
RESEARCH ARTICLE

An extensive performance evaluation of full-reference HDR image
quality metrics

Emin Zerman1 • Giuseppe Valenzise2 • Frederic Dufaux2

Received: 21 July 2016 / Published online: 3 April 2017

� Springer International Publishing Switzerland 2017

Abstract High dynamic range (HDR) image and video

technology has recently attracted a great deal of attention

in the multimedia community, as a mean to produce truly

realistic video and further improve the quality of experi-

ence (QoE) of emerging multimedia services. In this con-

text, measuring the quality of compressed HDR content

plays a fundamental role. However, full-reference (FR)

HDR visual quality assessment poses new challenges with

respect to the conventional low dynamic range case.

Quality metrics have to be redesigned or adapted to HDR,

and understanding their reliability to predict users’ judg-

ments is even more critical due to the still limited avail-

ability of HDR displays to perform subjective evaluations.

The goal of this paper is to provide a complete and thor-

ough survey of the performance of the most popular HDR

FR image quality metrics. To this end, we gather several

existing HDR image databases with subjective quality

annotations, in addition to a new one created by ourselves.

After aligning the scores in these databases, we obtain an

extensive set of 690 compressed HDR images, along with

their subjective quality. Next, we analyze in depth many

FR metrics, including those used in MPEG standardization,

using both classical correlation analyses and classification

accuracy. We believe that our results could serve as the

most complete and comprehensive benchmark of image

quality metrics in the field of HDR image compression.

Keywords High dynamic range � Quality assessment �
Image coding � Subjective test

Introduction

High dynamic range (HDR) imaging enables to capture,

represent and reproduce a wide range of colors and lumi-

nous intensities present in everyday life, ranging from

bright sunshine to dark shadows (Dufaux 2016). These

extended capabilities are expected to significantly improve

the quality of experience (QoE) of emerging multimedia

services with respect to conventional low dynamic range

(LDR) technology. Commercial HDR video cameras and

displays are becoming available, and parts of the HDR end-

to-end delivery chain such as image and video compression

are currently matter of standardization activities in MPE-

G (Luthra et al. 2015; Hanhart et al. 2016) and JPE-

G (Richter 2013). In this context, evaluating the visual

quality of compressed HDR pictures is of critical impor-

tance in order to design and optimize video codecs and

processing algorithms.

Evaluating HDR visual quality presents new challenges

with respect to conventional LDR quality assess-

ment (Narwaria et al. 2016b). The higher peak brightness

and contrast offered by HDR increases the visibility of

artifacts, and at the same time changes the way viewers

focus their attention compared to LDR (Narwaria et al.

2014b). Moreover, color distortion assumes a major role in

the overall quality judgment, as a result of the increased

luminance level (Fairchild 2013). Since these and other
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factors intervene in a complex way to determine HDR

visual quality, the most accurate approach to assess it is, in

general, through subjective test experiments. However,

these are expensive to design and implement, require

specialized expertize and are time-consuming. Further-

more, in the case of HDR, subjective testing requires

specialized devices such as HDR displays, which still have

a high cost and a limited diffusion. Therefore, designing

and tuning full-reference (fidelity) quality metrics for HDR

content is very timely, and has motivated research in both

the multimedia and computer graphics community in the

past few years (Mantiuk et al. 2011; Narwaria et al.

2015a, b; Aydın et al. 2008; Narwaria et al. 2016a).

Two main approaches have been proposed to measure

HDR fidelity. On one hand, some metrics require modeling

of the human visual system (HVS), such as the HDR-

VDP (Mantiuk et al. 2011) or HDR-VQM (Narwaria et al.

2015a) metrics for images and videos, respectively. For

example, the HDR-VDP metric accurately models the early

stages of HVS, including intra-ocular scattering, luminance

masking, and achromatic response of the photoreceptors, in

order to precisely predict the visibility and strength of per

pixel distortion. On the other hand, one can resort to

metrics developed in the context of LDR imagery, such as

simple arithmetic (PSNR, MSE), structural [SSIM (Wang

et al. 2004) and its multiscale version (Wang et al. 2003)]

and information-theoretic [e.g., VIF (Sheikh and Bovik

2006)] metrics. All these LDR metrics are based on the

assumption that pixel values are perceptually linear, i.e.,

equal increments of pixel values correspond to equivalent

changes in the perceived luminance. This is not true in the

case of HDR content, where pixel values store linear light,

i.e., pixels are proportional to the physical luminance of the

scene. Instead, human perception has a more complex

behavior: it can be approximated by a square-root in low

luminance values and is approximately proportional to

luminance ratios in higher luminance values, as expressed

by the DeVries–Rose and Weber–Fechner laws, respec-

tively (Kundu and Pal 1986). Thus, in order to employ

these metrics, the HDR content needs to be perceptually

linearized, e.g., using a logarithmic or perceptually uniform

(PU) encoding (Aydın et al. 2008).

The capability of both kinds of fidelity metrics to predict

viewers’ mean opinion scores (MOS) has been assessed in

a number of recent subjective studies using compressed

HDR pictures (Valenzise et al. 2014; Hanhart et al. 2015a;

Narwaria et al. 2013, 2012a). Nevertheless, the results of

these studies show sometimes discrepancies in their con-

clusions about the ability of these metrics to yield consis-

tent and accurate predictions of MOSs. For instance, the

correlation values of PU-SSIM, i.e., SSIM metric applied

after the PU encoding of Aydın et al. (2008), differ sub-

stantially between the study of Narwaria et al. (2015b) and

that of Valenzise et al. (2014). The difference is basically

related to the size and characteristic of the subjective

material. In Valenzise et al. (2014), the performance of

objective metrics was assessed on a small image database

(50 subjectively annotated images), using different coding

schemes including JPEG, JPEG 2000 and JPEG-XT.

In Narwaria et al. (2015b), the authors evaluate metric

correlations using a number of subjectively annotated

databases, with variegate distortion and, especially, with

scores gathered in separated tests (each with their own

experimental conditions). Both studies have their advan-

tages and limitations, which renders difficult to extract a

simple and clear conclusion about the performance of

fidelity metrics. In other cases, such as Hanhart et al.

(2015a), metrics have been tested on a single type of dis-

tortion only (specifically JPEG-XT compression), thus it is

desirable to extend those conclusions to more realistic and

variegate conditions.

The aim of this paper is to bring more clarity in this

field, by providing an extensive, reliable, and consistent

benchmark of the most popular HDR image fidelity met-

rics. To this end, we collected as many as possible publicly

available databases of HDR compressed images with sub-

jective scores, in addition to proposing a new one which

mixes different codecs and pixel encoding functions. This

gives a total of 690 HDR images, which is up to our

knowledge the largest set on which HDR metrics have been

tested so far. We then align the MOSs of these databases

using the iterated nested least square algorithm (INLSA)

proposed in Pinson and Wolf (2003), in order to obtain a

common subjective scale. Based on this data, we analyze

the prediction accuracy and the discriminability (i.e., the

ability of detecting when two images have different per-

ceived quality) of 25 fidelity metrics, including those cur-

rently tested in MPEG standardization.

The main contributions of this paper include:

– the most extensive evaluation (using 690 subjectively

annotated HDR images) of HDR full-reference image

quality metrics available so far;

– the proposal of a new subjective database with 50

distorted HDR images, combining 3 image codecs and

2 pixel encoding algorithm (SMPTE-2084 perceptual

quantization (SMPTE 2014) and a global tone-mapping

operator);

– an evaluation of metric discriminability, that comple-

ments the conventional statistical accuracy analysis,

based on a novel classification approach.

Assessment of image quality is different from the assess-

ment of video quality, as HVS has different temporal

mechanisms. Nevertheless, image quality metrics are often

applied to video on a frame-by-frame basis, e.g., PSNR or

SSIM. Therefore, the result of this work could be indicative
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of frame-by-frame objective metrics performance in video

as well.

The rest of this paper is organized as follows. ‘‘Con-

sidered subjective databases’’ describes the subjective

databases considered within this paper. The alignment

procedure is explained in ‘‘Alignment of Database MOSs’’.

In ‘‘Analysis of objective quality metrics’’, existing

objective image quality metrics have been compared using

both statistical evaluation and a classification approach.

Finally, ‘‘Conclusion’’ concludes the paper.

Considered subjective databases

Although there are several publicly available repositories

of high-quality HDR pictures (Debevec and Malik 2008;

EMPA 2013; Fairchild 2007; Drago and Mantiuk 2004;

pfstools 2015), there is only a small number of subjectively

annotated image quality databases. For this study, we

selected four publicly available HDR image quality

assessment databases, in addition to proposing a new one

described in ‘‘Database #5–new subjective database’’. Each

database contains compressed HDR pictures with related

subjective scores. The databases differ in size, kind of

distortion (codec) and subjective methodology. A brief

description of these databases is given in the following,

while a summary of their characteristics is reported in

Table 1. The interested reader can refer to original publi-

cations for further details.

Database #1—Narwaria et al. (2013)

In the work of Narwaria et al. (2013), a tone mapping

based HDR image compression scheme has been proposed

and assessed via a subjective test. Subjective scores were

collected from 27 observers, using a SIM2 HDR47E S 4K

display in a 130 cd=m2 illuminated room. The participants

were asked to rate overall image quality using the absolute

category rating with hidden reference (ACR-HR) method-

ology, employing a five-level discrete scale where 1 is bad

and 5 is excellent quality. The test material was obtained

from 10 pristine HDR pictures, including both indoor and

outdoor, natural or computer-generated scenes. The dis-

torted images are generated through a backward compati-

ble scheme (Ward et al. 2006): the HDR image is first

converted to LDR by using a tone mapping operator

(TMO); then, the LDR picture is coded using a legacy

image codec; finally, the compressed image is expanded by

inverse tone mapping to the original HDR range. The

coding scheme in Narwaria et al. (2013) employs iCAM06

(Kuang et al. 2007) as TMO, and JPEG compression at

different qualities. In addition, the authors proposed two

criteria to optimize the quality of the reconstructed HDR.

As a result, a total of 10 contents � 7 bitrates � 2 opti-

mization criteria ¼ 140 test images were evaluated. This

database is publicly available at http://ivc.univ-nantes.fr/

en/databases/JPEG_HDR_Images/.

The analysis in Narwaria et al. (2013) shows that mean

squared error (MSE) and structural similarity index

Table 1 Number of observers, subjective methodology, number of stimuli, compression type and tone mappings employed in the HDR image

quality databases used in this paper

No Obs. Meth. Stim. Compr. TMO

#1 (Narwaria et al. 2013) 27 ACR-HR 140 JPEG1 iCAM (Kuang et al. 2007)

#2 (Narwaria et al. 2014a) 29 ACR-HR 210 JPEG 20001 AS (Ashikhmin 2002)

RG (Reinhard 2002)

RL (Reinhard 2002)

DR (Durand and Dorsey 2002)

Log

#3 (Korsunov et al. 2015) 24 DSIS 240 JPEG-XT RG (Reinhard 2002)

MT (Mantiuk et al. 2006)

JPEG1

#4 (Valenzise et al. 2014) 15 DSIS 50 JPEG 20001 Mai (Mai et al. 2011)

JPEG-XT

#5 15 DSIS 50 JPEG1 Mai (Mai et al. 2011)

JPEG 20001 PQ (Miller et al. 2012; SMPTE 2014)

TMOs legend: AS Ashikmin, RG Reinhard global, RL Reinhard local, DR Durand, Log Logarithmic, MT Mantiuk

The distorted images are generated through a scalable coding scheme (Ward et al. 2006): the HDR image is converted to LDR using a TMO;

then, the LDR picture is encoded and decoded by a legacy codec; finally, the image is converted back to HDR range
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measure (SSIM) perform well in estimating human pre-

dictions and ordering distorted images when each content

is assessed separately. However, these results do not apply

when different contents are considered at the same time.

HDR-VDP-2 was found to be the best performing (in terms

of linear correlation with MOSs) metric, but not statisti-

cally different from the metric proposed in Narwaria et al.

(2012b).

Database #2—Narwaria et al. (2014a)

Narwaria et al. (2014a) evaluate subjectively the impact of

using different TMOs in HDR image compression. The test

material includes six original scenes, both indoor and

outdoor, from which a total of 210 test images were created

using JPEG 2000 image compression algorithm after the

application of several TMOs, including Ashikhmin (2002),

both local and global versions of Reinhard (2002), Durand

and Dorsey (2002), and logarithmic TMO. The experiment

setup was the same as in Narwaria et al. (2013) Data-

base #1 described above. The subjective test is conducted

with 29 observers using ACR-HR methodology.

Results show that the choice of TMO greatly affects the

quality scores. It is also found that local TMOs, with the

exception of Durand’s, generally yield better results than

global TMOs as they tend to preserve more details. No

evaluation of objective quality metrics is reported in the

original paper (Narwaria et al. 2014a).

Database #3—Korsunov et al. (2015)

In the study of Korsunov et al. (2015), an HDR image

quality database, publicly available at http://mmspg.epfl.

ch/jpegxt-hdr, has been created using backward-compatible

JPEG-XT standard (Richter 2013) with different profiles

and quality levels. For this database, 240 test images have

been produced, using either Reinhard (2002) or Mantiuk

et al. (2006) TMO for the base layer, 4 bit rates for each

original image and 3 profiles of JPEG-XT. The test room

was illuminated with a 20 lux lamp, and a SIM2 HDR

display was used. At any time, 3 observers took the test

simultaneously. The subjective scores were collected from

24 participants, using double stimulus impairment scale

(DSIS) Variant I methodology, i.e., images were displayed

side-by-side, one of the images was the reference and the

other the distorted one.

This subjective database has been used in the work of

Artusi et al. (2015). In this work, an objective evaluation of

JPEG-XT compressed HDR images has been carried out.

The results show that LDR metrics such as PSNR, SSIM,

and multi-scale SSIM (MSSIM) give high correlation

scores when they are used with the PU encoding of Aydın

et al. (2008), while the overall best correlated quality

metric is HDR-VDP-2.

Database #4—Valenzise et al. (2014)

Valenzise et al. (2014) were the first to collect subjective

data with the specific goal to analyze the performance of

HDR image fidelity metrics. Their database is composed of

50 compressed HDR images, obtained from 5 original

scenes in the Fairchild HDR image survey (Fairchild

2007). Three different coding schemes have been used to

produce the test material, i.e., JPEG, JPEG 2000 and JPEG-

XT. In the first two cases, the HDR image is first tone

mapped to LDR using the minimum-MSE TMO proposed

by Mai et al. (2011). The images were displayed on a SIM2

HDR47E S 4 K display, with an ambient luminance of

20 cd=m2. Subjective scores were collected using DSIS

methodology, i.e., pairs of images (original and distorted)

were presented to the viewers, who had to evaluate the

level of annoyance of distortion in the second image on a

continuous quality scale ranging from 0 to 100, where 0

corresponds to very annoying artifacts and 100 to

imperceptible artifacts. Fifteen observers rated the images.

The database is available at http://webpages.l2s.cen

tralesupelec.fr/perso/giuseppe.valenzise/download.htm.

The results of this study showed that LDR fidelity

metrics could accurately predict image quality, provided

that the display response is somehow taken into account (in

particular, its peak brightness), and that a perceptually

uniform (PU) encoding (Aydın et al. 2008) is applied to

HDR pixel values to make them linear with respect to

perception.

Database #5—New subjective database

In addition to the databases described above, we construct

a new subjective HDR image database of 50 images, as an

extension to our previous work (Valenzise et al. 2014).

The new database features five original contents, selected

in such a way to be representative of different image fea-

tures, including the dynamic range, image key and spatial

information. The five contents are shown in Fig. 1. The

images ‘‘Balloon’’, ‘‘FireEater2’’, and ‘‘Market3’’ are

chosen among the frames of the MPEG HDR sequences

proposed by Technicolor (Lasserre et al. 2013). ‘‘Show-

girl’’ is taken from Stuttgart HDR Video Database

(Froehlich et al. 2014). ‘‘Typewriter’’ is from HDR pho-

tographic survey dataset (Fairchild 2007). All images have

either 1920 � 1080 pixels spatial resolution, or are zero-

padded to have the same resolution.

Similarly to Valenzise et al. (2014), the test images are

obtained by using a backward compatible HDR coding
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scheme (Ward et al. 2006), using JPEG and JPEG 2000

(with different bitrates) as LDR codecs. We did not include

JPEG-XT in this experiment, since some of the contents we

selected (e.g., ‘‘Showgirl’’ and ‘‘Typewriter’’) were already

part of the Database #3. In order to convert HDR to LDR,

we use two options: (i) the TMO of Mai et al. (2011); and

(ii) the electro-optical transfer function SMPTE ST

2084 (Miller et al. 2012; SMPTE 2014), commonly known

as perceptual quantization (PQ). The latter is a fixed,

content-independent transfer function which has been

designed in such a way that the increments between

codewords have minimum visibility, according to Barten’s

contrast sensitivity function (Barten 1999). We choose this

transfer function as an alternative to tone mapping, as it has

been proposed as the anchor scheme in current MPEG

HDR standardization activities (Luthra et al. 2015). Both

PQ and Mai et al.’s TMO are applied per color channel.

The test environment and methodology are carefully

controlled to be the same as in Database #4 (Valenzise

et al. 2014). The DSIS methodology is employed, where

the reference image is shown for 6 s, followed by 2 s of

mid-gray screen and 8 s of degraded image. The asym-

metry in timing between distorted and reference image is

determined in a pilot test, taking into account the fact that

the reference image is shown several times, while the

degraded image is different at each round and requires a

longer evaluation interval. After both the original and

distorted image are displayed, the observer takes all the

time she/he needed to rate the level of annoyance on the

same continuous scale as in Valenzise et al. (2014). The

sequence of tested images is randomized to avoid context

effects (De Simone 2012). Moreover, too bright (‘‘Mar-

ket3’’) and too dark (‘‘FireEater2’’) stimuli are not placed

one after another in order to avoid any masking caused by

sudden brightness change. In addition to randomization,

stabilizing images (one from each content and featuring

each quality level) are shown in the beginning of the

experiment to stabilize viewers’ votes (which are discarded

for those images).

In addition to the contents reported in Fig. 1, a small

subset of the stimuli of Database #4 was included in the

test. This enabled to align the two databases, #4 and #5, in

order for the corresponding MOS values to be on the same

scale (Pitrey et al. 2011). Thus, in the following we will

refer to the union of these two databases as

Databases #4 & 5.

A panel of 15 people (3 women, 12 men; average age of

26.8 years), mainly Ph.D. students naive to HDR technol-

ogy and image compression, participated to the test. Sub-

jects reported normal or corrected-to-normal vision. The

outlier detection and removal procedure described in

BT.500-13 (ITU 2012) resulted in no detected outlier.

Then, mean opinion scores and their confidence interval

(CI) were computed assuming data follows a t-Student

distribution.1

Alignment of database MOSs

During the training phase, the subjects are generally

instructed to use the whole range of grades (or distortions)

in the scale while evaluating. However, the quality of the

test material for different experiments may not be the same

when they are compared to each other. The viewers may

not share the same understanding and expectations of

image or video quality. Hence, the MOS values generally

do not show the absolute quality of the stimuli. In Fig. 2a,

we observe the MOS distribution for non-aligned databases

as a function of the HDR-VQM metric. Due to the char-

acteristics of the experiments and test material, a similar

level of impairment in the subjective scale may correspond

to very different values of the objective metrics. Therefore,

in order to use in a consistent way the MOS values of

different subjective databases, these need to be mapped

onto a common quality scale.

In order to align the MOS values of all five HDR image

databases, we use the iterated nested least square algo-

rithm (INLSA) proposed in Pinson and Wolf (2003)2. This

algorithm requires objective parameters for the alignment,

under the assumption that those are sufficiently well cor-

related and linear with respect to MOS. Therefore, we

selected the five most linear and most correlated objective

Fig. 1 Original contents for the new proposed image database described in ‘‘Database #5—New subjective database’’, rendered using the TMO

in Mantiuk et al. (2008)

1 These scores, together with the test images, are available at http://

webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.

htm.
2 INLSA implementation on Matlab has been downloaded from

http://www.its.bldrdoc.gov/resources/video-quality-research/guides-

and-tutorials/insla-code.aspx.
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quality metrics: HDR-VDP-2.2, HDR-VQM, PU-IFC, PU-

UQI, and PU-VIF (the calculation of PU-metrics will be

explained in detail in ‘‘Objective Quality Metrics under

Consideration’’). The INLSA algorithm first normalizes

MOS scores from each source in the [0,1] interval, and then

aligns them by solving two least square problems: first, the

MOS values are corrected by an affine transformation in

order to span the same subjective scale; second, the MOS

values are aligned to the corresponding objective values by

finding the optimal (in least-square sense) combination of

weights such that the corrected MOSs can be predicted as a

linear combination of objective parameters. These two

steps, prediction and correction, are repeated iteratively till

some convergence criterion is met. Details about the

algorithm can be found in Pinson and Wolf (2003).

The scatter plots of MOS values and HDR-VQM metric

values after alignment can be seen in Fig. 2b. It can be

observed that data points having similar HDR-VQM values

have similar MOS values after INLSA alignment. After the

alignment, all the MOS values have been mapped onto a

common subjective scale, and they can be used in the

evaluation of the objective quality metrics.

From Fig. 2b and initial observations of the test images,

we notice that images in Database #2 (Narwaria et al.

2014a) have very different characteristics compared to

others, and MOS values are much more scattered than other

databases after the alignment. This is mainly due to the

characteristics of this database, i.e., the stimuli were mainly

obtained by changing the tone mapping algorithm used in

the compression, including many TMOs which are defi-

nitely not adapted to be used in coding as they produce

strong color artifacts in the reconstructed HDR image, and

that are therefore not used in any practical coding scheme.

Also, different kinds of distortion are present simultane-

ously, such as color banding, saturation etc. In some cases,

it is noticed that false contours have been generated, and

some color channels were saturated. Initial inspection of

both test images and objective metric results indicate that

the considered metrics do not capture the effect of color on

quality as humans do.

As viewers were rating very different distortions with

respect to the other databases, which instead contain sim-

ilar kinds of visual impairments, Database #2 is very

challenging for all the quality metrics we considered in this

work. Therefore, in order to provide a complete overview

of the performance of HDR fidelity metrics, in the fol-

lowing we report results both with and without including

Database #2 in the evaluations.

Analysis of objective quality metrics

After the alignment of MOS values of the databases, we

obtain an image data set consisting of 690 (or 480 images if

Database #2 is excluded) images compressed using JPEG,

JPEG-XT, and JPEG 2000. In this section, we provide a

thorough analysis of the performance of several HDR

image fidelity metrics, both from the point of view of

prediction accuracy and of their ability to tell whether two

images are actually perceived as being of different quality.

Objective quality metrics under consideration

We include in our evaluation a number of commonly used

full-reference image quality metrics, including the mean

square error (MSE), peak signal to noise ratio (PSNR),

structural similarity index (SSIM) (Wang et al. 2004), multi-

scale SSIM (MSSIM) (Wang et al. 2003), information fide-

lity criterion (IFC) (Sheikh et al. 2005), universal quality

index (UQI) (Wang and Bovik 2002), VIF (Sheikh and

Bovik 2006), and pixel based VIF. In addition to those met-

rics, we consider HDR-VDP-2.2 (Narwaria et al. 2015b),

HDR-VQM (Narwaria et al. 2015a), additional full-refer-

ence metrics recently proposed for HDR video such as

mPSNR, tPSNR, CIE DE 2000 (Tourapis and Singer 2015),

and spatial extension of CIE DE 2000 (Zhang and Wandell

1997) which is computed with S-CIELAB model.
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Fig. 2 Plots of MOS vs HDR-VQM scores before and after INLSA

alignment. The INLSA algorithm scales MOS values so that images

which have similar objective scores also have similar MOS values. In

order to compare the scatter plot quantitatively, the root mean squared

error (RMSE) of the data is reported for each case
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In order to calculate quality metrics, we first scale pixel

values to the range of luminance emitted by the HDR dis-

plays used in each subjective experiments. This is espe-

cially important for those metrics such as HDR-VDP 2.2

which rely on physical luminance. In order to compute these

values, we convert HDR pixels into luminance emitted by a

hypothetical HDR display, assuming it has a linear response

between the minimum and maximum luminance of the

display. As the same display (i.e. SIM2 HDR47E S 4K) has

been used in all the experiments, we have selected the same

parameters for all experiments, i.e., 0:03 cd=m2 and

4250 cd=m2 for minimum an maximum luminance,

respectively. Although the emitted luminance on HDR

displays depends on many factors and is not exactly a linear

function of input pixel values, we found in our previous

work that, it is adequately close to linear (Zerman et al.

2016) and from a practical point of view, this simple linear

assumption is equivalent to more sophisticated luminance

estimation techniques which require a detailed knowledge

of the reproduction device (Valenzise et al. 2014).

The objective quality metrics under consideration can be

grouped as following:

– HDR-specific metrics HDR-VDP-2.2 and HDR-VQM

are recent fidelity metrics developed for HDR image

and video, respectively. They model several phenom-

ena that characterize the perception of HDR content,

and thus requires some knowledge of viewing condi-

tions (such as distance from the display, ambient

luminance, etc.). The mPSNR is PSNR applied on an

exposure bracket extracted from the HDR image, and

then averaged across exposures.

– Color difference metrics we use CIE DE 2000 (denoted

as CIE DE00), which entails a color space conversion in

order to get perceptually uniform color differences (Luo

et al. 2001), and its spatial extension (Zhang and

Wandell 1997) (denoted as CIE DES
00). More sophisti-

cated color appearance models have not been consid-

ered in this study, as their use in quality assessment has

been marginal so far. However they are an interesting

aspect to investigate in future work.

– LDR metrics applied after a transfer function LDR

metrics such as MSE, PSNR, VIF, SSIM, MSSIM, IFC,

and UQI. To compute these LDR metrics we use:

– Physical luminance of the scene directly, denoted as

Photometric-,

– Perceptually uniform (Aydın et al. 2008) encoded

pixel values, denoted as PU-,

– Logarithmic coded pixel values, denoted as Log-, or

– Perceptually quantized (Miller et al. 2012; SMPTE

2014) pixel values. For this case, only tPSNR-YUV

has been considered as in Tourapis and Singer (2015).

When possible, we use the publicly available implemen-

tation of these metrics, i.e., HDR-VDP-2.2.1 available at

http://sourceforge.net/projects/hdrvdp/files/hdrvdp/, HDR-

VQM available at http://www.sourceforge.net/projects/

hdrvdp/files/hdrvdp/, HDRtools version 0.4 (Tourapis and

Singer 2015) developed within MPEG, the MeTriX MuX

library for Matlab, available at http://foulard.ece.cornell.

edu/gaubatz/metrix_mux/.

Statistical analysis

The performance of the aforementioned fidelity metrics has

been evaluated in terms of prediction accuracy, prediction

monotonicity, and prediction consistency (De Simone

2012). For prediction accuracy, Pearson correlation coef-

ficient (PCC), and root mean square error (RMSE) are

computed. Spearman rank-order correlation coefficient

(SROCC) is used to find the prediction monotonicity, and

outlier ratio (OR) is calculated to determine the prediction

consistency. These performance metrics have been com-

puted after a non-linear regression performed on objective

quality metric results using a logistic function, as described

in the final report of VQEG FR Phase I (Rohaly et al.

2000). This logistic function is given in Eq. 1:

Yi ¼ b2 þ
b1 � b2

1 þ e
�ðXi�b3

jb4 j
Þ
; ð1Þ

where Xi is the objective score for the i th distorted image,

and Yi is the mapped objective score. It tries to minimize

the least-square error between the MOS values and the

objective results. This fitting has been done using the

nlinfit function of Matlab to find optimal b parameters

for each objective quality metric. After fitting, the perfor-

mance scores have been computed using the mapped

objective results, Yi, and MOS values.

The results of these performance indexes (SROCC,

PCC, RMSE, and OR) have been computed for each

database separately, as well as considering all the data

together. The results are reported in Tables 2, 3, 4, 5. The

aligned data scores have been denoted as ‘‘Combined’’,

and ‘‘Except Database #2’’ for the data aligned excluding

Database #2 as explained in ‘‘Alignment of Database

MOSs’’.

These results show that the performance of many fidelity

metrics may significantly vary from one database to

another, due to the different characteristics of the test

material and of the subjective evaluation procedure. In

particular, Database #2 is the most challenging for all the

considered metrics, due to its more complex distortion

features, as discussed in ‘‘Alignment of Database MOSs’’.

Despite the variations across databases, we can observe a

consistent behavior for some metrics. Photometric-MSE is
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the worst correlated one, for all databases. This is expected

as mean square error is computed on photometric values,

without any consideration of visual perception phenomena.

On the other hand, HDR-VQM, HDR-VDP-2.2 Q, and PU-

MSSIM are the best performing metrics, with the exception

of Database #2.

When we analyze objective metrics for each transfer

function, we observe that Photometric-IFC is the best

correlated and Photometric-MSE is the worst in the linear

domain; Log-SSIM is the best correlated and Log-VIF is

the worst in the logarithmic domain. Among the objective

metric results in PU domain, PU-MSSIM and PU-SSIM

display high correlation coefficients, while PU-MSE is the

again the worst performer. Comparing the three transfer

functions, PU is the most effective, as PU-MSSIM and

PU-SSIM achieve performance very close to HDR-VDP-

2.2 Q and HDR-VQM. In general, metrics which are

based on MSE and PSNR (PU-MSE, Log-MSE, PU-

PSNR, mPSNR, etc.) yield worse results compared to

other metrics. Instead, more advanced LDR metrics such

as IFC, UQI, SSIM, and MSSIM yield much better

results. We also notice that mPSNR, tPSNR-YUV, and

CIE DE 2000, which have been recently used in MPEG

standardization activities, perform rather poorly in com-

parison to the others.

We also evaluate the significance of the difference

between the considered performance indexes, as proposed

in ITU-T Recommendation P.1401 (ITU 2012). The results

are provided in Figs. 3 and 4 for ‘‘Combined’’ and ‘‘Except

Database #2’’ cases respectively. The bars indicate statis-

tical equivalence between the quality metrics. We observe

that the performance of HDR-VQM in the combined

database is significantly different from all others while PU-

MSSIM, PU-VIF, and some other metrics have essentially

equivalent performance across the combined databases.

Although HDR-VDP-2.2 has a lower performance on

combined dataset compared to its performance on indi-

vidual databases, it is among the three most correlated

metrics with HDR-VQM and PU-MSSIM on the case

excluding Database #2. Interestingly, the HDR-VQM

metric, which has been designed to predict video fidelity,

gives excellent results also in the case of static images, and

Table 2 Pearson correlation coefficient (PCC) results for each database and for aligned data

Metric Database #1 Database #2 Database #3 Databases #4 & 5 Combined Except database #2

Photometric-MSE 0.4051 0.1444 0.7080 0.5095 0.3651 0.6987

Photometric-PSNR 0.4409 0.2564 0.7132 0.5594 0.5166 0.6506

Photometric-SSIM 0.5016 0.3583 0.8655 0.6708 0.6441 0.7462

Photometric-IFC 0.7781 0.8234 0.9183 0.8195 0.8344 0.7680

Photometric-UQI 0.7718 0.8208 0.8846 0.7876 0.8312 0.7667

Photometric-VIF 0.7603 0.5076 0.8666 0.6144 0.6264 0.8452

PU-MSE 0.4824 0.3309 0.8559 0.8024 0.6273 0.7710

PU-PSNR 0.5297 0.3269 0.8606 0.8009 0.6271 0.7761

PU-SSIM 0.8661 0.7049 0.9532 0.9201 0.8441 0.9016

PU-IFC 0.7910 0.8422 0.9201 0.8566 0.8569 0.8024

PU-MSSIM 0.8847 0.7236 0.9564 0.9038 0.8570 0.9210

PU-UQI 0.7823 0.8507 0.8768 0.7777 0.8367 0.7637

PU-VIF 0.7845 0.7583 0.9349 0.9181 0.8574 0.8655

Log-MSE 0.6114 0.5314 0.8856 0.8820 0.6844 0.7872

Log-PSNR 0.6456 0.5624 0.8870 0.8819 0.7001 0.7923

Log-SSIM 0.8965 0.8035 0.9235 0.8255 0.8418 0.8401

Log-IFC 0.7919 0.8366 0.9167 0.8551 0.8530 0.8034

Log-UQI 0.7837 0.8268 0.8786 0.7830 0.8285 0.7592

Log-VIF 0.5079 0.6202 0.8354 0.7065 0.6049 0.6889

HDR-VDP-2.2 Q 0.8989 0.5482 0.9531 0.9408 0.7590 0.9261

HDR-VQM 0.8949 0.7932 0.9612 0.9332 0.8807 0.9419

mPSNR 0.6545 0.6564 0.8593 0.8587 0.7434 0.7959

tPSNR-YUV 0.5784 0.4524 0.8319 0.7789 0.6580 0.7718

CIEDE00 0.6088 0.2553 0.7889 0.6082 0.4979 0.7752

CIEDES
00

0.6167 0.3331 0.8793 0.7322 0.5783 0.7929

Bold value signifies the best result within the same column. Depending on the evaluation method, the best result is either the highest or lowest

score on the same column

5 Page 8 of 16 Qual User Exp (2017) 2:5

123



is indeed more accurate on Database #2 than HDR-VDP-

2.2. Furthermore, we notice that all metrics except

CIE DE00 and CIE DES
00 consider only luminance values.

Although CIE DE00 and CIE DES
00 have been found to be

among the most relevant color difference metrics among

others in a recent study (Ortiz-Jaramillo et al. 2016), they

have lower correlation scores when compared to lumi-

nance-only metrics. In fact, this result is not in disagree-

ment with Ortiz-Jaramillo et al. (2016), which did not

consider compression artifacts in the experiments, as the

impact of those on image quality was deemed to be much

stronger than color differences. Thus, our analysis confirms

that luminance artifacts such as blocking, etc., play a

dominant role in the formation of quality judgments, also

in the case of HDR.

Discriminability analysis

MOS values are estimated from a sample of human

observers, i.e., they represent expected values of random

variables (the perceived annoyance or quality). Therefore,

MOS are as well random variables which are known with

some uncertainty, which is typically represented by their

confidence intervals (ITU 2012). As a result, different

MOS values could correspond to the same underlying

distribution of subjective scores and two images with

different MOS might indeed have the same visual quality

in practice (with confidence level). The performance

scores considered in ‘‘Statistical analysis’’ assume instead

that MOS values are deterministically known, and that the

goal of fidelity metrics is to predict them as precisely as

possible, without taking into account whether two dif-

ferent subjective scores do actually correspond to differ-

ent quality. Therefore, in the following we consider

another evaluation approach, which aims at assessing if an

objective fidelity metric is able to discriminate whether

two images have significantly different subjective quality.

The intrinsic variability of MOS scores is not a com-

pletely new problem, and several approaches have been

proposed in the literature to take this into account while

evaluating objective metrics. Brill et al. (2004) introduced

the concept of resolving power of an objective metric,

Table 3 Spearman rank-ordered correlation coefficient (SROCC) results for each database and for aligned data

Metric Database #1 Database #2 Database #3 Databases #4 & 5 Combined Except database #2

Photometric-MSE 0.3881 0.1235 0.7227 0.5711 0.3417 0.7174

Photometric-PSNR 0.4018 0.2783 0.7183 0.5737 0.4991 0.6520

Photometric-SSIM 0.4953 0.3063 0.8792 0.6770 0.6357 0.7610

Photometric-IFC 0.7684 0.8254 0.9179 0.8109 0.8354 0.7708

Photometric-UQI 0.7495 0.8299 0.8686 0.8017 0.8310 0.7650

Photometric-VIF 0.7482 0.4915 0.8723 0.4864 0.6010 0.8376

PU-MSE 0.4791 0.2959 0.8617 0.8065 0.6108 0.7750

PU-PSNR 0.4791 0.2959 0.8617 0.8065 0.6108 0.7750

PU-SSIM 0.8553 0.7234 0.9503 0.9121 0.8525 0.9080

PU-IFC 0.7786 0.8433 0.9165 0.8489 0.8573 0.8044

PU-MSSIM 0.8711 0.7363 0.9517 0.8969 0.8570 0.9198

PU-UQI 0.7612 0.8608 0.8569 0.7932 0.8358 0.7606

PU-VIF 0.7634 0.7662 0.9306 0.9083 0.8560 0.8627

Log-MSE 0.5943 0.5843 0.8892 0.8719 0.6730 0.7917

Log-PSNR 0.5943 0.5843 0.8892 0.8710 0.6802 0.7917

Log-SSIM 0.8935 0.7869 0.9268 0.8179 0.8448 0.8424

Log-IFC 0.7782 0.8420 0.9140 0.8482 0.8529 0.8049

Log-UQI 0.7622 0.8232 0.8592 0.7960 0.8285 0.7563

Log-VIF 0.4884 0.5908 0.8385 0.6653 0.6346 0.6885

HDR-VDP-2.2 Q 0.8911 0.5727 0.9503 0.9298 0.7634 0.9357

HDR-VQM 0.8874 0.8126 0.9572 0.9193 0.8779 0.9416

mPSNR 0.6133 0.6496 0.8648 0.8521 0.7381 0.7970

tPSNR-YUV 0.5324 0.4342 0.8374 0.7901 0.6497 0.7722

CIEDE00 0.5883 0.2551 0.7824 0.5951 0.4837 0.7761

CIEDES
00

0.5979 0.3096 0.8779 0.7430 0.5816 0.7955

Bold value signifies the best result within the same column. Depending on the evaluation method, the best result is either the highest or lowest

score on the same column
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which indicates the minimum difference in the output of a

quality prediction algorithm such that at least p% of

viewers (where generally p ¼ 95%) would observe a dif-

ference of quality between two images. This approach has

also been standardized in ITU Recommendation

J.149 (ITU 2004), and used in subsequent work (Pinson

and Wolf 2008; Barkowsky 2009; Hanhart et al. 2015b;

Nuutinen et al. 2016). Nevertheless, this technique has a

number of disadvantages. Resolving power is computed

after transforming MOS to a common scale, which requires

applying a fitting function; however, the fitting problem

could be ill-posed in some circumstances, yielding incor-

rect results. Also, the resolving power in the common scale

corresponds to a variable metric resolution in the original

scale, which makes it difficult to interpret. Moreover, it is

not always possible to fix the level of significance p to be

the same for different metrics, as there could be cases when

the percentage of observers seeing a difference between

image qualities is lower than p for any metric difference

values. Finally, the results of this approach are generally

evaluated in a qualitative manner, e.g., by considering how

the number of correct decisions, false rankings, false dif-

ferentiations, etc., vary as a function of objective metric

differences (Brill et al. 2004; Hanhart et al. 2015b); con-

versely, a compact, quantitative measure is desirable in

order to fairly compare different metrics. Another approach

to this problem has been recently proposed by Krasula

et al. (2016). In their paper, Krasula et al. find the accuracy

of an objective image or video quality metric by trans-

forming the problem into a classification problem. For this

purpose, they find z-score of subjective scores and the

difference of objective scores for each pair of stimuli, and

then find the accuracy of the metric by calculating classi-

fication rates.

Due to the factors above limiting the effectiveness of

resolving power, in this work we propose an alternative

approach in the original scale of the metric similar to what

has been presented in Krasula et al. (2016), which enables

to evaluate its discrimination power while avoiding the

shortcomings discussed above. Despite the similarities, the

Table 4 Root mean squared error (RMSE) results for each database and for aligned data (please note that, in order to have comparable results,

RMSE values were calculated after all MOS values are scaled to the range of [0,100].)

Metric Database #1 Database #2 Database #3 Databases #4 & 5 Combined Except database #2

Photometric-MSE 23.526 27.459 22.163 25.684 24.204 17.910

Photometric-PSNR 23.096 26.791 22.000 24.742 22.262 19.012

Photometric-SSIM 22.261 25.907 15.719 22.138 19.888 16.665

Photometric-IFC 16.164 15.748 12.426 17.105 14.328 16.032

Photometric-UQI 16.364 15.850 14.635 18.392 14.455 16.071

Photometric-VIF 16.715 23.909 15.659 23.551 20.267 13.378

PU-MSE 22.540 26.187 16.232 17.814 20.247 15.942

PU-PSNR 21.826 26.225 15.984 17.874 20.251 15.787

PU-SSIM 12.861 19.683 9.489 11.688 13.939 10.831

PU-IFC 15.744 14.963 12.295 15.403 13.401 14.939

PU-MSSIM 11.995 19.153 9.165 12.775 13.396 9.754

PU-UQI 16.030 14.586 15.093 18.765 14.238 16.162

PU-VIF 15.956 18.089 11.142 11.828 13.381 12.539

Log-MSE 20.362 23.508 14.574 14.067 18.956 15.437

Log-PSNR 19.651 22.945 14.494 14.071 18.566 15.275

Log-SSIM 11.400 16.520 12.038 16.847 14.033 13.578

Log-IFC 15.713 15.201 12.540 15.477 13.571 14.905

Log-UQI 15.984 15.611 14.988 18.567 14.560 16.295

Log-VIF 22.167 21.769 17.249 21.126 20.704 18.146

HDR-VDP-2.2 Q 11.276 23.209 9.496 10.120 16.926 9.447

HDR-VQM 11.481 16.900 8.657 10.725 12.313 8.410

mPSNR 19.455 20.934 16.053 15.298 17.390 15.158

tPSNR-YUV 20.992 24.748 17.418 18.721 19.577 15.918

CIEDE00 20.414 26.830 19.285 23.694 22.548 15.813

CIEDES
00

20.256 26.165 14.949 20.330 21.211 15.254

Bold value signifies the best result within the same column. Depending on the evaluation method, the best result is either the highest or lowest

score on the same column
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Table 5 Outlier ratio (OR) results for each database and for aligned data

Metric Database #1 Database #2 Database #3 Databases #4 & 5 Combined Except database #2

Photometric-MSE 0.750 0.933 0.787 0.830 0.838 0.744

Photometric-PSNR 0.771 0.905 0.767 0.820 0.810 0.729

Photometric-SSIM 0.821 0.938 0.679 0.780 0.790 0.681

Photometric-IFC 0.750 0.871 0.546 0.610 0.658 0.637

Photometric-UQI 0.707 0.871 0.558 0.640 0.664 0.629

Photometric-VIF 0.679 0.948 0.617 0.800 0.796 0.596

PU-MSE 0.857 0.933 0.633 0.680 0.768 0.635

PU-PSNR 0.779 0.919 0.579 0.660 0.774 0.640

PU-SSIM 0.714 0.948 0.404 0.560 0.645 0.456

PU-IFC 0.750 0.886 0.500 0.610 0.619 0.629

PU-MSSIM 0.607 0.933 0.388 0.570 0.625 0.446

PU-UQI 0.664 0.848 0.583 0.680 0.648 0.615

PU-VIF 0.700 0.943 0.450 0.520 0.632 0.629

Log-MSE 0.843 0.924 0.592 0.570 0.694 0.646

Log-PSNR 0.786 0.919 0.588 0.580 0.745 0.667

Log-SSIM 0.643 0.876 0.525 0.570 0.681 0.560

Log-IFC 0.750 0.833 0.529 0.610 0.636 0.627

Log-UQI 0.671 0.843 0.579 0.630 0.652 0.627

Log-VIF 0.807 0.924 0.654 0.730 0.864 0.694

HDR-VDP-2.2 Q 0.586 0.938 0.342 0.490 0.733 0.475

HDR-VQM 0.514 0.890 0.392 0.530 0.607 0.448

mPSNR 0.771 0.895 0.667 0.610 0.720 0.642

tPSNR-YUV 0.800 0.952 0.625 0.670 0.774 0.656

CIEDE00 0.743 0.924 0.675 0.760 0.833 0.669

CIEDES
00

0.793 0.933 0.613 0.710 0.813 0.669

Bold value signifies the best result within the same column. Depending on the evaluation method, the best result is either the highest or lowest

score on the same column
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Fig. 3 Statistical analysis

results for correlation indices

for combined data according to

ITU-T Recommendation

P.1401 (ITU 2012). The bars

signify statistical equivalence

between the quality metrics if

they have the same bar aligned

with two quality metrics; e.g.,

there is a statistically significant

difference between HDR-VQM

and all the other metrics

considered in terms of PCC,

SROCC, and RMSE
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implementation and the data processing steps of their work

and the proposed algorithm are not the same. Therefore, we

give the details of the proposed algorithm below in order to

clarify differences.

The basic idea of the proposed method is to convert the

classical regression problem of accurately predicting MOS

values, into a binary classification (detection) prob-

lem (Kay 1998). We denote by S(I) and O(I) the subjective

(MOS) and objective quality of stimulus I, respectively, for

a certain objective quality metric. Given two stimuli Ii; Ij,

we model the detection problem as one of choosing

between the two hypotheses H0, i.e., there is no significant

difference between the visual quality of Ii and Ij, and H1,

i.e., Ii and Ij have significantly different visual quality.

Formally:

H0 : SðIiÞ ffi SðIjÞ;
H1 : SðIjÞ� SðIjÞ;

ð2Þ

where we use ffi (resp. �) to indicate that the means of two

populations of subjective scores (i.e., two MOS values) are

the same (resp. different). Given a dataset of subjective

scores, it is possible to apply a pairwise statistical test (e.g.,

a two-way t-test or z-test) to determine whether two MOSs

are the same, at a given significance level. In our work, we

employ a one-way analysis of variance (ANOVA), with

Tukey’s honestly significant difference criterion to account

for the multiple comparison bias (Hogg and Ledolter

1987), as it is also stated as the ideal way to find statistical

significance in Krasula et al. (2016). Figure 5a shows the

results of ANOVA on our combined database, thresholded

at a confidence level of 95% (i.e., 5% significance). For

convenience of visualization, MOS values have been sorted

in ascending order before applying ANOVA. White entries

represent MOS pairs which are statistically

indistinguishable.

In order to decide between H0 and H1, similar to Kra-

sula et al. (2016), we consider the simple test statistic

DO
ij ¼ jOðIiÞ � OðIjÞj, i.e., we look at the difference

between the objective scores for the two stimuli and

compare it with a threshold s, that is:

Decide :
H0 if DO

ij � s

H1 otherwise:

(
ð3Þ

For a given value of s, we can then label the set of stimuli

as being equivalent or not, as shown in Fig. 5b. The per-

formance of the detector in (3) depends on the choice of s.
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PU-MSSIM
PU-SSIM
PU-VIF
Photometric-VIF
Log-SSIM
Log-IFC
PU-IFC
mPSNR
CIE ΔES

00
Log-PSNR
Log-MSE
PU-PSNR
CIE ΔE00

tPSNR-YUV
PU-MSE
Photometric-IFC
Photometric-UQI
PU-UQI
Log-UQI
Photometric-SSIM
Photometric-MSE
Log-VIF
Photometric-PSNR

SROCC

HDR-VQM
HDR-VDP-2.2 Q
PU-MSSIM
PU-SSIM
PU-VIF
Log-SSIM
Photometric-VIF
Log-IFC
PU-IFC
mPSNR
CIE ΔES

00
Log-PSNR
Log-MSE
CIE ΔE00

PU-MSE
PU-PSNR
tPSNR-YUV
Photometric-IFC
Photometric-UQI
Photometric-SSIM
PU-UQI
Log-UQI
Photometric-MSE
Log-VIF
Photometric-PSNR

OR

PU-MSSIM
HDR-VQM
PU-SSIM
HDR-VDP-2.2 Q
Log-SSIM
Photometric-VIF
PU-UQI
Log-IFC
Log-UQI
Photometric-UQI
PU-IFC
PU-VIF
PU-MSE
Photometric-IFC
PU-PSNR
mPSNR
Log-MSE
tPSNR-YUV
Log-PSNR
CIE ΔE00

CIE ΔES
00

Photometric-SSIM
Log-VIF
Photometric-PSNR
Photometric-MSE

RMSE

HDR-VQM
HDR-VDP-2.2 Q
PU-MSSIM
PU-SSIM
PU-VIF
Photometric-VIF
Log-SSIM
Log-IFC
PU-IFC
mPSNR
CIE ΔES

00
Log-PSNR
Log-MSE
PU-PSNR
CIE ΔE00

tPSNR-YUV
PU-MSE
Photometric-IFC
Photometric-UQI
PU-UQI
Log-UQI
Photometric-SSIM
Photometric-MSE
Log-VIF
Photometric-PSNR

Fig. 4 Statistical analysis

results for correlation indices

for combined data excluding

Database #2 according to ITU-

T Recommendation

P.1401 (ITU 2012). The bars

signify statistical equivalence

between the quality metrics if

they have the same bar aligned

with two quality metrics; e.g.,

HDR-VDP-2.2 Q, HDR-VQM,

PU-SSIM and PU-MSSIM are

statistically equivalent to each

other in terms of OR

Fig. 5 Equivalence maps for the (sorted) combined database. White

entries correspond to SðIiÞ ffi SðIjÞ, black to SðIiÞ� SðIjÞ
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We call true positive rate (TPR) the ratio of images with

different MOSs correctly classified as being of different

quality, and false positive rate (FPR) the ratio of images

with equal MOSs incorrectly classified as being of the

different quality. By varying the value of s, we can trace a

receiver operating characteristic (ROC) curve, which rep-

resents the TPR at a given value of FPR (Kay 1998). The

area under the ROC curve (AUC) is higher when the

overlap between the marginal distributions of DO
ij under

each hypothesis, that is, pðDO
ij ;H0Þ and pðDO

ij ;H1Þ, is

smaller. Therefore, the AUC is a measure of the discrim-

ination power of an objective quality metric.

Table 6 reports the AUC values for the combined case

and the combination without Database-#2. In addition to

the area under the ROC curve, we also compute the bal-

anced classification accuracy, which is an extension of the

conventional accuracy measure to unbalanced datasets, i.e.,

where the number of positive and negative samples is

different (Brodersen et al. 2010):

Acc ¼ 2 � TP

TP þ FN
þ 2 � TN

TN þ FP
: ð4Þ

In Table 6 we report the maximum classification accuracy,

Acc� ¼ maxs Acc, which characterizes the global detection

performance, as well as the value of the detector threshold

at FPR ¼ 5%, that is,

s:05 ¼ minfs : pðDO
ij [ s;H0Þ� 0:05g; ð5Þ

which indicates the minimum value of s in order to keep

below 5% the probability of incorrectly classifying two

stimuli as being of different quality. This latter measure

provides somehow the resolution of an objective metric

(with a 5% tolerance) in the original metric scale.

These results in Table 6 are complemented with the

percentage of correct decisions (CD) in Brill et al. (2004),

Table 6 Results of discriminability analysis: area under the ROC curve (AUC), threshold s at 5% false positive rate, maximum classification

accuracy. We report for comparison the fraction of correct decisions (CD) at 95% confidence level as proposed in Brill et al. (2004)

Combined Except Database #2

Metric AUC s:05 Acc* CD (Brill et al. 2004) AUC s:05 Acc* CD (Brill et al. 2004)

Photometric-MSE 0.532 34,894.476 0.530 – 0.644 34,894.476 0.614 0.317

Photometric-PSNR 0.576 24.798 0.556 – 0.633 18.135 0.596 0.249

Photometric-SSIM 0.609 0.070 0.590 – 0.677 0.057 0.633 0.306

Photometric-IFC 0.716 5.784 0.666 0.398 0.675 7.554 0.629 0.340

Photometric-UQI 0.765 0.333 0.707 0.380 0.730 0.381 0.678 0.296

Photometric-VIF 0.605 0.730 0.585 0.204 0.717 0.730 0.654 0.446

PU-MSE 0.596 431.687 0.580 – 0.677 431.687 0.645 0.379

PU-PSNR 0.625 20.047 0.593 – 0.715 15.350 0.661 0.380

PU-SSIM 0.721 0.057 0.663 0.399 0.804 0.035 0.725 0.512

PU-IFC 0.729 6.081 0.676 0.451 0.694 7.880 0.643 0.386

PU-MSSIM 0.737 0.092 0.680 0.434 0.838 0.054 0.758 0.598

PU-UQI 0.770 0.312 0.711 0.391 0.730 0.408 0.678 0.286

PU-VIF 0.782 0.419 0.719 0.463 0.802 0.455 0.735 0.493

Log-MSE 0.600 0.522 0.587 0.253 0.687 0.036 0.653 0.393

Log-PSNR 0.668 21.195 0.624 0.256 0.729 15.251 0.668 0.395

Log-SSIM 0.717 0.130 0.664 0.394 0.762 0.068 0.696 0.407

Log-IFC 0.725 6.074 0.673 0.443 0.694 7.840 0.642 0.382

Log-UQI 0.769 0.359 0.711 0.368 0.728 0.408 0.676 0.272

Log-VIF 0.634 0.311 0.593 0.217 0.666 0.210 0.635 0.282

HDR-VDP-2.2 Q 0.689 24.084 0.630 0.300 0.850 18.441 0.759 0.622

HDR-VQM 0.791 1.723 0.727 0.487 0.893 1.320 0.816 0.684

mPSNR 0.690 13.840 0.648 0.278 0.727 13.840 0.671 0.381

tPSNR-YUV 0.636 16.452 0.603 0.178 0.708 14.396 0.658 0.367

CIEDE00 0.580 7.608 0.559 0.168 0.721 6.657 0.669 0.332

CIEDES
00

0.602 7.677 0.575 0.187 0.723 6.718 0.668 0.349

Bold value signifies the best result within the same column. Depending on the evaluation method, the best result is either the highest or lowest

score on the same column

For CD, ‘–’ indicates that the 95% confidence level cannot be achieved
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which is to be compared with Acc�. Furthermore, we pre-

sent the results of statistical significance evaluation of the

reported AUC values according to the guidelines presented

in Krasula et al. (2016). The results of this statistical sig-

nificance evaluation are presented in Fig. 6. The results

show that HDR-VQM is the best performing metric, and

PU-VIF and PU-MSSIM perform better than most of the

considered metrics. Although its performance is reduced in

the combined case, HDR-VDP-2.2 Q also is statistically

better than other metrics in the case excluding

Database #2.

We notice that, in general, the values of CD are much

lower than Acc�. This is due to the fact that the method

in Brill et al. (2004) not only aims at distinguishing whe-

ther two images have the same quality, but also to deter-

mine which is the one with better quality. Thus the

classification task is more difficult, as there are three

classes—equivalent, better or worse—to label. Indeed, we

observe a certain coherence between our approach and

Brill et al. (2004), and with the statistical analysis in

‘‘Statistical analysis’’: the best performing metrics are

HDR-VQM and those based on PU transfer function such

as PU-MSSIM, PU-VIF, and PU-SSIM. Nevertheless, our

analysis provides a better insight on the discrimination

power of fidelity metrics compared to Brill et al. (2004),

and gives practical guidelines on which should be the

minimal differences between the objective scores of two

images in order to claim that those have different visual

quality. Finally, the fact that, even for the best performing

metrics in terms of correlation with MOSs, maximum

accuracy saturates at 0.8 suggests that there is still space

for improving existing HDR objective quality measures, as

far as discriminability (and not only prediction accuracy) is

included in the evaluation of performance.

Conclusion

In this paper, we conduct an extensive evaluation of full-

reference HDR image quality metrics. For this purpose, we

collect four different publicly available HDR image data-

bases for compression distortion and a newly created one.

In order to have consistent MOS values across all data-

bases, we align subjective scores using the INLSA algo-

rithm. After the alignment, a total of 690 compressed HDR

images have been evaluated using several full-reference

HDR image quality assessment metrics. The performance

of these fidelity metrics has been assessed from two dif-

ferent perspectives: on one hand, by looking at the quality

estimation as a regression problem, using conventional

statistical accuracy and monotonicity measures (De Si-

mone 2012); on the other hand, by focusing on the ability

of objective metrics to discriminate whether two stimuli

have the same perceived quality.

Our analysis shows that recent metrics designed for

HDR content, such as HDR-VQM and to some extent

HDR-VDP-2.2, provide accurate predictions of MOSs, at

least for compression-like distortion. We also confirm the

findings in previous work (Valenzise et al. 2014; Hanhart

et al. 2015a) that legacy LDR image quality metrics have

good prediction and discrimination performance, provided

that a proper transformation such as PU encoding is done

beforehand. This somehow suggests that the quality

assessment problem for HDR image compression is similar

to the case of LDR, if HDR pixels are properly prepro-

cessed. Yet, the absolute performance figures of these

metrics show that, when databases with heterogeneous

characteristics are merged (database #2 in our experi-

ments), none of the tested metrics provides highly reliable

predictions. All but two of the considered metrics are

Combined

HDR-VQM
PU-VIF
PU-UQI
Log-UQI
Photometric-UQI
PU-MSSIM
PU-IFC
Log-IFC
PU-SSIM
Log-SSIM
Photometric-IFC
mPSNR
HDR-VDP-2.2 Q
Log-PSNR
tPSNR-YUV
Log-VIF
PU-PSNR
Photometric-SSIM
Photometric-VIF
CIE ΔES

00
Log-MSE
PU-MSE
CIE ΔE00

Photometric-PSNR
Photometric-MSE

Except Database #2

HDR-VQM
HDR-VDP-2.2 Q
PU-MSSIM
PU-SSIM
PU-VIF
Log-SSIM
PU-UQI
Photometric-UQI
Log-PSNR
Log-UQI
mPSNR
CIE ΔES

00

CIE ΔE00

Photometric-VIF
PU-PSNR
tPSNR-YUV
PU-IFC
Log-IFC
Log-MSE
PU-MSE
Photometric-SSIM
Photometric-IFC
Log-VIF
Photometric-MSE
Photometric-PSNR

Fig. 6 Statistical analysis results for the discriminability analysis,

according to the procedure described in Krasula et al. (2016). The

bars signify statistical equivalence between the quality metrics if they

have the same bar aligned with two quality metrics. It can be said that

among PU-UQI, Log-UQI, and Photometric-UQI, there is not any

statistically significant difference. Whereas, there is a statistically

significant difference between HDR-VQM and all the other metrics

considered
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computed on the luminance channel only. Interestingly, the

non color-blind metrics, CIE DE00 and CIE DES
00, displays

poor performance in our evaluation, similar to other MSE-

based metrics. While other studies report different results

in terms of correlation with MOSs (Hanhart et al. 2016),

we believe that a partial explanation for these results is that

in the case of coding artifacts, the structural distortion

(blocking, blur) in the luminance channel dominates the

color differences, captured by CIE DE00 and CIE DES
00.

The important aspect of color fidelity metrics for HDR

content, however, is still little understood and is part of our

current research.

Finally, the alternative evaluation methodology pro-

posed in this work, based on the discriminability of a

metric, provides a complementary perspective on the per-

formance of objective quality metrics. It recognizes the

stochastic nature of MOSs, which are samples from a

population and hence are known with some uncertainty.

Therefore, we consider the quality estimation task as one of

detecting when images have significantly different quality.

The relevance of this alternative point of view is demon-

strated by the amount of efforts to go beyond classical

statistical measures such as correlation in the last decade,

from the seminal work of Brill et al. (2004) to the very

recent work of Krasula et al. (2016), developed in parallel

to our study. These analyses show that, even for metrics

which can accurately predict MOS values, the rate of

incorrect classifications is still quite high (20% or more).

This suggests that novel and more performing object

quality metrics could be designed, provided that new cri-

teria such as discriminability are taken into account

alongside the correlation indices used to find statistical

accuracy.
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