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1. Introduction. In this paper we present and analyze a method of solution for an
interface problem in linear elasticity. We deal with the special situation of steady-state,
time-harmonic, two-dimensional anti-plane strain. The physical problem is this. Suppose
one has a half-space of homogeneous, isotropic, linearly elastic material (the earth)
bounded by a traction-free plane. In this material we have an elastic wave, incident plus
reflected, which is time-periodic with frequency to. Suppose now that a cylindrical obsta-
cle of different and possibly inhomogeneous material is inserted in the free surface. The
problem is to determine the time-periodic steady-state limit for the total fields inside and
outside the obstacle.

We refer to [1] for a general discussion of problems of the above type. For linearly
elastic, isotropic materials the fields are displacement U, strain 6 = y(VU + (VU)') and the
stress 3,

3 = A (div U)I + 2/i<£. (1.1)
In general X and p are functions of position; the material is homogeneous if X and p are
constant. The equation of motion is

pUu = div 3 + b, (1.2)

where p is density and b is body force.
Consider the geometry of Fig. 1. The region fi'+ is to represent homogeneous elastic

material with X+, p+, p+. The region Q' represents a (possibly inhomogeneous) cylinder
with /l_, /i_, p_ depending on Xj and x2. x2 = 0 is a traction-free surface. P is the
boundary of fi'.

The anti-plane strain (SH wave) situation for Fig. 1 occurs when the displacement has
the form

U = U(xl5 x2, t)e3 • (L3)

For such fields ©13 = ©31 = \Uxt, (£23 = (£32 = 2^x2> 5i3 = t?3i = g23 : 832 =
pUX2 and all other strain and stress components are zero. In the absence of body forces
Eq. (1.2) reduces to

L„ U = (nUxl)xl + (HUX2)X2 = pUtt. (1.4)

The fact that x2 = 0 is traction-free yields

UX2(xu 0) = 0. (1.5)

* Received May 24, 1982. This work was supported in part by the National Science Foundation under
Grant MCS-8001944.
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Across the interface F the displacement and the traction are continuous, that is,

U+ = U~, n-u;=fi + u: on r. (1.6)
The plus and minus denote limits from ft'+ and ft' respectively and n is the normal.

We assume that the displacements are time-periodic of the form

U(x, t) = Re (u(x)e'°"), (1.7)

so that (1.4) becomes

L^u + a>2pu = 0. (1.8)

We let u°(x) correspond to the driving field. «° will consist of an incoming wave t;0,
defined in all of (R2, and its reflection, that is

u°(xi, x2) = i;°(xi> x2) + y°(xi. - x2). (1.9)

We nondimensionalize the problem. We choose a length scale L2 = p+/p+a>2, replace
x by x/L and introduce the parameters

H = n~/p+(o2L2, p2 = p-/p + . (1.10)

Then (1.8) and (1.6) yield

Lflu + p2u = 0 in ft', Am + u = 0 in £2'+, (111)

h"=u+, p.u~ = u„+ on r. (1.12)

We set w = u in ft' and w = u — u° in ft'+ so that w represents the scattered wave in
ft'+. We require that w satisfy the radiation condition

w~r~ll2e~" as r = |x|-»oo_ (1.13)

We have then the following.
Problem (P'). Find w satisfying (1.13) and such that

L^w + j82w = 0 in ft', Aw + w = 0 in ft'+,

w" = w+ + u°, pw~ = w„+ + u°. (1.14)

There exists a number of procedures for solving problems like (1.14). In the elasticity

4*
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setting we refer to [1, 2, 3], A more general class of interface problems is discussed in [4]
with a model problem analyzed theoretically in [5], Our analysis has three stages, as
outlined in Sec. 2. Our first step is to introduce two different equivalent problems (P0) and
(Pt) in each of which we work only in Q' but have to introduce an auxiliary function <p on
F. Next we rephrase (P0) and (PJ as variational problems (VP0) and (VPj) in which all
boundary conditions are natural. Then we introduce finite-dimensional approximations
(AVP0) and (AVPO.

One has a choice of which of the problems (P0) or (Pt) to solve. As indicated in Sec. 2,
(P0) is somewhat preferable if one is primarily interested in £2' and (Px) if the emphasis is
on fi'+- The main reason for introducing the two is that they are "adjoint" in the sense
that to analyze the procedure for either one must have information about the other.

Remark. We indicate in Sec. 2 that there is actually a whole family of auxiliary prob-
lems P„, 0 < a < 1 and that when a = \ the resulting problem is "symmetric" in a sense
made precise there. For 0 < a < 1, however, we need two boundary functions.

Our methods are all in the spirit of [4] and [5], a combination of finite-element and
boundary integral methods. In particular, our (P0) is an extension to a more complicated
situation of the problem studied in [5],

In Sec. 3 we give an analysis of our auxiliary problems and in Sec. 4 we discuss
convergence of the finite-dimensional approximations. There is a complication here with
which we do not deal in this paper. The complication is the confluence of F with x2 = 0.
This produces singularities in the fields and these affect the analysis. We will suppress this
difficulty here by a symmetrizing process as we describe now.

We make three simplifying assumptions. The first is that the curve F is perpendicular
to x2 = 0. Then we can reflect F, fi' and Q'+ in x2 = 0 to obtain the configuration in all of
[R2 indicated in Fig. 2. T is then a smooth closed curve bounding Q. Our second assump-
tion is that p and p satisfy

pX2(xu 0) = 0, pxi(xlf 0) = 0.

Then we can extend p and p to all of fi as continuously differentiable functions which are
even in x2 ■ Observe that u° is defined in all of IR2 and, by (1.9), is an even function ofx2
The problem we actually analyze in Sees. 3 and 4

X)

Fig. 2
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Problem (P). Find w, satisfying (1.13) in Q+, such that

L^w + fi2w = 0 in Q, Aw + w = 0 in Q+,

w = w + + u° fiw~ = w„+ + u° on r. (1-15)

Suppose we know that the solution of (P) is unique (to be proved shortly). Then it is
easy to verify that the solution of (P) is even in x2 and that in fi', Q'+> w will satisfy (P').

We remark that problem (P) also occurs in the theory of scattering of electromagnetic
waves by dielectric cylinders [6], Other numerical procedures have been given for this
problem, for instance in [6] and [7], The method in [7] is related to our problem (P0).

We present now the quite simple proof of uniqueness of solutions for (P). We denote
by K(Q) (K(Q + )) the spaces of functions which are twice continuously differentiable in fi
(fi + ) and for which w and Vw have limits w~, Vw- (w + , Vw+) on T. For K(C1+) we also
require (1.13). Then by a solution of(P) we mean w e K(Q) n K(Q+) satisfying (1.15).

Theorem 1.1 There exists at most one solution of (P).
Proof : It suffices to prove u° = 0 implies w = 0. Suppose w is a solution for u° = 0.

Then by Green's theorem

(fi | Vw | — ft | w | ) dx +
a

/iw„ w ds = 0. (1-16)
r

Let Qr denote the region fi+ n (| x | < R). Then Green's theorem yields

w„+w+ ds + wnw ds = 0. (1.17)
J|*I=R

(| Vw\2 — \w\2) dx +
&R J r

By (1.15)3 4 the integrals over T are the same and we obtain

Im w„ w ds = 0. (1.18)
J|x| = R

Eq. (1.18) and a standard argument for exterior problems for the Helmholtz equation
(see [8]) imply that w = 0 in Q + . Then w~ = w+ =0 and w~ = w* = 0 and unique con-
tinuation implies that w = 0 in Q.

Let us list the hypotheses under which we operate for the rest of the paper. To avoid
technical smoothness assumptions we suppose T is a C® curve and n and p are (positive)
C°° functions in Q. We need two hypotheses on T (and co). These are:

(H.l) Av + v — 0 in Q, n" e0=>i)50 in £i,

(H.2) v + fi2v = 0 in fiw~ = 0 => v = 0 in Q.

Hypotheses like these are familiar in boundary-value problems. We observe that, for a
given T, there will be infinite sequences co'k, i = 1, 2, k = 1, 2, 3,..., for which H.i will fail.
We observe that our uniqueness theorem did not require either hypothesis. We believe
that they are not necessary for existence either but are simply results of our proof
methods.

2. Formulation of solution procedures. In this section we outline our procedures. We
present them for (P) with a statement of the modification for (P'). We begin with some
potential theory for the equation

Ai; + v = 0. (2.1)
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We define g by the formula

g(x,y) = ^H\?)(\x-y\), (2.2)

where H<02) is the Hankel function of second kind and order zero. Thus g is the Green's
function for (2.1) with (1.13). We define the simple and double layers ^[<p] and 3) [<p]
with density cp by

y\>](*)= (p(y)a(x, y) dsy,

0[</>](x) = (p(y)-^-g(x,y)dsy. (2.3)
y

To modify our procedure to (P') it is necessary only to replace g by the function.

g(x, y) = ~ | x - y |) + f/'o'(| x - y* |)}

where y* = [yu — y2). Then y is the Neumann function in x2 > 0. In all the formulas
below one need only replace T, ft and 0+ by F, ft', ft'+.

For smooth functions cp the properties of Sf and are well known. They both satisfy
(2.1) in ft and in ft+. We have the following limit relations on T. Define integral operators
S, N, D on T by

S[>](x) = (p(y)S(x, y) dsy, S(x, y) = g(x, y)
r xeT=1

-L
N[<pjx) = | (p(y)N(x, y) dsy, N(x, y) = (x, y)

SgDMW= | (p(y)D(x, y) dsy, D(x, y) = — (x, y)

jc e r

*er
(2.4)

Then

vwf = SM; (^~)± = ± + JVM;

(^M)1 = + + £>[>]. (2.5)
The kernel S has a logarithmic singularity while, for smooth curves, the kernels N and D
are continuous. Moreover, one has

S(x, y) = S(y, x), N(x, y) = D(y, x). (2.6)

We have the following analogues of the Helmholtz formulas. If v satisfies (2.1) in ft
then

v = @[v~] — y[v~] in ft. (2.7)

If v satisfies (2.1) and (1.13) in ft + then

v = y[v„+] - @[v+] in ft+. (2.8)

Combining (2.7), (2.8) with (2.5) yields the following results for a v which satisfies (2.1) in ft



148 JACOBO BIELAK AND R. C. MACCAMY

or (2.1) and (1.13) in ft+:

K = D[tT] - }v+ = S[vH+] - D[v + l (2-9)
We are now ready to formulate our equivalent problems for (P).
Equivalent problems. Suppose w is a solution of (P). Then we can apply (2.8) and

(2.9)2. By (1.15)3 4 we have w„+ = w~ — u° and w+ = vv~ — u°. We obtain then

w = nw~ - wj] - 2[w~ - m°] in ft+, (2.10)

i w- + D[w"] - S[jiw~] = iu° - S[Ub0] + 0[«0]. (2.11)

Now m° is a solution of (2.1) in ft; hence, by (2.9)lf — S[u°] + Z)[u°] = ^w0, so the right of
(2.11) is just u°. Let us introduce <p = nw~ as an auxiliary variable. Then (2.11) becomes

$w~ +D[w-]-S|>] = u° (2.12)

and (2.10) becomes

w = ^[(p - u°J - - u°] in ft+. (2.13)

We have thus been led to the following problem.
Problem P0. Find (w, (p) such that

L^w + P2w — 0 in ft, = (p, j w" + D\_w"] — S[(p] = u°. (2.14)

Let us obtain a second auxiliary problem. Here we seek w in the form

w = 5q>] in ft + . (2.15)

From (2.5) we obtain w+ = S[<p] and w„+ = \cp + iV[<p]. Inserting (1.15)3-4 yields w" =
SO] + u° and nw~ = \q> + N[cp] + u°. This suggests the second problem

Problem P^ Find (w, (p) such that

w + p2w = 0 in ft,

w" = S|>] + u°, /iw„" =jtp + N[<p] + u° (2.16)

Both (P0) and (P,) are equivalent to (P). In order to establish this we need a result
about the operator S. This can be obtained from the work of [9].

Lemma 2.1. Supposef e C'1' (P). Then:
(i) There exists a unique x = S~'[/] e C(r) such that S[^] = /;

(ii) The (unique) solution of At; + v = 0 in ft, v = / on T with conditions (1.12) is
V =

Theorem 2.1 (i). Suppose w is a solution of (P). Then (w, nw~) is a solution of (P0).
(ii) Suppose (w, <p) is a solution of (P0) with w e K(Q), cp e C(r). Put

w = y[(p - u°] - &[w~ - m°] in ft+. (2.17)

Then w is a solution of (P).

Theorem 2.2 (i). Suppose w is a solution of (P). Then (w, S_1(w~ — u0)) is a solution of
(Pi).

(ii) Suppose (w, cp) is a solution of (P,) with w e K(ft), cp e C(r). Put

w = 5"[>] in ft+. (2.18)

Then w is a solution of (P).
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Proof. The proof of (i) in both theorems follows from the calculations made to arrive
at (P0) and (PJ together with the observation that by the lemma w+ = S[tp] implies
cp = S_1[w+]. To establish (ii) for Theorem 2.1 we observe that (2.17) and (2.5) yield

w+ = SO] - DO"] + i(w- - u°) - S[Kn0] + D[u„0]. (2.19)
But we showed earlier that — S[u°] + D[u°] = ju° and (2.14)3 yields
S|>] — D[w~] = jw~ — u°. Hence (2.19) gives w+ = vv~ — w°, which is (1.15)3. We have
then by (2.17) w = — u°] — ̂ [w+] in Q + . But by (2.8) w = <S^[w„+] — £F[w+]. Hence
yW ~ — wn+] = ^L^wn " un ~ wn+] — 0 *n ^+- Taking the limit on T and using
Lemma 2.1 (i) yields ^w~ = w„+ + u°, which is (1.15)4. The proof of (ii) for Theorem 2.2 is
similar.

We will see in the next section that, under appropriate hypotheses, both (P0) and (Pi)
have solutions, and we have just seen that both are equivalent to (P). We will give vari-
ational formulations of both problems. One has a choice of which to use. We observe that
a virtue of (P0) is that the quantity cp has direct physical meaning; namely, it is/*w~ which
determines the traction at the boundary. On the other hand, if one is primarily interested
in the exterior field then (P^ is preferable since (2.18) is simpler than (2.17). Mathemat-
ically both are of interest in the convergence proofs as described in Sec. 4.

Variational problems. Suppose first that w is a solution of (P0). We multiply (2.14)!
by a test function v and integrate over Q using the divergence theorem and (2.14)2. The
result is - .

— (/iVw ■ Wv — fi2wv) dx + (pvds = 0. (2.20)!
Jn Jr

Next we multiply (2.14)3 by a test function <p and integrate over T:

u°ij/ ds. (2.20)2

u„v ds
r

(2 w + D[w ] — SO]))/' ds =

We perform similar calculations for (P^ and obtain:
T

(/zVw • Vv — p2xvv) dx +
a

'2 <p + JV[<p])i> ds =

(w~ — S[tp])ip ds = j u°>p ds. (2.21)
Jr Jr

Eqs. (2.20) and (2.21) give our variational problems. Let us introduce some notation. We
write U, V for pairs U = {w, <p} and V = {u, ip}. For functions a, (1 defined on T put
<a, 19) = Jr a(} ds. Now define the bilinear forms, s/(U, V), 38(U, V) by

s/(U, V) = Alt(w, v) + Al2((p, v) + A21(w, ip) + A22((p, 1p), (2.22)

where

An(w, v) = (Vw • Vv — p2wv) dx, A12(<p, v) = (cp, v>,

where

A2l(w,ip)= (ip,$w D[w ]), A22((p, ip) = -(1//, S|>]>, (2.23)

&{U, V) = Bn(w, v) + B12((p, v) + B2l(w, 1p) + B22{(p, 1p), (2.24)

Bn(w, v) = Au(w, v), Bl2(<p, v) = <£<jp + N|>], v~),

B21(w, \p) = <$, vv"), B22(q>, \p) = -<$, S|>]>. (2.25)
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We also introduce the functionals,

*({v, <A}) = <<A, «°>, n{v, H) = <"?, v- > + u°>. (2.26)
Problem (VP0). Find U = {w, (p} such that for all V = {t;, \p}, s/(U, V) = V).
Problem (VP!). Find U = {w, <p} such that for all V = {v, i//}, B(U, V) = @(V).
These problems will be analyzed in the subsequent sections. To anticipate, it will turn

out the appropriate space on which to study them is the Hilbert space = H^Q) x
H~1/2(T). Two observations are important. First, boundary conditions are natural '.** This
means that when we approximate, as below, with finite elements there are no boundary
restrictions on those elements. Second, the problems are "adjoint" in the following sense:

£(U, V) = j/(V, U). (2.27)

Let us verify this fact. We have by (2.3) and (2.26) Bu(w, v) = /ln(w, t>) = A11(v, w), B21(w,
•A) = *>">_= A vv). From (2.6), we have B22(q>, «A) = — <«A, S[>]> = -<<p,
£['/']> = A22(ip, 0). Finally from (2.6)2 we have <<p, Af[i/>]> = <•/*, £>[<?]>. Hence Bl2(cp,
v) = <2<P + N[q>~\, tT> = 0,iiT +D[tT]> = A2l(v, <p).

We consider now approximate solutions of (VP0) and (VPi). We choose finite-
dimensional subspaces Sh and T* of the spaces //,(Q) and H_1/2(r), put jf* = S^xr* and
consider the approximate problems:

Problem (AVP0): Find Uh e such that for all Vh e jf\

Vh) = &(Vh). (2.28)!

Problem (AVPi): Find Uh e such that for all V* e Jf*
mu\ Vh) = rS(Vh). (2.28)2

Each of the approximate problems is equivalent to a set of algebraic equations. Sup-
pose v*,... vhNh is a (real) basis for Jtf"\ If we seek Uh = and define Vh =
(U\, ... UhNi,) e then (2.25) are equivalent to

= ggu* = (129)
where

(.^j = .s/(v), v?), & = (<S\ = 0(v?). (2.30)

Let us study the structure of Eqs. (2.29). Let us suppose that our basis for Sh has the
form co'l, ... co^n*, y'l, ... yhNrh with coj = 0 on T and let a*, ... ahm be a basis for T\ Then
U'1 has a corresponding decomposition into w„, wf-, <)>'' and (2.29) assumes the form

(2.31)

'The variational principles here are similar in this respect to those of [10] for boundary-value problems.
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Here we have
(Ann),j = (Bnn)ij = A11(cOj, a)J, i,j = 1, ... Nq,

(Afir)ij = (Bnr)ij = ^11 (7j> 1 = 1» j = 1, ... N*,

(Arr)i/ = (Brr)ij = (?;> Ti)> U j — 1, ... iVf-,
(A*ro)y = ,2(<rJ, 7i), i=l,...Nhr, 7 = 1,... M; B* r = (A*r<t)',

(Airlu = *,■), Af, j= 1, ... Nf-; B*r4) = (A^)',
(A^tjjJjj (B<x><i>)fj .4 2 2^j • &i)> Uj 1, ... M.

We point out that the form of Eqs. (2.31) permits condensation. Suppose we are solv-
ing VP0 (that is P0) and we are primarily concerned with the exterior region. Then we
may eliminate and consider the system:

Aiv Auywn
A$,r AXJUV W/ { }

where Apr = Apr — Ari2(/lQn)"1Anr. Other combinations are clearly possible, also for
(VP,).

Remark: We observe that other auxiliary problems are possible. Let us keep </> as in
(2.15) but now let X = nw~ so that we have two boundary functions. We multiply (VP0)
by (1 — a) and (VPJ by a and add the results. If we put <*11 = (w, A, </>) and "V = (v, x, ip)
and define siffl, "V), #"a("V) by

six(<%, -f') = (1 - a)/4u(w, v) + (1 - a)A12(A, v) + aB12(<£, v)

+ aBn(w, v) + aB21(w, *) + aB22(<£, /)

+ (1 - a)/l21(w, iA) + (1 — a)/422(A, ip), (2.34)

^(fO = a<«„°, »"> + a<x, u°> + (1 - a) «°> (2.35)
then we obtain:

Problem (VP;,). Find = {w, A, <p} such that for all Y = {y, x, ij/},

sl^U, r) = ^Jv).
Observe that for a = 0 (VPa) becomes (VP0) and for a = 1 it becomes (VPt). Further,
when a = j we have, by (2.27),

2^2 i(w, Z) = i^i2(Z» w), jA21(w, i//) = |B12($, vv),

J/422(A, \jj) = 2B22[\j/, A),

so that siY) = s4J(f, •%). In the finite-dimensional approximation this means that
the matrices will be symmetric if we use real basis elements. The price we pay for this
symmetry is that the system (2.31) will be replaced by a set Of Nhn + AT* + 2M equations
instead of Nhn + Nhr + M. The form will be, for a =

(2.36)

where the A1"s and #"'"s are as in (2.31)!.
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The variational problem (VPa) is equivalent to the boundary problem:
Problem (P„): Find w, X, <f> such that

Lflw + j82w = 0 in Q, — fiw~ + (1 — a)A + <x{±<p + N[(/>] = -au°,

aw~aS[^>] = a u°, (1 — a)}w~ + (1 — a)Z)[w~] — (1 — a)S[l] = (1 — a )u°.

This problem can be analyzed in the same way as the special cases (P0) and (PJ.

3. Existence theorems. We will seek generalized solutions of our problems. For
these we need the Sobolev spaces //r(i2), r > — 1 and HS(T), s > — ̂  for complex-valued
functions. We put

Hl°c(Cl+) = {w: w e H^r) for any R > 0, = Q+ n (|jc| <*)}. (3.1)

For any £ > 0 we put

JTe = Hl+M x H_il2+e(T),

III lilt — III {w, 0} HI2 = || w||i+e(Q) + || </, ||l1/2 + £(fi) for UeJTJte). (3.2)
We write <</>, x) for the pairing of 0 e H_s(r) with x e HS(T).

We recall the trace theorems. If w e Hr(Q) (Hl°c (0+)) then if r > 1 w has a trace
w~(w + ) in Hr_l/2(r) and if r > § then w has a (trace) normal derivative w~(wn+) e
Hr_3/2(r). If w in addition satisfies a homogeneous second-order elliptic equation in O
(ft+) then wn"(w„+) is in //P_3/2(r) for any r > 1.

The operators Zf and 3> of Sec. 2 extend to (/>'s in HS(T) fors > — One has only to
replace the integrals by brackets, for instance ^[(/>](x) = <</>, g(x, •)). These extended op-
erators will still satisfy (2.1) in Q and as well as (1.13). The operators S, N, and D also
extend and all the boundary limit results of Sec. 2 hold when translated in trace state-
ments. These ideas are discussed in [8]. We summarize the results.

Lemma 3.1. For any s > — S is a bounded map Hs(r)—» //s+1(r). N and D are bound-
ed maps HS(D^ Hs+2(r).

Lemma 3.2 (i). If 0 e Hs(T), s > -± ^[0] e Hs+3/2(C1) n H^3/2(Q+) and &>[<«* =
swiidsr/dn^ = ±H + N[<t>l

(ii). If 0 e Hs(r), s > I e Hi+1/2(£1) n tf£1/2(f2+) and (^[</»])± = + \cj> +
£>[$] and (dSiWydn)* e //s_,(r).

There is another result which generalizes Lemma 2.1 (ii) and can be obtained from the
ideas in [8].

Lemma 3.3. For any s > — \ the map S: //s(r)—► Hs+l(T) is surjective.
We can use the above ideas to give generalized versions of the problems in Sec. 2. At

the same time we will introduce some further inhomogeneities for use in the next section.
We introduce a little more notation. The data in our generalized problems will be in the
space tT£ = x H_l/2+t{T) x Hll2+t(T) and for (F, p, q) e iTe we set

III (F, P, q) |||t2 = ||F||2_1+e(n) + ||p||2-1/2+e(r) + || ̂  llf/2+e(F). (3.3)
Problem (P0). Given (F, p, q) e find (w, <p) e JCt such that

Lf,w + p2w — F in Q, fiw~ — <f> = p, $ w~ + £>[w~] — S[</>] = q. (3.4)

Problem (P,). Given (F, p, q) e "W t find (w, <p) e such that

L„w + 02w = F in Q, nw~ - \c\> - iV[<£] = p, w~ - S[</>] = q. (3.5)
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The equation in Q is to be interpreted in the distribution sense, w is to have a trace
normal derivative in ff_1/2+£(r) and the boundary equations are to be interpreted as in
the lemmas.

We will establish the following results.

Theorem 3.1. Problems (P0) and (Pt) have unique solutions (w, <p). Moreover, there
exists a constant M > 0 such that for both solutions

mw,<p)\\\e£M\\\(F,p,q)\\\e. (3.6)
Corollary 3.1. If u° e Hk(x2 > 0) for k > 3 then (P) has a solution.

Proof of Corollary. Let F = 0, p = u°, q = u° on T. u° e Hk(x2 > 0) implies p e
H_1/2_(k_i)(r) and q e Hl/2-(k-1)(r). Then (P0) has a solution (w, tp)eJ(ft-u which
means w e Jfk(Q), <p e $ek--$i2(T). Since k > 3 this means w e K{Qi) and cp e C(r). It fol-
lows that (w, (p) is a solution of (2.14) pointwise and by Theorem 2.1(h) we obtain a
solution of (P). A similar proof can be given using (Pt).

Let us discuss the variational problems. The weakest solutions (w, cp) will be in =
Ht(Q) x ff_1/2(r) and these will correspond to (F, p,q)eJW0. If we consider the bilinear
forms s/(U, V) and 3t(U, V) of Sec. 2 we see that they are meaningful for (U, V) e
x jf0, provided that we interpret the brackets as pairings. One checks that indeed A and

St are bounded forms on JF0 x 0,

\^(U,V)\ <A\\\U\\\0\\\V\\\0, \SS(U, V)\< B||| I/HIo HI F|||o, (3.7)
for some constants A and B. We can extend the functionals !F and H to

■nV) = *({v, +}) = 9(V) s 9({v, *1*}) = <F, v> + <p, tT> + q). (3.8)
The right side of (3.8) is meaningful for (F, p, q) e W0 if <F, v) is interpreted as the
pairing of F e H_ j(Q) and v e H^Q). Moreover, they are bounded functionals:

I*(V)| = 19(V)| < F||| V|||oHI(F, p, q)|||0. (3.9)
We have then the generalized variational problems:
Problem (VPqXCVP,)). Find U e such that for all V e Jf0,

V) = 3?(V) (&(U, V) = &(V). (3.10)

One checks that (KP0X(Vpt)) have unique solutions if and only if(P0), (?i) have unique
solutions U e Jt0. Hence Theorem 3.1 will guarantee that (Vp0) and (VPj) have unique
solutions.

We turn now to the proof of Theorem 3.1. The idea is to reduce the problems to
Riesz-Schauder equations on Hs(T). To do this we first study the boundary-value prob-
lem : given G and P, find v such that

L^v + fi2v = G in fi, fiwn =P on T. (3.11)

f2) it is known that this problem has a unique solution of the follow-

» = ^i[G] + ./2[P], v- = ./r[G] + J~2[_p-\ (3.12)
where

/i:fl.ltl(Q)^H1+ia), J2:H.il2+c(n)^H1+M- (3-13)!

J2 : H_1/2+e(T)-> Hll2+l{T) (3.13)

are all bounded maps.
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We need the following refinement of this result.

Lemma 3.4. ,/2[P] = -2^[P//i] + K[P], ^2[P] = -2S[P//i] + K~[P], where P[P]:
H-i/2+t(r)^/f2+e(Q), K"[P] : H_1/2+£(r)->//3/2+c(r) are bounded.

Proo/ Let us put ./t[P] = — 2£f[_P/fi] + w. By (2.5) and (3.8) we have

fiw„ = 2fiN

Also

= «[P]. (3.14)

w + P w = 2V/i • + (p2 - 2n)Sf = J[P]- (3-15)

Hence w = ^[./[P]] + ./2[h[P]].
Now by Lemma (3.2) P e //_1/2+£(r) implies £f[P/ii] e #i+£(fi) so that J[P] e //£(0).

Also Lemma (3.1) implies n e //3/2+£(r). Thus ,/j[./[P]] e //2+£(fi), ./2[n[P]] e //3 + 2(e).
This and the trace theorem yield the conclusion.

We now prove Theorem 3.1 for (P0). We seek the solution of (3.4) in the form

w = Jy(¥) + J2[P] (3.16)

where P is the (unknown) value of nw~. (3.4)2 yields cp = P — p. We substitute this result
and the result of Lemma (3.4) into (3.4)3 to obtain:

-S + /T[P] + D< — 2S + R-IF]}-SIF] + S[p]

= ?-K[f]-D/r[F|. (3.17)
Applying S 1 to this equation we obtain

P + t#[P] = P0 (3.18)

where
- i

= (-+1) S jP~[P] — 2DS + Z)K"[P]

p°=G+01 {p ~s_i [q~i,/r[F] ~ dj>™- (ii9)
If we take account of the mapping properties developed we find that Jt maps //s(r)

into Hs+i(T) and hence is compact as a map on Hs(r). We have pe f/_1/2+£(r) and
q e H1/2+£(r) so that P0 e//^1/2+£(r). Thus (3.19) is a Riesz-Schauder equation on
H-i/2+£(r). If we can establish that the only solution of the homogeneous equation

P + ^T[P] = 0 (3.20)

is P s 0 it will follow that (3.18) has a unique solution P e //_1/2+£(r) for any P0 e
H _ 1/2+£(r). Reversing the steps it is then easy to verify that (3.16) yields a solution of (P0).

Suppose PeW.1/2+1(r) is a solution of (3.20). Then since M maps //0(n >nto
Hs+l(r) it follows that P e /fs(r) for any s. Forming (3.16) with F = 0 we then obtain a
solution of (P0) in Jfe(Q) for any e. By Theorem 2.1 this yields a solution of (P) with
u° = 0, which is identically zero by Theorem 1.1. But then P = = 0. We conclude
that (3.18) always has a solution. This completes the existence portion of Theorem 3.1 and
the argument just given also establishes the uniqueness.
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The proof for (P^ is almost the same. We again seek w in the form (3.16) with P
unknown. Then (3.5)3 and Lemma 3.4 yield

-2 S + R - SO] = 1

or
2 P

(p= S'^q] +S~1R

We substitute into (3.5)2 and obtain another equation of the form (3.18) which can be
analyzed in the same way.

4. Convergence of the approximate problems. In this section we describe a situation
in which we can guarantee that the finite-dimensional problems (AVP0) and (AVPt) have
unique solutions Uh e #fh for each value of the parameter h and that Uh tends to the
solutions of (P0) and (Px) as h—>0. The setting is a familiar one from [5] and [10] and
other similar work. We assume that Sh" is a finite-element approximation space forHj(fi);
that is, hn is a mesh parameter and the functions in Sh" are piecewise polynomials. Simi-
larly, T*r will be a finite element approximation space for //_ 1/2(r). We need the following
properties.

Approximation properties:

(A.l) There exists a constant yt > 0 and an integer k > 1 such that for any w e H,(Q),
1 < I < k there is a wh" e Shn with

II w - w*°||r(Q) < y~r || w ||,(n), 0 <r < I.

(A.2) There exists a constant y2 > 0 and an integer k' > — j such that for any </> e i/,,
(r), < 1' <k' there is a <t>hr e Shr with

ii <i> - (t>hr mn < y2(hry-° ii $ ii, (d, - i < s < i.
For examples of spaces satisfying (A.l) and (A.2) we refer to [5] and [10]. We will

define h as
h = hn + hr. (4.1)

We assume (A.l) and (A.2) hold and we prove the following.

Theorem 4.1. There exists a constant h > 0 such that if hr < h then:
(i) (AVP0) and (AVf\) have unique solutions Uh.

(ii) If U is the solution of (VP0), ((VP,)) and hence of (P0) ((f^)), and U = {w, </>} e
.yf ,{Q), e < min (k, k'), then for any e' < e there is a constant C such that

|||t/- Uh\\\e,<Ch°-». (4.2)

The key to proving Theorem 4.1 is to establish a coercivity inequality of the following
form. We want to know that there is a constant m > 0 such that for any Uh e 3fh we have

sup \s/(U", Vh) \ >m\\\Uh |||0 HI Vh |||o,
K* G Jfh
V*± 0

sup \muh,vh)l > mill UhllloIII F*|||0 (4.3)
Vh e
Vh±0
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These inequalities will be proved later, but let us first show that they yield the proofs of
Theorem 4.1.

Suppose that Eq. (2.29) for 3Fh = 0 has a solution Uh. Form Uh = £ UjVj. Then we
have st?(Uh, Vh) = 0 for all Vh e Jtf"\ But then (4.3)! implies that Uh = 0; hence U'1 = 0. It
follows that (2.29)j has a unique solution for any h. Similarly (2.29)2 has a unique
solution.

To establish the convergence let U and Uh be solutions of (VP0) and (AVP0) and put
E = U — W\ $ = Vh — Wh where Wh is an arbitrary element of JCh. Then we have
s/{E - S, Vh) = tf(U, Vh) - s/(Uh, VH) = &{Vh) - 3F(Vh) = 0 for all Vh e Jf*. Hence

Vh) = s/(E, Vh). If we apply (4.3), and (3.7) we obtain

m III ̂ lllo III V" |||o < sup | s4(g, V") | < sup | s/(E, V") \ < A ||| E |||01|| V |||0
Vh eST* K* 6

or HI S lllo < k III E |||o for some k and

III U -Uh |||o <\\\E-S |||o < (1 +k) HI E |||o <(1 +k) sup HI V- W" |||0 (4.4)
IV* e sel<

Inequality (4.4) is an optimality result. It states that Uh approximates U in Jfh as well
as the best approximator. In particular, we can pick Wh = {whi\ $*r} as in (A.l) and (A.3).
Suppose U e Jfc, that is. w e Hl+l.{Q), 4> g //_1/2+£(T). Then we can take I = 1 + e,
r = 1 + e' in (A.l) and / = — -j + e, r = — j + s' in (A.2) and obtain

||w-w"«|lli+E-(")<7i(M£"E'l|w||I+E(fl),

ii <p - rr ii -1/2+* < y2(hry-c' ii ̂  ii - i/2+£(n-

Insertion into (4.4) then yields the result (4.2).
Remark. If one chooses Sh° to be piecewise linear functions and Shr to be piecewise

constant then k = k' = 2. Taking e = 1 and e' = 0 in (4.2) then yields 0(h) convergence for
wh in H((Q) and <j)h in H_l/2(r).

We turn now to the proof of (4.3), first for sd. As a first step we make a decomposition
of . For the Green's function g of (2.6) we write

g(x, y) = j; Ml * - y I) + m(x, y), (4.6)

where K0 is the Bessel function of second kind with imaginary argument. This gives a
corresponding decomposition of y and S:

W] = yo[0] + SC0] = S0W>] + (4-7)
in obvious notation. K0 has the same singularity as H\j]\ hence the mapping properties of
S0 are the same as those for S. The kernel of Sj is differentiable and hence maps//s(r)
into Hs + 2(r). The crucial fact, an idea from [9], is the following.

Lemma 4.1. There exists a constant y > 0 such that <0, S0 [0]> > y || <t> ||-i/2(F).
Proof: Consider v = .S^oE^]- This satisfies Av — v = 0 in Q and Q+ and tends to zero

exponentially as | x | —> oo. We have tj) = v* — v~ and v+ = v~ = S0[^]. Applying Green's
theorem to Q and Q' (with a limiting argument) yields

r
— I (| Vu|2 + v2) dx +

J:in
v„vds = 0 = —

r
(| Vt> |2 + v2) dx

n +
D„+ V ds.

r
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Hence

I4>S0[<t>] ds = (f„+ - vn )vn ds < — (I Vt> |2 + v ) dx — —1| t? Ili(ft)- (4.8)
Jn

Now v is a solution of Ad — v = 0 in Q with v~ = S0[</>] on T. Hence $ = Sq (Sq 1
is surjective as before). But regularity for the Dirichlet problem implies 2||i>~ II 1/2(0 <
IMIi(fi) < A||r"||1/2(r) for some X, X. Hence ||r||f(fi) > 2|| f_||?/2(r) = 2||So VIlw2(r) 2:
i 110II-1/2-

We now write, using (2.23),

s/{U, V) = s/°(V, V) + rfl(U, V), (4.9)

where

A°tl(w, v) = - (jiVw-Vv + wti) dx, 4}i(w, t>) = (P2 + l)wu dx,

A°l2{<t>, v) = Al2(4>, v); A°2l(w,ip)=(>j/,$w >, Al2l{w, i//) = <i£, D[w ]>,

A°22(<t>, ip) = -<*, So[0]>, Al22(cl>, <A) = -<& S,[«>. (4-10)
We will now establish a weaker version of (4.3).

Lemma 4.2. There exists a constant m! > 0 such that for any U = {w, (/>} e

sup \s/(U, V) | >m' \\U ||o II K||0. (4.11)
VeJfo
V*0

Proof. Put U = (w, Then we seek a V satisfying (4.11) in the form V =
C + M, M = {m, 1p}. We have

s/(U, V) = s/°(U, t7) + j/(1/, A?) + s/\U, U). (4.12)
By (4.10) and Lemma (4.1),

Res/°(U, U) = Re /ln(w, w) + Re {Al2(<j>, w) - 2A°2l(w, <f>)} - 2 Re A%2(<j>, <p)"I= - | (n | Vw |2 + | w |2) dx + 2<<£, S0W]> + Re {<<£, w> - <0, w>}

< -k.WwUQ)2 - k2\\<f>\\lU2(r) + Re {2i Im (<fi, vv>}
Z-k\\\U HI2 (4.13)

We assert that we can choose M so that

s/(U,M)= -s/l(U,0), |||M|||0<K|||U|||0. (4.14)

If so, then we will have ||| V |||0 < III U |||0 + K ||| U |||0,

I s/(U, K)|>/c|||t/|||2>y-^|||[/|||0|||K|||0

which is (4.11).
We verify assertion (4.14). Define a functional Z) on by

^(Z)= -d\2, U) (4.15)
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and let M be the solution of (VpJ for this & \

@(M, Z) = &(Z) = U) for all Ze/0. (4.16)

We put Z = 17 in (4.16) and use (2.27) to obtain

s/(U, M) = @{M, U) = -s/\U, U)

and we have the solution of (4.14).
Let.jis study (4.16) more closely. Put Z = {z, %}. Then by (4.10)

&(Z) = -rf\Z, U) = w) - 2-4j 1(2, <t>) - 2A\2(x, <f>)

= ~ jV + l)zvv dx - 2 <& D[z-]> + 2 <& SjH)

= <F, z> + <p, z_> + (x, q), (4.17)
where

F = -(p + l)w, p = -2 N[q>l q = S,[<p]. (4.18)
If we compare (4.17) with (3.8) we see that the solution M of (4.16) is a solution of(P,)

with (F, p, q) as in (4.18). Recall that our original assumption was (w, (p) e ^f0; hence
w e//,(£>) =//_ 1+2(0). Also, </> e//_ 1/2(r) so p, q e tf3/2(r) = H_ 1/2 + 2(r). Thus
Theoem 3.1 tells us that M e Jf2 and

III M |||2 < X(|| w 11,(0) + || 4> II - i/2(D) = K HI U Hlo • (4.19)
The estimate (4.19) gives us the inequality in (4.14) but it also does more. It enables us

to extend from Lemma 4.2 to the inequality (4.3) by approximation. Suppose we are given
U'1 € o. We choose V = Uh + M as above so that s4(Uh, V) > mi || Uh ||§. The problem
is that M is not in so we approximate it.

Let us assume that k and k' in (A.l) and (A.2) are both greater than or equal to two.
Then, since (4.19) implies || w ||2(0) < K ||| U |||0 and || \\> ||i/2(F) < K ||| U |||0, we can find
mh" e Shn and ij/hr e Shr such that

II m-mha 11,(0) <yiKhnHI t/|||0;

ll^-^rll-i/2(n^y2^rllll/|ll0. (4-20)
If we set Mh = {m'"\ i/A} then we have

|| M — Mh ||o < c(/in + hr) HI U |||o • (4.21)

Now we have

U + Mh)\ = |s/(U, U + M) + s/(U, Mh — M)|

> m' HI U HIS - m cA(hQ + hr) ||| U \\\20 > j ||| V |||g. (4.22)

if hn and hT are sufficiently small. Moreover, we have

III U + Mh Hlo < III U Hlo + III M Hlo + 111M- Mh Hlo < C' ||| U |||0;
hence (4.22) yields (4.3)

The proof of (4.3) for the other problem is symmetric to the one just given and we
omit it.
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