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Abstract

Many psychometric measures yield data that are compatible with (a) an essentially
unidimensional factor analysis solution and (b) a correlated-factor solution. Deciding

which of these structures is the most appropriate and useful is of considerable impor-

tance, and various procedures have been proposed to help in this decision. The only
fully developed procedures available to date, however, are internal, and they use only

the information contained in the item scores. In contrast, this article proposes an

external auxiliary procedure in which primary factor scores and general factor scores
are related to relevant external variables. Our proposal consists of two groups of

procedures. The procedures in the first group (differential validity procedures) assess

the extent to which the primary factor scores relate differentially to the external vari-
ables. Procedures in the second group (incremental validity procedures) assess the

extent to which the primary factor scores yield predictive validity increments with

respect to the single general factor scores. Both groups of procedures are based on a
second-order structural model with latent variables from which new methodological

results are obtained. The functioning of the proposal is assessed by means of a simula-

tion study, and its usefulness is illustrated with a real-data example in the personality
domain.
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Many psychological instruments, especially in the personality and attitude domains,

were initially designed to be unidimensional or single trait (Furnham, 1990; Reise,

Bonifay, & Haviland, 2013; Reise, Cook, & Moore, 2015). In most cases, however,

failure of the item scores to meet the strict requirements of Spearman’s factor analytic

(FA) model lead to multiple FA solutions (generally exploratory) to be next fitted to

the data. In turn, the results of these analyses lead to multiple correlated-factor solu-

tions to be proposed as the most appropriate structure for many of these instruments

(Ferrando & Lorenzo-Seva, 2018a, 2018b; Furnham, 1990; Reise et al., 2013; Reise

et al., 2015). At the opposite extreme, many instruments that were originally designed

to be multidimensional in fact yield data that are compatible with an essentially unidi-

mensional solution (Floyd & Widaman, 1995; Reise et al., 2013; Reise et al., 2015).

The issue of deciding whether a unidimensional or a correlated-factor solution is

the most appropriate for a measurement instrument is of the utmost practical impor-

tance. A unidimensional solution provides (a) the clearest and most univocal interpre-

tation of how an instrument functions in the calibration stage (McDonald, 1982,

2011) and, generally, (b) the most accurate individual measurement in the scoring

stage (Ferrando & Lorenzo-Seva, 2018a). However, forcing a unidimensional solu-

tion on data that are clearly multidimensional is likely to result in biased item para-

meter estimates, loss of information (this is one of the main points in the present

article), and factor score estimates that cannot be univocally interpreted (see Ferrando

& Lorenzo-Seva, 2018a). At the other extreme, ‘‘splitting’’ essentially unidimen-

sional solutions into multiple solutions is expected to (a) lead to unnecessary com-

plexities, (b) give rise to minor factors of little substantive interest, and (c) yield

factor score estimates that are too unreliable and indeterminate (Beauducel, Harms,

& Hilger, 2016; Ferrando & Lorenzo-Seva, 2018a; Furnham, 1990; Reise et al.,

2013; Reise et al., 2015).

Standard goodness-of-fit (GOF) assessment of competing FA solutions is indeed a

necessary first step in deciding what the most appropriate structure for the measure

under study is. However, it is unlikely to provide a clear answer by itself. In pure

GOF terms, the more parameterized multiple FA model will always fit better than

Spearman’s, and, if enough factors are specified, a well-fitting solution is likely to be

obtained.

Recognizing that GOF alone is insufficient for judging the appropriateness and

quality of an FA solution, several authors (Ferrando & Lorenzo-Seva, 2018a; Raykov

& Marcoulides, 2018; Rodriguez, Reise, & Haviland, 2016a, 2016b) have proposed

multifaceted approaches that go beyond pure model–data fit. This type of assessment,

in turn, is expected to be particularly useful for deciding whether the most appropri-

ate solution is unidimensional or correlated multiple. In general, the proposals to date

focus on two broad groups of properties: (a) the strength, quality, and replicability of

the FA solution and (b) the interpretability, accuracy, and determinacy of the factor

score estimates derived from it. This second group of properties, which is what this

article discusses, is particularly relevant to full psychometric applications, in which

the ultimate aim is individual measurement in some form (e.g., assessment,
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screening, classification, selection, or change). In this type of application, the accu-

racy and validity of the individual factor score estimates are the most important prop-

erties to be attained when fitting the FA model.

A common feature of all the approaches mentioned above is that they are ‘‘inter-

nal’’ in the sense that they only use the information provided by the item scores of

the instrument under scrutiny. A literature review, however, shows that ‘‘external’’

or ‘‘outside’’ strategies have also been proposed for determining the most appropriate

dimensionality. These strategies make use of the information contained in the validity

relations between the score estimates and relevant external variables, whether these

are objective criteria or scores on theoretically related measures. Relatively few

‘‘external’’ proposals have been made to date, they use different terminology, and

they have different aims. In our opinion, however, most of them arise from two basic

approaches that we shall refer to as differential and incremental. The basic question

in differential proposals is whether the factor scores derived from the multiple pri-

mary factors relate differentially to the external variables (Carmines & Zeller, 1991;

Floyd et al., 1992; Goldberg, 1972; Judge, Erez, Bono, & Thoresen, 2002). The basic

question in incremental proposals is whether using primary scores in a multiple

regression analysis leads to noticeable improvements in prediction with respect to

using scores on a single general factor (Betts, Pickart, & Heistad, 2011; Coyle &

Pillow, 2008; Floyd & Widaman, 1995; Mershon & Gorsuch, 1988). Overall, several

authors (Floyd & Widaman, 1995; Goldberg, 1972; Mershon & Gorsuch, 1988) have

considered that ‘‘outside’’ validity evidence is, in most cases, the ultimate criterion

for judging the appropriateness of an FA solution.

This article proposes several procedures, based on an external validity approach,

in which factor score estimates derived from a measurement FA model are related to

theoretically relevant external variables. The proposed procedures are model based

and aimed at assessing the two validity facets discussed above. They are particularly

intended for those scenarios in which essentially unidimensional and correlated-

factor solutions are plausible in ‘‘internal’’ terms, in the sense that in each competing

solution, both the FA structure and the derived factor score estimates attain the stan-

dards of strength, replicability, and accuracy (see Ferrando & Lorenzo-Seva, 2018b;

Reise et al., 2013). This scenario is quite common in practice and, when it occurs,

the procedures we propose here can add information that can help reach a decision

about the most appropriate dimensionality. As far as we know, our approach contains

new results and developments, and we believe that it is a potentially useful addition

when judging the appropriateness of FA solutions beyond pure model–data fit.

The procedures proposed in this article are based on a second-order factor model,

which is extended to include validity relations with external variables. This model,

which is described below in detail, is used as a basis for predicting how factor score

estimates derived from the measurement submodel relate to the external variables

when differential and incremental validity relations are present or not.

In the structural modeling framework, it has been more and more common prac-

tice to directly obtain validity estimates without having to obtain individual scores at
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all (e.g., Curran, Cole, Bauer, Rothenberg, & Hussong, 2018). So some initial justifi-

cation for the approach we have chosen is in order. First, as mentioned above, the

FA solution whose dimensionality is to be assessed is expected to be used in a con-

text in which individual measurement is the main aim of the application. Second, as

described below, the full basis model is a nonstandard model that is not generally

identified under the alternative solution, and furthermore, direct estimation becomes

untractable or unfeasible in many applications found in practice (e.g., Gustafsson &

Balke, 1993).

Rationale and Basic Results

Figure 1 shows the structural model that serves as a basis for our proposals. It is a

second-order factor model that has been extended to include an external variable or

criterion. The measurement part of the specific model depicted in the figure is a

restricted solution with three indicators per primary factor, whereas the structural

part considers three primary factors. Indeed, this representation is solely for purposes

of simplicity. In our proposal, the measurement part of the model can be restricted or

unrestricted (see Ferrando & Lorenzo-Seva, 2000) and the number of indicators and

primary factors are not limited in any way. Furthermore, the depicted model

Figure 1. Path diagram for the basis model.
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considers only a single external variable but, as in Carmines and Zeller (1991), mul-

tiple criteria can be considered. The scaling considered for the model is conventional,

and the indicators x, the criterion y, and both the primary and the general factors are

all scaled as standard variables, with zero mean and unit variance. Finally, the criter-

ion is always taken to be a manifest variable.

The ‘‘internal’’ part of the second-order model in Figure 1 is conventional. The

unique parts of the primary factors zk are assumed to be uncorrelated between one

another, which means that all the ‘‘internal’’ dependencies between the primary

factors are accounted by for the general second-order factor. This assumption is rea-

sonable if the unidimensional or the second-order FA models provide acceptable

model–data fit results, which is the scenario considered here (e.g., Raykov &

Marcoulides, 2018). Overall, the structural equations for the ‘‘internal’’ model are

xij = lj1ui1 + � � � + ljquiq + ej ð1Þ

for the measurement submodel, and

uik = gkguig + jk ð2Þ

for the second-order latent structural model. Combining Equations (1) and (2) yields

xij = lj1g1g + � � � + ljqgqg

� �
uig + lj1z1 + � � � + ljqzq + ej

� �
=ajuig + dj: ð3Þ

We turn now to the validity relations. In our basis model, each primary factor is

related to the external variable y through two types of path: a direct path (bk) and an

indirect path (gkg; bg). The direct paths model the potential validity relations between

the unique parts of the primary factors and the criterion, a type of relation whose con-

ceptual meaning has been discussed in the literature (e.g., Betts et al., 2011; Coyle &

Pillow, 2008; Gustafsson & Balke, 1993; Judge et al., 2002; Nagy, Brunner, Lüdtke,

& Greiff, 2017). Apart from random error, the unique parts of the primary factors

may contain reliable specific variance that is not represented by the general factor

but that is a structural part of the validity relations.

If all the direct paths are zero, it follows that all the validity relations between the

primary factors and the external variables are mediated by the general factor, so no

validity information will be lost if only the general factor is considered. This is the

null model in our proposal. On the other hand, nonnegligible direct paths indicate that

the unique parts of the primary factors are still related to the external variable beyond

the relations that are mediated by the general factor. This is the alternative model in

our proposal, and if it is correct, this additional validity information will be lost if a

unidimensional solution is adopted.

As mentioned above, the alternative model considered here is not identified and

so cannot be univocally estimated without additional identification constraints (see

Nagy et al., 2017 for a related discussion). Furthermore, in most cases, it is a com-

plex model likely to result in estimation problems. So it should be clear again that

full structural estimation of this type of model is not an issue in the present proposal.
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Rather, the estimation procedure we consider is three-stage procedure (e.g., Hoshino

& Bentler, 2013). In the first stage (item calibration), the measurement FA model is

fitted to the data. In the second stage (scoring), factor score estimates for each indi-

vidual are obtained on the basis of the calibration results. In the third stage (external

validity assessment), the factor score estimates are correlated to the relevant external

variables or criteria. Because factor score estimates contain error and are biased,

naive use of this three-stage procedure is expected to lead to biased (generally atte-

nuated) validity estimates (e.g., Hoshino & Bentler, 2013). So, as discussed below,

we shall propose in this article different procedures intended to address the inherent

bias and error of the score estimates and provide correct validity inferences.

The corrected three-stage procedure described above is a good alternative when

direct estimation of the full model is unfeasible, problematic, or too complex, but it

also has other advantages (e.g., Curran et al., 2018; Devlieger & Rosseel, 2017;

Hoshino & Bentler, 2013) of which we would like to mention two. First, in the case

of binary and categorically ordered items, the resulting full model is usually a mix-

ture of categorical and continuous (the criteria) variables, and the separate approach

is preferable in most cases (Hoshino & Bentler, 2013). Second, in most validity stud-

ies (as in the one described below), the sample of individuals used for calibration

and scoring purposes is larger than the subsample for which criteria or external mea-

surements are available (Ghiselli, Campbell, & Zedeck, 1981). So more accurate

calibration estimates can be obtained on the basis of the whole sample, while the

third stage can then be performed on the subsample for which criteria measures are

available.

We shall assume that item calibration is based on the interitem correlation matrix

but no other restrictions are imposed. So it can be based on both the linear model and

the nonlinear model for ordered categorical variables (e.g., Muthén, 1984), which we

shall denote here by CVM (categorical variable methodology) FA (see Ferrando &

Lorenzo-Seva, 2013, for a comparison of the linear and the CVM approaches in cor-

relational terms).

A variety of approaches and solutions will be considered at the calibration stage.

In the restricted FA case, a second-order solution can be directly fitted to the item

scores. In the unrestricted FA case, the second-order factor loadings can be estimated

by factoring the interfactor correlation matrix again. As for the unidimensional solu-

tion, the general factor can be taken to be the second-order factor (and so, understood

as a higher order attribute shared by the primary factors), or obtained by directly fit-

ting Spearman’s model to the data. As far as this latter approach is concerned, we

note that if the second-order solution is reasonably correct, the loadings on the one-

factor solution will approach the second-order loadings. More specifically, the unique

and residual variances will be taken as residual variances (see Equation 3), and the

unidimensional loadings will be close to

l̂j =
X

k

ljkgkg; ð4Þ
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that is, the second-order loadings in Equation (3) (see, e.g., Mulaik & Quartetti,

1997; Rindskopf & Rose, 1988).

We turn now to the scoring and external validity stages. We shall use the terminol-

ogy ‘‘true factor scores’’ to refer to the latent factor scores in the model (McDonald

& Burr, 1967) and ‘‘factor score estimates’’ to refer to the corresponding predictors

(see Ferrando & Lorenzo-Seva, 2018a, for a further discussion). Let ûik be the factor

score estimate of individual i in the k primary factor, and let uik be the corresponding

true factor score. As in Samejima (1977) we can write,

ûik = uik + eik , ð5Þ

where eik denotes the measurement error. It is already assumed that uk is distributed

with zero expectation and unit variance. Next, we shall further assume that (a) ûik is

conditionally unbiased (i.e., E(ûik juik) = uik), and (b) the conditional distribution of

ûk for fixed uk is normal. If (a) is fulfilled, then it follows that E(eikjuik) = 0, so the

measurement errors are uncorrelated with the true trait levels. It then follows that the

squared correlation between ûk and uk is

r2(ûkuk ) =
Var(uk)

Var(ûk)
=

1

1 +Var(ek)
=

1

1 +E(Var(eik juik))
= r(ûk ûk ), ð6Þ

which is taken as the reliability of the factor score estimates (see Ferrando &

Lorenzo-Seva, 2018b).

From Equation (5) and the assumptions above, it follows that the correlation

between the primary factor score estimates in factor k and the relevant external vari-

able y (i.e., the observed validity coefficient) is

r(ûky) =
r(uky)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(ûk)

q : ð7Þ

So

r̂(uky) =
r(ûky)ffiffiffiffiffiffiffiffiffiffiffiffi
r(ûk ûk )

p : ð8Þ

Therefore, the disattenuated correlation between the estimated primary factor

scores and the criterion is an unbiased estimate of the corresponding correlation

between the true primary scores and the criterion (i.e., the true validity coefficient).

Differential Validity Assessment

Assume now that the disattenuated validity coefficients based on the primary factor

score estimates have been obtained as in Equation (8). So, according to the basis

model in Figure 1, the following relations would be expected
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E(r̂(u1, y)) = g1gbg +
ffiffiffiffiffiffiffi
1�

p
g2

1gb1

.

.

.

E(r̂(uk , y)) = gkgbg +
ffiffiffiffiffiffiffi
1�

p
g2

kgbk

.

.

.

E(r̂(uq, y)) = gqgbg +
ffiffiffiffiffiffiffi
1�

p
g2

qgbq

: ð9Þ

Under the null model in which the unique parts of the primary factors are uncorrelated

with the criterion, the bks would all be zero, so the disattenuated coefficients should

be proportional to the corresponding loadings of the primary factors on the second-

order general factor. This result certainly makes sense because, as discussed above, all

the validity relations in this case are mediated by the general factor. We note that the

result so far discussed is a refinement of the proposal by Carmines and Zeller (1991),

who stated that when there is no ‘‘true’’ multidimensionality in the validity sense, the

primary factor scores should relate similarly to relevant criteria (p. 67). What we pro-

pose instead is that in this case they should relate to the criteria in the same proportion

as how they relate to the general factor. So if the second-order loadings gkg are taken

as fixed and known, the following result should hold if the null hypothesis is correct

r̂(u1, y)

g1g

= � � � = r̂(uk , y)

gkg

= � � � = r̂(uq, y)

gqg

: ð10Þ

A simple procedure for testing the tenability of the null hypothesis of no differential

validity would then be (a) obtain confidence intervals for the disattenuated validity coef-

ficients by using Bootstrap resampling, (b) divide the endpoints of these intervals by the

corresponding second-order loadings gkg (taken as fixed and known parameters), and (c)

check whether the scaled intervals overlap (as they should under H0) or not. If they over-

lap, we can conclude that the primary factor scores relate to the criterion as expected

when all the validity relations are mediated by the general or second-order factor. In this

case, the choice of the correlated-factor model would not provide additional validity

information beyond that which can be obtained by using the unidimensional model.

Incremental Validity Assessment

The results in this section are more complex than those in the ‘‘Differential Validity

Assessment’’ section, and for the sake of clarity and simplicity, we shall describe

some of them using the simplest case of two primary factors. We shall also assume

that all the validity relations (i.e., the b parameters in Figure 1) are positive. The loss

of generality with these simplifications is assumed to be minor because (a) the gener-

alization of the simplified results to a greater number of primary factors is straight-

forward and (b) the direction of the primary factors is usually arbitrary and can be

reversed at one’s convenience.
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The basis approach proposed here is to compare (a) the correlation between the

general or second-order factor score estimates and the criterion with (b) the multiple

correlation between the primary factor score estimates and the criterion when both

(a) and (b) are corrected for the measurement error in the primary factor score esti-

mates. As shown below, when the null model holds, both correlations are expected

to have the same value.

We shall first consider how the factor scores on the second-order or general factor are

obtained. If the ‘‘true’’ factor scores on the primary factors were known, the second-order

scores would be a weighted composite of the primary scores, and the weights would

reflect the impact of the general factor on the corresponding primary factors. More spe-

cifically, under the assumption of conditional normality above, the maximum likelihood

(ML) factor score estimates would be Bartlett’s (1937) scores (see Ferrando & Lorenzo-

Seva, 2018b, for a discussion). Now, if Bartlett’s scores were obtained on the basis of the

‘‘true’’ primary factor scores, then the weights of the linear composite would be propor-

tional to the signal-to-noise ratios gkg

�
1� g2

kg. These weights are ‘‘optimal weights’’

in the sense that they define the composite with maximal reliability (Penev & Raykov,

2006; Raykov, Gabler, & Dimitrov, 2016). In the specific case of factor scores, Ferrando

(2008) labeled this composite as the ‘‘maximal information’’ composite.

Under the null model, and in the simplest case of two primary factors, the correla-

tion between the second-order factor score estimates and the criterion would be

E(rûgy) =bg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21g1

2 + v22g2
2 + 2v1v2g1g2

v21 + v
2
2 + 2v1v2g1g2

s

=bgsaf (ûg)

ð11Þ

where the vs are the weights of the composite, and saf is the ‘‘structural attenuation

factor’’ term that reflects the structural errors of the primary factors (see Figure 1).

Note from Equation (11) that saf will only reach unit value (i.e., no attenuation) when

the gs are all 1 (i.e., when the primary factors are perfect indicators or markers of the

second-order factor). Now, an estimate of rûgy denoted by r̂ûgy can be obtained by

correcting the corresponding observed correlation (based on the primary factor score

estimates) by the measurement error in these estimates. The expected value of this

corrected correlation under H0 is that given in Equation (11).

The relation (11), however, does not hold under the alternative model because in

this case the corrected correlation above also contains an additional term that reflects

the relations between the unique parts of the primary factors and the criterion. For the

simplest case of two primary factors, the expected value of the corrected correlation

under H1 can be written as

E(r̂ûgy) =bgsaf (ûg) + K
g1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1

p
" #

b1 + K
g2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

2

p
" #

b2: ð12Þ

Ferrando and Lorenzo-Seva 445



where K is a constant term.

We turn now to the multiple regression results. Again, if the true primary factor

scores are known, the prediction of the criterion from the primary factors would be a

direct application of regression analysis. However, they are not, and fallible factor

score estimates are used instead of the true factor scores. The measurement error in

these primary estimates can be corrected via error-in-variables regression (e.g.,

Johnston, 1972, chap. 9). More specifically, Ferrando (2008) considered applying

this type of regression to factor score estimates that fulfill the conditions discussed

here. Let SP be the covariance matrix between the estimated factor scores, and SPT
the corrected matrix with unit variances in the main diagonal (i.e., the estimated cov-

ariance matrix between the true factor scores). Next, let spy be the vector containing

the covariances between the estimated factor scores and the criterion. The error-in-

variables estimated vector of weights is given by

w= (SPT)
�1sPy: ð13Þ

For the simplest case of two primary factors, let [w1, w2] be the elements of w.

Then, an estimate of the multiple R that would be obtained if the true factor scores

were known can be obtained as (see, e.g., McNemar, 1969, eq. 11.6)

Rc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1r̂(u1, y) +w2r̂(u2, y)

p
: ð14Þ

From Equation (14), it can then be found that, under the null model, the expected

value of Rc is

E(Rc) =bg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1g1

2 +w2
2g2

2 + 2w1w2g1g2

w2
1 +w

2
2 + 2w1w2g1g2

s

=bgsaf (reg)

: ð15Þ

Now, if H0 holds, the weights w in Equation (15) are proportional to the optimal

weights v in Equation (11). This is because the optimal composite that maximizes

reliability also maximizes validity for any criterion that is uncorrelated with the resi-

dual (structural in our case) errors (Penev & Raykov, 2006; Raykov et al., 2016). It

then follows that the saf term is the same in both Equations (11) and (15), so the

expected value of the corrected correlations to be compared is the same when the

null model holds (i.e., when there is no incremental validity).

When the alternative model holds, the expected value of Rc becomes

E(Rc) =bgsaf (reg) + Cw1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1

q� �
b1 + Cw2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

2

q� �
b2 : ð16Þ

If the expressions in Equations (12) and (16) are compared, it becomes clear that

both are weighted averages of the b validity parameters, but their values are expected

to differ. The general factor score composite aims to maximize the reliability or
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information about the second-order factor, whereas the regression composite aims to

maximize the prediction of the criterion. So, overall, under H0, both Equations (12)

and (16) are expected to have the same value, but under H1, the expectation of

Equation (16) is the maximal validity that can be obtained when correcting the pri-

mary factor score estimates for error, and so it is necessarily larger than the expecta-

tion of Equation (12).

As in the section above, a simple test for incremental validity is to obtain boot-

strap confidence intervals for both Rc and r̂ûgy and check whether they overlap (as

they should under H0) or not. An alternative procedure, more in line with a related

proposal by Raykov et al. (2016), is to compute the difference Rc � r̂ûgy, obtain the

Bootstrap confidence interval for this difference, and check whether the zero value

falls within the interval or not. In a more general context, we note that the difference

between two correlations (usually squared) is the most common operative measure

of incremental validity (Haynes & Lench, 2003).

Some Additional Considerations

In a broader context, the method we propose here (a) separately estimates the mea-

surement and structural (validity) parts of a complex model and (b) corrects the pri-

mary factor score estimates for error to attain unbiased estimates of the parameters of

interest. In this context, then, our proposal is related to more general bias-correction

proposals such as that of Croon’s (2002), and Hoshino and Bentler’s (2013). More

specifically, in the differential case, our proposed correction is expected to provide

unbiased estimates of the validity coefficients, whereas, in the incremental case, the

common correction we propose provides a correct basis for comparing the two corre-

lations of interest.

The two groups of procedures summarized above behave appropriately when the

factor score estimates are conditionally unbiased, from which the classical require-

ments of error-in-variables regression (errors linearly independent of true levels with

zero expectation and known reliability) are then obtained (see Ferrando, 2008).

Strictly speaking, however, only Bartlett’s ML estimates in the linear FA model are

unbiased for finite item sets (e.g., McDonald, 2011). Regression or Bayes estimates

are always inwardly biased, and, in the CVM FA model, all the factor score esti-

mates in common use are biased to some extent. So, again strictly speaking, the

results provided here must be considered as approximate in many cases.

Ferrando and Lorenzo-Seva (2018b) made a detailed discussion of the practical

relevance of the problem above. As a summary, they found that ML estimates (the

counterpart of Bartlett scores in the CVM case) also behaved quite well in the CVM

FA model. As for regression (linear) and Bayes modal or expected a posteriori

(CVM) scores, they proposed additional corrections mainly intended for the marginal

reliability coefficients derived from the factor score estimates. Interested readers are

referred to these corrections if they aim to implement the present proposal based on

scores other than ML.
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Sensitivity Determinants and a Simulation Study

In accordance with the developments above, two major factors are expected to deter-

mine the sensitivity with which differential and incremental validity will be detected

when the alternative model is true. The first determinant is the relative strength of the

weights of bg and bks (see Figure 1). As the general factor becomes more strongly

related to the criterion while the unique relations become weaker, the model increas-

ingly approaches the null model so validity improvements are less likely to be detected.

The second factor concerns the relations between the vector of g weights and the

vector of bk weights, and for clarity and simplicity, we shall consider that all these

weights are positive. Now, all other things being constant, detection of differential

and incremental validity is expected to be enhanced when the unique parts relate to

the criterion in a different way to how the corresponding primary factors relate to the

general factor. So sensitivity is expected to be high when the unique parts of the pri-

mary factors that are weakly related to the general factor are strongly related to the

criterion, and vice versa (see Figure 1). On the contrary, when the profile of the g

and bk vectors is similar (i.e., the unique parts of the primary factors most related to

the general factor are also the most related to the criterion), detection is expected to

be difficult. In more detail, if the g and bk vectors are proportional, then (a) the terms

in Equation (10) are expected to be quite similar, as the differences will only depend

on the residuals

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

k

q
and (b) the corrected validity coefficients based on the gen-

eral factor score estimates (Equation 12) and on the regression scores (Equation 16)

are also expected to be similar, because the profile of weights on the maximum infor-

mation, and the maximum validity composites approach one another. Indeed, if both

determinants are taken into account, the detection of validity effects is most difficult

when bg is larger than the bk’s and the profile of the g and bk vectors is similar.

The determiners discussed so far served as a basis for designing the simulation

study described in this section. Given its preliminary nature, the study considered

only the simplest setting based on continuous item scores, a single criterion, and

Bartlett’s ML score estimates. It consisted of two parts: (a) a preliminary study, in

which the null model was correct in the population, and (b) the main study, based on

different conditions under the alternative model. The preliminary study served mainly

to check that the above predictions derived under H0 were correct.

General Conditions

In all cases, pseudo-populations of 1,000,000 simulees were generated, and for each

condition, 1,000 samples of the prescribed size were drawn from the corresponding

pseudo-population. So, the study was based on 1,000 replicas per cell in all cases.

Overall, 9,000 samples were assessed under H0 and 54,000 under H1.

Independent Variables

The H0 study was based on a full 3 3 3 design. The independent variables were (a)

sample size N = 300, 500, 1,000, and (b) number of primary factors r = 3, 4, 5. In all
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conditions, the simulated patterns for the primary factors were independent-clusters

solutions, with five items per factor and a constant loading of 0.8. Thus, for example,

the pattern for the three-factor condition was

P =

:8 0 0

:8 0 0

:8 0 0
:8 0 0

:8 0 0

0 :8 0
0 :8 0

0 :8 0

0 :8 0
0 :8 0

0 0 :8
0 0 :8
0 0 :8
0 0 :8
0 0 :8

2

666666666666666666666664

3

777777777777777777777775

The remaining constant conditions were as follows. The bg parameter for the gen-

eral factor (see Figure 1) was 0.45, the bs for the unique factors were 0, and the g

loadings for the primary factors ranged from 0.30 to 0.8. The reliabilities of the pri-

mary factor scores were all 0.90, which follows from the settings of the design.

The main H1 study was based on a full 3 3 3 3 3 3 2 design. The independent

variables in this case were (a) sample size N = 300, 500, 1,000; (b) number of primary

factors r = 3, 4, 5; (c) degree of agreement between the g and bk vectors; and (d) rela-

tive strength of the general and unique b parameters. With regard to this last indepen-

dent variable, in the low general strength condition, the b for the general factor was

0.30, and the bs for the unique factors ranged from 0.20 to 0.60 while in the high gen-

eral strength condition, the general b was fixed to 0.60 and the unique bs ranged from

0.10 to 0.40. As for the g and bk degree of agreement, the three levels were (a) dis-

agreement, in which the g and bk values were set in the opposite order; (b) random

ordering; and (c) agreement in which the order of the g and bk values was the same.

Finally, the measurement or ‘‘internal’’ part of the model was the same under H0 and

H1. So the internal constant conditions were the same as in the previous study.

Dependent Variables

In both studies, differential and incremental validity were assessed by using differ-

ence statistics. In the differential case, first, the scaled disattenuated validity coeffi-

cients in Equation (10) were computed, and next, their median value across the

primary factors was obtained. In the H0 study, a scaled value chosen at random was

subtracted from the median value in each replication. In the H1 study, the most
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extreme scaled value was subtracted from the median. This procedure provides a sin-

gle difference statistic regardless of the number of factors. As for incremental valid-

ity, the chosen statistic was the Rc � r̂ûgy difference described above. In both cases,

the results reported in the tables are the median values across the 1,000 replications

as well as the interval defined by the 5 and 95 empirical percentiles.

Results

Table 1 shows the results of the H0 study, which are quite clear: Neither spurious dif-

ferential nor incremental validity are detected in any of the conditions (note that the

zero value falls within the percentile confidence interval in all cases). Note also that

the median value is always close to its expected zero value but that for both differen-

tial and incremental outcomes, it seems to get closer and closer to zero as the sample

size increases.

The results for the more complex H1 study are in Table 2 (differential) and Table

3 (incremental). Overall, they agree quite well with the theoretical expectations. For

both types of validities, effects will be detected (boldfaced results in both tables)

when the g and bk vectors, vectors disagree or are random, and the sensitivity will

increase when the general weight is lower than the unique weights. As for differ-

ences, in the differential validity case, sensitivity also seems to increase with the

number of factors and sample size, but not in the incremental validity case.

Neither differential nor incremental validity will be detected when the profiles of

the g and bk vectors are in agreement. For differential effects, this result makes clear

sense because the unique parts of the factors are essentially related to the criterion in

the same way as the corresponding primary factors are related to the general factor

(which is the main assumption under H0). As for the lack of incremental effects in

these conditions, the results suggest that the confounded (unique-general) validity

effects have already been taken into account by the general factor score estimates, so

that the multiple regression linear composite, with weights that are very similar to

Table 1. Differential and Incremental Validities When H0 Is True.

Differential validity Incremental validity

Mean c5 c95 Mean c5 c95

Overall 20.002 20.223 0.216 0.009 20.008 0.032
r = 3 20.003 20.229 0.216 0.007 20.008 0.025
r = 4 20.004 20.224 0.215 0.009 20.008 0.031
r = 5 0.000 20.214 0.221 0.012 20.007 0.036
N = 300 20.004 20.261 0.255 0.014 20.009 0.041
N = 500 20.003 20.228 0.225 0.009 20.009 0.028
N = 1,000 0.000 20.160 0.160 0.005 20.007 0.017

Note. c5 = 5 percentile confidence interval; c95 = 95 percentile confidence interval.
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those of the general factor score composite, does not add substantially to the predic-

tion of the criterion. So, in these conditions, the outcomes of the proposed procedure

would lead to the unidimensional model being chosen even when unique relations

with the criterion do in fact exist. This lack of sensitivity may be considered a limita-

tion of our proposal at the theoretical level, but not at the practical level. In effect, in

this case, the choice of the unidimensional solution is justifiable in terms of validity

and is more parsimonious than the multiple solution.

An Empirical Example

The Statistical Anxiety Scale (SAS; Vigil-Colet, Lorenzo-Seva, & Condon, 2008) is

a narrow-bandwidth personality test intended to measure anxiety manifestations

related to the encounter of statistics in any form or level. This type of manifestation

is expected to hinder the learning process (Onwuegbuzie & Daley, 1999). So SAS

scores are expected to be negatively related to academic performance, particularly to

performance measures in which statistics is involved in any way. The SAS consists

of 24 items and uses a 5-point graded response format.

Table 2. Differential Validities When H0 is False.

Beta of general factor Low (.30) High (.60)

Betas of primary
factors

b–g
disagreement Random

b–g
agreement

b–g
disagreement Random

b–g
agreement

Overall 1.012 1.07 20.009 0.676 0.721 0.008
(0.820;
1.242)

(0.879;
1.269)

(20.253;
0.281)

(0.498;
0.892)

(0.536;
0.918)

(20.234;
0.233)

r = 3 0.939 1.04 20.016 0.657 0.727 0.017
(0.791;
1.131)

(0.876;
1.201)

(20.278;
0.281)

(0.494;
0.853)

(0.554;
0.895)

(20.196;
0.203)

r = 4 0.994 1.048 20.063 0.661 0.706 0.012
(0.813;
1.201)

(0.852;
1.240)

(20.250;
0.254)

(0.482;
0.883)

(0.523;
0.907)

(20.241;
0.247)

r = 5 1.104 1.124 0.052 0.712 0.729 20.005
(0.898;
1.305)

(0.923;
1.322)

(20.213;
0.301)

(0.516;
0.929)

(0.533;
0.943)

(20.256;
0.244)

N = 300 0.994 1.068 0.015 0.651 0.711 0.014
(0.762;
1.279)

(0.831;
1.312)

(20.276;
0.315)

(0.355
0.938)

(0.483;
0.966)

(20.267;
0.265)

N = 500 1.015 1.072 20.004 0.681 0.724 0.008
(0.827;
1.240)

(0.884;
1.267)

(20.253;
0.279)

(0.512
0.887)

(0.543;
0.914)

(20.234;
0.228)

N = 1,000 1.027 1.071 20.038 0.698 0.727 0.003
(0.874;
1.202)

(0.932;
1.223)

(20.231;
0.231)

(0.569
0.839)

(0.596;
0.859)

(20.183;
0.185)

Note. Centiles 5 and 95 are given in parentheses, and significant indices are printed in boldface.
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The initial SAS study (Vigil-Colet et al., 2008), which was based on a sample of

159 undergraduates, obtained a clear three-factor structure, with factors labeled as

‘‘asking for help anxiety’’ (AHA), ‘‘interpretation anxiety’’ (IA), and ‘‘examination

anxiety’’ (EA). This structure closely matched the intended structure when the mea-

sure was first designed. However, the factors were also found to be substantially and

positively correlated with one another, and the authors found that the hypothesis of a

general dimension of statistical anxiety running through the 24 SAS items was ten-

able. So they suggested that the SAS could be scored either as a tridimensional mea-

sure with separate scales or as a general scale.

The present example is an extended reanalysis of the data presented in Ferrando

and Navarro-González (2018), which is based on a larger sample of 384 students.

The general aim is to assess whether the correlated three-factor structure or the essen-

tially unidimensional structure is more appropriate for SAS items. Given that the item

responses are ordered categorical, the most appropriate FA model ‘‘a priori’’ is the

CVM, which was the approach used in Ferrando and Navarro-González (2018).

However, our preliminary analyses suggested that the results obtained with the linear

FA model and the CVM FA model were virtually identical, a result that is not unusual

Table 3. Incremental Validities When H0 is False.

Beta of general factor Low (.30) High (.60)

Betas of primary
factors

b–g
disagreement Random

b–g
agreement

b–g
disagreement Random

b–g
agreement

Overall 0.279 0.229 0.020 0.118 0.102 0.009
(0.195;
0.367)

(0.127;
0.329)

(20.012;
0.059)

(0.057;
0.184)

(0.043;
0.171)

(20.016;
0.038)

r = 3 0.270 0.170 0.023 0.108 0.077 0.006
(0.185;
0.356)

(0.101;
0.245)

(20.009;
0.062)

(0.048;
0.171)

(0.032;
0.127)

(20.016;
0.031)

r = 4 0.299 0.264 0.021 0.121 0.112 0.009
(0.216;
0.385)

(0.185;
0.346)

(20.013;
0.061)

(0.060;
0.187)

(0.053;
0.177)

(20.016;
0.038)

r = 5 0.268 0.253 0.016 0.125 0.116 0.011
(0.191;
0.349)

(0.180;
0.330)

(20.015;
0.053)

(0.065;
0.192)

(0.057;
0.183)

(20.017;
0.044)

N = 300 0.282 0.232 0.024 0.121 0.106 0.013
(0.176;
0.389)

(0.115;
0.350)

(20.017;
0.070)

(0.044;
0.203)

(0.034;
0.193)

(20.020;
0.048)

N = 500 0.279 0.228 0.020 0.118 0.101 0.009
(0.195;
0.364)

(0.124;
0.327)

(20.013;
0.056)

(0.057;
0.181)

(0.043;
0.168)

(20.017;
0.036)

N = 1,000 0.277 0.226 0.017 0.115 0.098 0.005
(0.216;
0.345)

(0.135;
0.305)

(20.007;
0.043)

(0.071;
0.162)

(0.051;
0.148)

(20.013;
0.024)

Note. Centiles 5 and 95 are given in parentheses, and significant indices are printed in boldface.
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in personality measures with five or more graded response items. So for the sake of

brevity and clarity, only the simple linear FA-based results will be discussed here.

First-stage item calibration was carried out by using robust unweighted least

squares estimation as implemented in the FACTOR program (Lorenzo-Seva &

Ferrando, 2013). First, Spearman’s model was fitted to the product-moment interitem

correlation matrix. Second, an unrestricted oblique solution in three factors was

obtained by using Promin rotation (Lorenzo-Seva, 1999). Finally, a second-order

solution with a single general factor was obtained based on the primary interfactor

correlation matrix. Because only three primary factors were specified, the second-

order solution is just-identified, so the fit is the same as that of the oblique solution.

Results of the item calibration were then taken as fixed and known and were used to

obtain factor score estimates, which were Bartlett-ML scores, in the second step.

The most appropriate solutions were assessed in three stages: first, conventional

GOF assessment was used to compare the fit of the two competing models; second,

added-value assessment (Ferrando & Lorenzo-Seva, 2018b) was used to determine

whether primary factor score estimates could be used instead of the general factor

score estimates to nontrivially reduce the measurement error; and third, the external

validity assessment proposed in this article.

Table 4 shows the goodness of model–data fit results obtained with the conven-

tional approach and the recent proposal by Yuan, Chan, Marcoulides, and Bentler

(2016) based on equivalence testing. All the measures that are dependent on the chi-

square GOF statistic were based on the second-order (mean and variance) corrected

chi-square statistic proposed by Asparouhov and Muthen (2010).

It seems clear that the fit of the unidimensional solution does not reach the limits

of acceptability, whereas the fit of the tridimensional solution is excellent by all stan-

dards. As far as equivalence testing in particular is concerned, we note that the mini-

mum tolerable sizes of model misspecification (T-sizes) for both RMSEA and CFI

are very good in this case. At the same time, however, the explained common var-

iance index indicates that 79% of the common variance in the SAS items can be

explained by a single general factor (Ferrando & Lorenzo-Seva, 2018a; Rodriguez et

al., 2016a, 2016b), which supports the proposal to use the scale as a general measure.

Table 4. Goodness-of-Fit Results for the Empirical Example.

RMSEA 95% CI RMSEA T-s RMSEA CFI T-s CFI GFI z-RMSR ECV

1-Factor .128 (.112; .139) .14 (mediocre) .90 .87 (mediocre) .91 .090 .79
3-Factor .032 (.021; .034) .035 (close) .99 .99 (excellent) .99 .042 —

Note. RMSEA = root mean square error of approximation; CI = confidence interval; T-s RMSEA = T-size

root mean square error of approximation; CFI = comparative fit index; T-s CFI = T-size comparative fit

index; GFI = goodness-of-fit index; z-RMSR = root mean square of residuals; ECV = explained common

variance (ECV measures closeness to unidimensionality).
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The unidimensional and rotated three-factor solutions (with the dominant loadings

boldfaced) are shown in Table 5. The multiple solution was virtually the same as that

obtained in the initial SAS study, with the AHA (F1), IA (F2), and EA (F3) factors

essentially defined by eight items each. The unidimensional solution has positive

manifold with substantial loadings (greater than .30) for all the items, and Hancock

and Mueller’s (2001) H index is very high, suggesting that the single factor is strong,

well defined, and replicable (Ferrando & Lorenzo-Seva, 2018a; Rodriguez et al.,

2016a, 2016b). The solution in three factors, besides agreeing with theory, is quite

clear and the generalized H (GH) indices (see Ferrando & Lorenzo-Seva, 2018a) are

acceptably high in all cases, suggesting that all three primary factors are strong, well

defined, and replicable. These results make it hard to decide on what the most appro-

priate solution for the SAS is.

We turn now to the added-value results based on the factor score estimates, which

are provided in Table 6. It should be noted that (a) the three primary factors are sub-

stantially correlated, so the correlations between the general factor score estimates

Table 5. Factor Solutions for the SAS Example.

Items GF F1 F2 F3

i1 .638 .109 .110 .580
i2 .371 2.171 .765 .009
i3 .675 .880 2.153 .015
i4 .575 .012 .053 .664
i5 .613 .560 .188 2.021
i6 .447 .023 .760 2.108
i7 .754 .854 2.002 .007
i8 .612 .227 .334 .218
i9 .613 .065 2.049 .746
i10 .325 2.108 .666 2.041
i11 .613 .104 2.045 .695
i12 .749 .926 2.095 .009
i13 .492 2.110 .037 .713
i14 .648 .181 .051 .562
i15 .532 2.174 2.014 .892
i16 .457 .120 .274 .196
i17 .758 .937 2.037 2.042
i18 .433 .061 .540 .011
i19 .561 .194 .411 .127
i20 .547 2.120 .024 .811
i21 .711 .667 .251 2.067
i22 .518 2.038 .891 2.052
i23 .696 .901 2.128 2.002
i24 .668 .669 .160 2.047
GH index .936 .952 .887 .909

Note. SAS = Statistical Anxiety Scale; GF = general factor; GH index = generalized H index. Dominant

loadings are printed in boldface.
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and the primary factor score estimates are also high, and (b) the marginal reliabilities

of the primary factor score estimates are rather high. The estimated reliability of the

second-order factor score estimates (i.e., the general factor) was 0.97, which is about

the same as that of the first primary factor score estimates. The results in the lower

panel (b) of Table 6 clearly suggest that, for the three primary factors, there is added

value if the primary factor score estimates are used instead of the general factor score

estimates.

So far, the GOF and the added-value results tend to favor the multiple solution as

the most appropriate and informative. However, it will be interesting to see whether

these conclusions, all of which are based on internal evidence, are maintained when

the external validity procedures proposed in this article are considered.

As an appropriate external criterion for the SAS scores, we used the marks on a

final statistical exam, which were available for 238 of the respondents. As expected

from theory, the relations between the SAS scores and the criterion were all negative,

and according to the conventions above, they were reversed to provide correlations

that were always positive.

Table 7 provides the differential (panel a) and incremental (panel b) results based

on the approach we propose. As for panel (a), the results suggest that the primary

factors do not relate to the criterion in the way that should be expected from the null

second-order model. Rather, the first factor (AHA) seems to be more strongly related

and the second factor (IA) more weakly related to the criterion than could be pre-

dicted by their relations with the general factor.

With regard to panel (b), the results also appear to be clear: The prediction based

on the primary score estimates is significantly more accurate than that based on the

general factor score estimates when both correlations are corrected for measurement

error. The overall conclusion, then, is that, although it is defensible to score the SAS

Table 6. Internal Assessment: Added-Value Results for the Empirical Example.

Panel (a): Interfactor correlation matrix and basic estimates

F1 F2 F3 rk̂ĝ gkg rk̂k̂

F1 1 0.88 0.73 0.95
F2 0.45 1 0.64 0.61 0.89
F3 0.52 0.44 1 0.79 0.71 0.91

Panel (b): Proportional MSE reduction based on factor scores

From ĝ From k̂

F1 0.81 0.95
F2 0.47 0.89
F3 0.70 0.91

Note. MSE = mean square error .
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as a unidimensional measure, accuracy and external information are lost if the unidi-

mensional solution is chosen instead of the multiple solution in three correlated fac-

tors. This loss would be particularly important if, as assumed here, accurate

individual measurement and/or prediction is the main focus of the application.

Discussion

The debate about how to determine the most appropriate dimensionality of FA solu-

tions based on item responses is as old as the technique itself and has sometimes led

to extreme positions. In particular, the development of FA as a ‘‘proper’’ statistical

technique (e.g., Lawley & Maxwell, 1963) promised an objective and rigorous

approach to this issue in the form of GOF testing. Particularly in recent decades, how-

ever, it has been clear that overreliance on GOF results is not the way to go and that

any sound approach for assessing dimensionality must be multifaceted. In accordance

with this view, some ‘‘internal’’ comprehensive approaches have recently been pro-

posed (Ferrando & Lorenzo-Seva, 2018a; Raykov & Marcoulides, 2018; Rodriguez

et al., 2016a, 2016b). In our opinion, they are a clear step forward toward arriving at

parsimonious, clear, strong, and useful FA solutions in real applications.

The present article aims to expand the multifaceted internal approaches in exis-

tence to date by incorporating information about how the factor score estimates

derived from competing plausible FA solutions relate to relevant external variables.

Indeed, this type of outside or external approach has already been discussed in the

literature (Betts et al., 2011; Carmines & Zeller, 1991; Coyle & Pillow, 2008; Floyd

et al., 1992; Goldberg, 1972; Judge et al., 2002; Mershon & Gorsuch, 1988). At the

methodological level, however, and to the best of our knowledge, the existing out-

side proposals are purely descriptive, and lack a clear methodological foundation. In

contrast, ours is model based and allows differential and incremental validity to be

more rigorously assessed.

Table 7. External Validity Assessment.

Panel (a): Differential validity results

br ûky
=gk 90% CI

F1 0.57 (0.44; 0.66)
F2 0.20 (0.14; 0.36)
F3 0.35 (0.21; 0.46)

Panel (b): Incremental validity results

br ûgy 90% CI Rc 90% CI dif 90% CI

0.32 (0.22; 0.41) 0.62 (0.51; 0.73) 0.30 (0.21; 0.40)

Note. CI = confidence interval; dif = differential.
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At a more general level, our proposal is mostly intended for applications in which

the ultimate aim of FA is individual measurement and external information is avail-

able. Contrary to the most common views (see Curran et al., 2018, for a discussion),

we believe that the scoring stage is the most important part of FA in this case and, in

accordance with this view, our proposal is mostly based on the scoring results.

Like any new proposal, this one has its share of limitations and points that deserve

further study. Thus, the results of the simulation study are encouraging in general, but

they are only preliminary, and further research of this type is still needed. More spe-

cifically, we believe that three main points require intensive research: (a) to ascertain

the minimal degree of accuracy and determinacy of the factor score estimates that is

required for obtaining correct validity inferences (see the discussion below), (b) to

assess how the proposal behaves under the graded-response modeling, and (c) to

assess the functioning of the proposal when regression (Bayes) factor score estimates

are used instead of Bartlett’s ML estimates. Point (c) includes also testing the bias-

and-error corrections so far proposed for regression scores. Further applied research

based on real data is also needed to clearly establish the practical usefulness of our

proposal.

At a more applied level, the present proposal is mostly based on disattenuated and

multiple correlations, both of which are prone to well-known empirical problems.

With regard to the differential-validity indices, the disattenuated validity estimates

are based, in turn, on reliability estimates, and if these are poor, the resulting indices

can be misleading. This problem is expected to appear mainly when the factor score

estimates are weak and unreliable. When this is the case, the indeterminacy of the

factor score estimates is also high (Ferrando & Lorenzo-Seva, 2018a), which, in turn,

implies that the external correlations with the criterion are not determinate and can

vary over a wide range of values (Steiger, 1979). To sum up, the external correlations

are unstable, and the correction for attenuation is expected to further increase this

instability because the reliability estimates are themselves unstable. The potential

problems summarized so far imply that our proposal must only be used for compar-

ing competing solutions that lead to acceptable factor score estimates. This is indeed

the recommendation we have been giving throughout the article. It makes little sense

to use an additional auxiliary procedure if the previous internal procedures suggest

that some of the solutions to be compared are unacceptable.

The most important potential problem in terms of the incremental validity results

is the deflation of the multiple correlation coefficient when the regression equation is

used in replication samples. This problem has been explicitly documented when the

regressors are factor score estimates (Morris, 1979) and has been considered in previ-

ous external proposals (Betts et al., 2011; Goldberg, 1972; Haynes & Lench, 2003).

When deflation occurs and is substantial, the assessment of incremental validity is

indeed questionable. However, the relevance of this problem must be qualified.

Previous research designs tended to use schemas with a large number of primary fac-

tors and samples that were not too large (e.g., Goldberg, 1972), a scenario which is

indeed conducive to problems of shrunken Rs. At the other extreme, the problem is
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likely to be far smaller if the assessment is based on a large and representative sam-

ple, and the number of primary factors compared with the unidimensional solution is

reasonably small (say 4 or 5 at most, which is the setting considered in the simula-

tion study). Having said that, we acknowledge that a cross-validated design would

reinforce the conclusions obtained in a single sample, but again, this practice would

also be useful for the previous ‘‘internal’’ procedures. Finally, if applications of our

proposal suggest that the problem is of practical importance, corrections for Rc could

be considered in future developments.

Despite its limitations and the fact that further research is still needed, we believe

that our proposal is of clear interest for practitioners who use FA for individual mea-

surement purposes. It is simple, feasible, and provides an auxiliary source of informa-

tion that enables decisions based on internal approaches to be supplemented. From a

practical point of view, we note that our proposal can work with no need to use raw

scores. So an R program, for example, with factor score, gamma estimates, and criter-

ion scores as input would be quite easy to build.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship,

and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship,

and/or publication of this article: This project has been made possible with the support of

Ministerio de Economı́a, Industria y Competitividad, the Agencia Estatal de Investigación

(AEI), and the European Regional Development Fund (ERDF) (PSI2017-82307-P).

References

Asparouhov, T., & Muthen, B. (2010). Simple second order chi-square correction.

Unpublished manuscript. Retrieved from https://www.statmodel.com/download/WLSMV_

new_chi21.pdf

Bartlett, M. S. (1937). The statistical conception of mental factors. British Journal of

Psychology, 28, 97-104.

Beauducel, A., Harms, C., & Hilger, N. (2016). Reliability estimates for three factor score

estimators. International Journal of Statistics and Probability, 5, 94-107.

Betts, J., Pickart, M., & Heistad, D. (2011). Investigating early literacy and numeracy:

Exploring the utility of the bifactor model. School Psychology Quarterly, 26, 97-107.

Carmines, E. G., & Zeller, R. A. (1991). Reliability and validity assessment (Vol. 17).

Newbury Park, CA: Sage.

Coyle, T. R., & Pillow, D. R. (2008). SAT and ACT predict college GPA after removing g.

Intelligence, 36, 719-729.

Croon, M. (2002). Using predicted latent scores in general latent structure models. In G. A.

Marcoulides & I. Moustaki (Eds.), Latent variable and latent structure models (pp. 195-

223). Mahwah, NJ: Lawrence Erlbaum.

458 Educational and Psychological Measurement 79(3)

https://www.statmodel.com/download/WLSMV_new_chi21.pdf


Curran, P. J., Cole, V. T., Bauer, D. J., Rothenberg, W. A., & Hussong, A. M. (2018).

Recovering predictor–criterion relations using covariate-informed factor score estimates.

Structural Equation Modeling: A Multidisciplinary Journal, 25, 860-875. doi:10.1080/1070

5511.2018.1473773

Devlieger, I., & Rosseel, Y. (2017). Factor score path analysis. Methodology, 13, 31-38.

Ferrando, P. J. (2008). Maximizing the information and validity of a linear composite in the

factor analysis model for continuous item responses. Psicológica, 29, 189-203.

Ferrando, P. J., & Lorenzo-Seva, U. (2000). Unrestricted versus restricted factor analysis of

multidimensional test items: Some aspects of the problem and some suggestions.

Psicológica, 21, 301-323.

Ferrando, P. J., & Lorenzo-Seva, U. (2013). Unrestricted item factor analysis and some

relations with item response theory (Technical Report). Tarragona, Spain: Universitat

Rovira i Virgili, Department of Psychology.

Ferrando, P. J., & Lorenzo-Seva, U. (2018a). Assessing the quality and appropriateness of

factor solutions and factor score estimates in exploratory item factor analysis. Educational

and Psychological Measurement, 78, 762-780.

Ferrando, P. J., & Lorenzo-Seva, U. (2018b, May 15). On the added value of multiple factor

score estimates in essentially unidimensional models. Educational and Psychological

Measurement, 79, 249-271.
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