server

Attacker Client Authorization ServerBrowser

Figure 7. Leakage of Authorization Request Attack

In all other configurations, this attack can happen as the

attacker can behave exactly like the browser of the honest

user, i.e., after receiving the authorization request, the attacker

can send this request to the AS, log in under his own identity,

and would then receive a response that the client accepts. The

only flow in which this is different is the Read-Write flow

where the client is a web server and uses OAUTB, as here,

the browser (and therefore, also the attacker) needs to prove

possession of a key pair (i.e., the key pair used for the client).

As the attacker cannot prove possession of the private key of

the key pair which the browser uses for the client, the AS

would then stop the flow. (In the other flows, the AS does not

check if the response was sent by the browser that logged in

the user.)

If we say that the FAPI is not required to be secure if the

authorization request leaks (i.e., if we remove the assumption

that the authorization request leaks), then the flow is still not

secure, as the authorization response might still leak to the

attacker (see Section III-C1), which also contains the state

value. More precisely, the authorization response might leak

in the case of app clients due to the operating system sending

the response to the attacker app (for details, see Section II-B).

After receiving the authorization response, the attacker app

knows the state value and can start a new flow using this

value. The attacker can then continue from Step 3 (Figure 7),

and when receiving the authorization response (which is a URI

468



containing the OAuth parameters), he could, using his own app

that runs on the device of the victim, call the legitimate client

app with this URI (i.e., with the code that is associated with the

identity of the attacker and the state value with which the client

started the flow). The effect of this is that the legitimate app,

at which the honest user started the flow, would continue the

flow using an authorization code associated with the attacker.

Therefore, the honest user would either be logged in with the

identity of the attacker or use the resources of the attacker.

We note that even encrypting the state value contained

in the authorization request does not solve the problem, as

the attacker is using the whole authorization request. (Strictly

speaking, he acts as the browser of the honest user).

APPENDIX B

THE WIM: SOME BACKGROUND

We here provide more details about the Web Infrastructure

Model.

a) Signature and Messages: As mentioned, the WIM

follows the Dolev-Yao approach where messages are expressed

as formal terms over a signature Σ. For example, in the WIM

an HTTP request is represented as a term r containing a nonce,

an HTTP method, a domain name, a path, URI parameters,

request headers, and a message body. For instance, an HTTP

request for the URI http://ex.com/show?p=1 is represented

as r := 〈HTTPReq,n1,GET,ex.com,/show,〈〈p,1〉〉,〈〉,〈〉〉 where

the body and the list of request headers is empty. An HTTPS

request for r is of the form enca(〈r,k
′〉,pub(kex.com)), where

k′ is a fresh symmetric key (a nonce) generated by the sender

of the request (typically a browser); the responder is supposed

to use this key to encrypt the response.

The equational theory associated with Σ is defined as

usual in Dolev-Yao models. The theory induces a congru-

ence relation ≡ on terms, capturing the meaning of the

function symbols in Σ. For instance, the equation in the

equational theory which captures asymmetric decryption is

deca(enca(x,pub(y)),y) = x. With this, we have that, for

example, deca(enca(〈r,k
′〉,pub(kex.com)),kex.com)≡ 〈r,k′〉 , i.e.,

these two terms are equivalent w.r.t. the equational theory.

b) Scripts: A script models JavaScript running in a

browser. Scripts are defined similarly to Dolev-Yao processes.

When triggered by a browser, a script is provided with state

information. The script then outputs a term representing a new

internal state and a command to be interpreted by the browser

(see also the specification of browsers below). Similarly to

an attacker process, the so-called attacker script outputs

everything that is derivable from the input.

c) Running a system: As mentioned, a run of a system

is a sequence of configurations. The transition from one

configuration to the next configuration in a run is called

a processing step. We write, for example, Q = (S,E,N) −→
(S′,E ′,N′) to denote the transition from the configuration

(S,E,N) to the configuration (S′,E ′,N′), where S and S′ are

the states of the processes in the system, E and E ′ are pools of

waiting events, and N and N′ are sequences of unused nonces.

d) Web Browsers: An honest browser is thought to be

used by one honest user, who is modeled as part of the browser.

User actions, such as following a link, are modeled as non-

deterministic actions of the web browser. User credentials are

stored in the initial state of the browser and are given to

selected web pages when needed. Besides user credentials,

the state of a web browser contains (among others) a tree

of windows and documents, cookies, and web storage data

(localStorage and sessionStorage).

A window inside a browser contains a set of documents (one

being active at any time), modeling the history of documents

presented in this window. Each represents one loaded web

page and contains (among others) a script and a list of

subwindows (modeling iframes). The script, when triggered

by the browser, is provided with all data it has access to,

such as a (limited) view on other documents and windows,

certain cookies, and web storage data. Scripts then output a

command and a new state. This way, scripts can navigate or

create windows, send XMLHttpRequests and postMessages,

submit forms, set/change cookies and web storage data, and

create iframes. Navigation and security rules ensure that scripts

can manipulate only specific aspects of the browser’s state,

according to the relevant web standards.

A browser can output messages on the network of different

types, namely DNS and HTTP(S) (including XMLHttpRe-

quests), and it processes the responses. Several HTTP(S)

headers are modeled, including, for example, cookie, location,

strict transport security (STS), and origin headers. A browser,

at any time, can also receive a so-called trigger message upon

which the browser non-deterministically chooses an action,

for instance, to trigger a script in some document. The script

now outputs a command, as described above, which is then

further processed by the browser. Browsers can also become

corrupted, i.e., be taken over by web and network attackers.

Once corrupted, a browser behaves like an attacker process.

As detailed in our technical report [25], we extended the

browser model of the WIM slightly in order to incorporate

OAUTB in the browser model. We furthermore added the

behavior of the __Secure- prefix of cookies to the model, which

specifies that such cookies shall only be accepted when they are

transmitted over secure channels [47]. Note that for the FAPI,

mTLS is only needed between clients and servers. Therefore,

mTLS has been modeled on top of the WIM, i.e., as part of the

modeling of FAPI clients and servers. The servers we modeled

for the FAPI of course also support OAUTB.

APPENDIX C

EXCERPT OF CLIENT MODEL

In this section, we provide a brief excerpt of the client model

in order to give an impression of the formal model. See our

technical report [25] for the full formal model of the FAPI.

The excerpt given in Algorithm 1 shows how the client

prepares and sends the token request to the authorization server,

i.e., the part in which the client sends the authorization code

in exchange for an access token (and depending on the flow,

also an id token).

469



This function is called by the client. The first two inputs

are the session identifier of the session (i.e., the session of the

resource owner at the client) and the authorization code that

the client wants to send to the AS. The value responseValue

contains information related to mTLS or OAUTB (if used for

the current flow). The last input is the current state of the

client.

In Lines 5 to 8, the client chooses either the token endpoint

of the AS or some URL that was chosen non-deterministically.

This models the assumption shown in Section III-C4, which

requires the Read-Write profile of the FAPI to be secure even

if the token endpoint is misconfigured.

Starting from Line 15, the function chooses the parameters

of the request that depend on the flow and configuration (see

Figure 3).

If the client uses the Read-Only profile, the token request

always contains the PKCE verifier (Line 15). For a confidential

client (which means that the client has to authenticate at the

token endpoint), the client either authenticates using JWS

Client Assertions (Line 20, see also Section II-C), or with

mTLS (Line 26; for details on our model of mTLS refer to

our technical report [25]).

If the client uses the Read-Write profile, the client uses

either mTLS (again Line 26) or OAUTB (Line 32; for details

on our model of OAUTB refer to our technical report [25]).

APPENDIX D

PROOF SKETCH OF THEOREM 1, AUTHORIZATION

We here provide a proof sketch of Theorem 1 that is con-

cerned with the authorization property. The complete formal

proof of this theorem is given in the technical report [25].

For proving the authorization property, we show that when

a participant provides access to a resource, i.e., by sending

a resource access nonce, this access is not provided to the

attacker:

a) Resource server does not provide the attacker access to

resources: We show that the resource server does not provide

the attacker access to resources of an honest user.

In case of the Read-Only flow, we show that an access

token associated with an honest client, an honest authorization

server, and an honest identity does not leak to the attacker,

and therefore, the attacker cannot obtain access to resources.

In case of the Read-Write flow, such an access token might

leak to the attacker, but this token cannot be used by the

attacker at the resource server due to Token Binding, either

via OAUTB or mTLS.

b) Web server client does not provide the attacker access

to resources: App clients are only usable via the device they

are running on, i.e., they are not usable over the network (by

which we mean that if, for example, the user wants to view

one of her documents with an app client, she does this directly

using the device). Therefore, we only look at the case of web

server clients, as such a client can be used over the network,

e.g., by the browser of the end-user or by the attacker.

In the following, we show that honest web server clients do

not provide the attacker access to resources belonging to an

Algorithm 1: Client Rc – Request to token endpoint.

1: function SEND_TOKEN_REQUEST(sessionId, code,
responseValue, s′)

2: let session := s′.sessions[sessionId]
3: let identity := session[identity]
4: let issuer := s′.issuerCache[identity]
5: if session[misconfiguredTEp]≡⊤ then
6: let url := session[token_ep]
7: else
8: let url := s′.oidcConfigCache[issuer][token_ep]

9: let credentials := s′.clientCredentialsCache[issuer]
10: let clientId := credentials[client_id]
11: let clientType := credentials[client_type]
12: let profile := credentials[profile]
13: let isApp := credentials[is_app]
14: let body := [grant_type:authorization_code,code:code,

→֒ redirect_uri:session[redirect_uri],
→֒ client_id:clientId]

15: if profile ≡ r then
16: let body[pkce_verifier] := session[pkce_verifier]

17: if profile ≡ r∧ clientType ≡ pub then
18: let message := 〈HTTPReq,ν2,POST,url.domain,url.path,

url.parameters,⊥,body〉
19: call HTTPS_SIMPLE_SEND([responseTo:TOKEN,

→֒ session:sessionId], message, s′)
20: else if profile ≡ r∧ clientType ≡ conf_JWS then
21: let clientSecret := credentials[client_secret]
22: let jwt := [iss:clientId,aud:url.domain]
23: let body[assertion] := mac(jwt,clientSecret)
24: let message := 〈HTTPReq,ν2,POST,url.domain,url.path,

url.parameters,⊥,body〉
25: call HTTPS_SIMPLE_SEND([responseTo:TOKEN,

→֒ session:sessionId], message, s′)
26: else if clientType ≡ conf_MTLS then → both profiles
27: if responseValue[type] �≡ MTLS then
28: stop

29: let body[TLS_AuthN] := responseValue[mtls_nonce]
30: let message := 〈HTTPReq,ν2,POST,url.domain,url.path,

url.parameters,⊥,body〉
31: call HTTPS_SIMPLE_SEND([responseTo:TOKEN,

→֒ session:sessionId], message, s′)
32: else → rw with OAUTB
33: if responseValue[type] �≡ OAUTB then
34: stop

35: let ekm := responseValue[ekm]
36: let TB_AS := s′.TBindings[url.host] → priv. key
37: let TB_RS := s′.TBindings[session[RS]] → priv. key
38: let TB_Msg_prov := [id:pub(TB_AS),

→֒ sig:sig(ekm,TB_AS)]
39: let TB_Msg_ref := [id:pub(TB_RS),sig:sig(ekm,TB_RS)]
40: let headers := [Sec-Token-Binding:[prov:TB_Msg_prov,

→֒ ref:TB_Msg_ref ]]
41: if clientType ≡ conf_OAUTB then → client authentication
42: let clientSecret := credentials[client_secret]
43: let jwt := [iss:clientId,aud:url.domain, ]
44: let body[assertion] := mac(jwt,clientSecret)

45: if isApp ≡⊥ then → W.S. client: TBID used by browser
46: let body[pkce_verifier] := session[browserTBID]

47: let message := 〈HTTPReq,ν2,POST,url.domain,url.path,
url.parameters,headers,body〉

48: call HTTPS_SIMPLE_SEND([responseTo:TOKEN,
→֒ session:sessionId], message, s′)

470



honest identity. We show this for all possible configurations that

could trick the client into doing so, e.g., with a misconfigured

token endpoint or with an authorization server controlled by

the attacker that returns a leaked access token.

The access to the resource is provided to the sender of the

redirection request. To access a resource, this means that the

attacker must have sent the request to the redirection endpoint

of the client.

For a Read-Only flow, the token endpoint is configured

correctly. This means that the attacker must include a code in

the request such that the client can exchange it for an access

token. We show that such a code (associated with an honest

identity and the client) does not leak to an attacker.

For a Read-Write flow, the token endpoint can be mis-

configured such that it is controlled by the attacker, and

we also assume that access tokens leak to the attacker (see

Section III-C).

We show that a leaked access token cannot be used at the

client by the attacker. If only the token endpoint is controlled

by the attacker, he must include an id token (when using

the OIDC Hybrid flow, see below for the Authorization Code

flow with JARM) in the token response such that it contains

the hash of the access token and be signed by the honest

authorization server (the hash of the access token was not

included in the original draft and was included by us as a

mitigation in Section IV-B). However, such an id token does

not leak to the attacker, which prevents the use of leaked access

tokens at misconfigured token endpoints. For the Authorization

Code flow with JARM, the attacker would need a response

JWS. As in the case of the Hybrid flow, we show that the

response JWS needed by the client for accessing resources of

an honest identity does not leak.

A leaked access token can also be used by the attacker if

the client chooses an authorization server under the control of

the attacker. Here, the id tokens are created by the attacker and

accepted by the client. For preventing the use of this access

token, the client includes the issuer of the second id token (or

of the response JWS defined by JARM) in the request to the

resource server, as detailed in Section IV-A. As each resource

server has one preconfigured authorization server, the resource

server does not provide access to a resource in this case.

The only remaining case is that the attacker includes a

code associated with the honest user in the request to the

redirection endpoint of the client. For the Hybrid flow, both

id tokens contained in the authorization response and in the

token response are required to have the same subject attribute

and the same issuer value, which means that they are both

signed by the authorization server. However, such an id token

does not leak to the attacker, which means that the client will

stop the flow when receiving the second id token contained in

the token response. When using JARM, this would require the

attacker to send a response JWS signed by the authorization

server that contains the code that belongs to an honest client

and an honest user identity. In the technical report [25], we

show that such a response JWS does not leak to the attacker.

471


