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AN EXTREMAL PROBLEM AND INEQUALITIES FOR ENTIRE FUNCTIONS OF

EXPONENTIAL TYPE

ANDRÉS CHIRRE, DIMITAR K. DIMITROV, AND EMILY QUESADA-HERRERA

Abstract. We study two variations of the classical one-delta problem for entire functions of exponential

type, known also as the Carathéodory–Fejér–Turán problem. The first variation imposes the additional

requirement that the function is radially decreasing while the second one is a generalization which involves

derivatives of the entire function. Various interesting inequalities, inspired by results due to Duffin and

Schaeffer, Landau, and Hardy and Littlewood, are also established.

1. Introduction

In the present note we study some extremal problems concerning certain quantities over specific families

of entire functions of exponential type. For ∆ > 0, we say that an entire function G : C → C has exponential

type at most 2π∆ if, for all ε > 0, there exists a positive constant Cε such that

|G(z)| ≤ Cε e
(2π∆+ε)|z|, for all z ∈ C.

We adopt the usual convention that an entire function f : C → C is said to be real if its restriction to R is

real-valued, as well as, that the function g∗(z) is defined by g∗(z) = g(z). For f, g ∈ L1(R) we denote by

f ∗ g their convolution, which is defined by (f ∗ g)(x) =
∫ ∞

−∞

f(y)g(x− y) dy.

1.1. The one-delta problem. The classical one-delta problem is to determine the infimum

A = inf
f∈F

f(0) 6=0

‖f‖1
f(0)

,

where the family F consists of real entire functions f : C → C of exponential type at most 2π such that

f ∈ L1(R), and f(x) ≥ 0 for all x ∈ R. This is a classical problem, and several of its variations are named

after Carathéodory, Fejér and Turán. We refer to [9, 11, 14, 16] for comprehensive information about its

history and for some recent contributions. It is known that A = 1, and the unique extremal solution of the

one-delta problem is the Fejér kernel, given by

K(z) =
( sinπz

πz

)2
. (1.1)

To obtain an equivalent formulation of this problem, we may consider a decomposition result due to Krein

[1, p. 154]. It states that if f : C → C is an entire function of exponential type at most 2π such that

f ∈ L1(R) and f(x) ≥ 0 for all x ∈ R, then there exists an entire function g : C → C in the Paley-Wiener
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space PW 2 such that f(z) = g(z)g∗(z). Here, PW 2 is the subspace of L2(R) consisting of entire functions

of exponential type at most π. Therefore, the one-delta problem can also be stated as finding

B = inf
g∈PW 2

g(0) 6=0

‖g‖2
|g(0)| , (1.2)

and clearly B = 1, too. Other Lp−variations of this problem have also been studied in [4, 6, 13]. Note that

(1.2) can be stated in yet another alternative way as follows: the inequality

1 ≤
∫ ∞

−∞

|g(x)|2 dx, (1.3)

holds for every g ∈ PW 2 such that g(0) = 1, and (1.3) reduces to an equality if and only if

g(z) =
sinπz

πz
.

Our main goal is to study some natural variations of each of the above versions of the one-delta problem.

1.2. Monotone-delta problem. The monotone-delta problem is to find

A1 = inf
f∈F1

f(0) 6=0

‖f‖1
f(0)

, (1.4)

where the family F1 consists of real entire functions f : C → C of exponential type at most 2π, such that

f ∈ L1(R), f(x) ≥ 0 for all x ∈ R, and f is radially decreasing, that is, f is increasing on (−∞, 0) and

decreasing on (0,∞). In the following theorem, we present some qualitative and quantitative information

about this problem.

Theorem 1. The following statements about the monotone-delta problem hold:

(a) There exists an even function F ∈ F1 with F (0) = 1 that extremizes (1.4).

(b) All the zeros of any even extremizer F lie in the set S = {z ∈ C : |Re z| > |Im z| > 0}.
(c) The constant A1 satisfies 1 < A1 ≤ 1.2771 . . .

We conjecture that the upper bound in part (c) is sharp in the sense that the first four significant digits

of A1 are those shown above. One of the reasons for this claim is that our proof of part (c) of Theorem 1

is constructive. We construct concrete examples for which the value 1.2771. . . is attained. To obtain A1, we

first reformulate the monotone-delta problem (see Lemma 6 below) to the one of determining the infimum

A1 = inf
h∈F2

h 6≡0

2

∫ ∞

−∞

|x|2|h(x)|2 dx
∫ ∞

−∞

|x||h(x)|2 dx
, (1.5)

where the family F2 consists of entire functions h : C → C of exponential type at most π such that xh ∈ L2(R)

and |h(x)| = |h(−x)|. Then we find an explicit example of a function h0 ∈ F2 (see (2.9)). For this h0, we

compute explicitly the quotient in (1.5), which turns out to be 1.2771 . . .. Despite that h0 is not the extremal

function for (1.5), our conjecture is that the value 1.2771 . . . is so close to the infimum A1, that they differ

only in the decimal digits after the fourth one. In Section 3.2 we give a deeper discussion of numerical issues,

and a sharper conjecture for the value of A1.

The monotone-delta problem has also been considered in Rd, for d ≥ 2. In [5], using techniques from the

theory of de Branges spaces, the authors found the exact solution of the monotone-delta problem when d is
2



even. Nonetheless, the authors state that the case when d is odd seems more subtle and remains open in

general.

Despite that Lemma 6 below provides an integral representation of any function in F1, the first interesting

explicit example of a function in this class we constructed was based on the classical method of Sonin, which

was itself invented with the intention to obtain information about the monotonicity of the successive relative

minima and maxima of certain oscillatory solutions of ordinary differential equations (see [18, Section 7.31]).

If g : C → C is a real entire function in PW 2 and satisfies a second-order differential equation of the form

y′′ + (B/x) y′ + Cy = 0, with B,C > 0, Sonin’s method suggests to construct the function

f(z) = (g(z))2 +
(g′(z))2

C
. (1.6)

It is clear that f ∈ F1. Moreover f(x) is a “lid” of g2(x) in the sense that f(x) ≥ g2(x) for every x ∈ R and

f interpolates g2 and possesses inflection points at its local maxima. Figure 1 shows Fejér’s kernel K(x) and

its lid f(x).

-3 -2 -1 1 2 3
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Figure 1. The Fejér kernel K(x) defined in (1.1) and its lid f(x).

1.3. The one-delta problem with derivatives. The function in (1.6) appears in a classical inequality

for entire functions. Duffin and Schaeffer [8, p. 239] proved that if a real entire function g : C → C of

exponential type at most π is such that |g(x)| ≤ 1 for all x ∈ R, then

(g(x))2 +
(g′(x))2

π2
≤ 1, for all x ∈ R.

Inspired by this inequality, we prove that specific sums of the L2−norms of a function g ∈ PW 2, normalized

by g(0) = 1, and its consecutive derivatives, are bounded from below. Our result may be considered a

variation of the one-delta problem where one wishes to minimize sums of L2−norms of an entire function

and of its derivatives, and reads as follows:

Theorem 2. Let N be a nonnegative integer and the real polynomial

P(x) =
N∑

n=0

anx
n

be positive for every x ∈ [0, 1]. Then the inequality

(∫ 1

0

1

P(t2)
dt

)−1

≤
∫ ∞

−∞

N∑

n=0

an
π2n

∣∣g(n)(x)
∣∣2 dx (1.7)
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holds for every g ∈ PW 2 which obeys the normalization g(0) = 1. Moreover, equality in (1.7) is attained if

and only if

g(z) =

(∫ 1

0

1

P(t2)
dt

)−1 ∫ 1

0

cos (πzt)

P(t2)
dt. (1.8)

Note that when N = 0 and a0 = 1, we recover the inequality (1.3), which once again shows that the latter

is a natural result in the spirit of the one-delta problem. Moreover, choosing the polynomial P(x) = 1+aπ2x,

we obtain the following corollary.

Corollary 3. Fix a > 0. Then the inequality

π
√
a

arctan(π
√
a)

≤
∫ ∞

−∞

(
|g(x)|2 + a |g′(x)|2

)
dx, (1.9)

holds for every g ∈ PW 2 with g(0) = 1 and the unique extremal function for which (1.9) reduces to an

equality is

g(z) =
π
√
a

arctan(π
√
a)

∫ 1

0

cos(πzt)

1 + aπ2t2
dt.

Observe that for a = 1/π2 (1.9) reduces to the following lower bound for the integral of the function in

(1.6): ∫ ∞

−∞

(
|g(x)|2 + |g′(x)|2

π2

)
dx ≥ 4

π
, g ∈ PW 2, g(0) = 1.

Different choices of the polynomial P(x) allow us to obtain other interesting inequalities.

Corollary 4. Fix 0 < a < 1/π2. Then

a

∫ ∞

−∞

∣∣g′(x)
∣∣2dx+

(
1

2π
√
a
log

(
1 +

√
aπ

1−√
aπ

))−1

≤
∫ ∞

−∞

|g(x)|2 dx. (1.10)

for every g ∈ PW 2 which obeys g(0) = 1.

In particular, letting a → 1/π2 in (1.10) we obtain
∫ ∞

−∞

∣∣g′(x)
∣∣2 dx ≤ π2

∫ ∞

−∞

|g(x)|2 dx, g ∈ PW 2, g(0) = 1,

which is exactly the L2−version of the classical Bernstein inequality that holds for every Lp, p ≥ 1 (see [2,

Theorem 11.3.3]).

Observe that the Bernstein inequality follows from Theorem 2 if we set P(t) = 1 + ε − t and let ε → 0.

Applying the same reasoning with P(t) = (1 + ε− t)N , we obtain:

Corollary 5. Let N be a nonnegative integer. Then the inequality

N∑

k=0

(−1)k

σ2k

(
N

k

)∫ ∞

−∞

∣∣f (k)(x)
∣∣2 dx ≥ 0

holds for every function of exponential type at most σ such that f ∈ L2(R). In particular, for N = 2,
∫ ∞

−∞

∣∣f ′(x)
∣∣2 dx ≤ 1

2

(
σ2

∫ ∞

−∞

∣∣f(x)
∣∣2 dx+

1

σ2

∫ ∞

−∞

∣∣f ′′(x)
∣∣2 dx

)
.

The latter is a curious result that resembles some classical ones, due to Landau and Hardy and Littlewood.

In 1913, Landau [15] proved that if f is a real function, f ∈ C2(R), and the inequalities ‖f‖∞ ≤ 1 and

‖f ′′‖∞ ≤ 1 for the uniform norms of f and f ′′ on the real line hold, so does ‖f ′‖∞ ≤
√
2.
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Hardy and Littlewood [12, Theorem 6] proved that, if y and y′′ are in L2[0,∞), then

(∫ ∞

0

[y′(x)]2 dx

)2

≤ 4

∫ ∞

0

[y(x)]2 dx

∫ ∞

0

[y′′(x)]2 dx.

Moreover, the constant 4 is the best possible. The equality is attained if and only if y(x) = c Y (ax), where

c and a are real constants and

Y (x) = e−x/2 sin

(√
3

2
x− π

3

)
.

Theorem 7 in [12] states that, under the same requirements, the inequality
∫ ∞

0

(y2(x) + [y′′(x)]2 − [y′(x)]2) dx ≥ 0

holds with equality as before, but with a = 1.

2. Proof of Theorem 1

For f ∈ L1(R), we normalize the Fourier transform f̂ of f as

f̂(ξ) =

∫ ∞

−∞

f(x)e−2πiξ dx.

2.1. Proof of a). Replacing f(x) by (f(x) + f(−x))/2, we see that we may restrict our search for the

infimum (1.4) to the even functions in F1. To prove the existence of an extremizer, we follow an argument

in [4], which consists in showing that a certain weak limit is a viable candidate. Consider an extremizing

sequence {fn}n≥1 ⊂ F1 such that fn is even, fn(0) = ‖fn‖∞ = 1, and lim
n→∞

‖f‖1 = A1. Hence, {fn}n≥1

is a bounded sequence in L2(R), which implies that there exists F ∈ L2(R) such that {fn}, after passing

to a subsequence, converges to F weakly in L2(R). Now the Paley-Wiener theorem [17, Theorem 4.1] and

Mazur’s lemma [3, Corollary 3.8] yield that supp(F̂ ) ⊂ [−1, 1], and by Fourier inversion, F is an entire

function of exponential type at most 2π. Moreover, using the weak convergence, we conclude that, for every

x ∈ R,

fn(x) =

∫ 1

−1

f̂n(ξ) e
2πixξ dξ =

∫ ∞

−∞

fn(y)
sin 2π(y − x)

π(y − x)
dx →

∫ ∞

−∞

F (y)
sin 2π(y − x)

π(y − x)
dx

=

∫ 1

−1

F̂ (ξ) e2πixξ dξ = F (x) as n → ∞.

Therefore, F is an even radially decreasing function such that F (x) ≥ 0 and F (0) = 1. Finally, using Fatou’s

lemma, we conclude that F ∈ L1(R).

2.2. Proof of b). Let F be an even extremizer with F (0) = 1. Clearly, it has no real zeros. Indeed, since

F is real, nonnegative and decreasing on the positive real axis, if it vanishes at x0 > 0, it does for all x > x0

which is impossible because F is entire and F (0) = 1. A similar argument shows that F cannot vanish at a

negative x0. Therefore, all the zeros of F satisfy |Im z| > 0. Now, assume that F has a zero at z = ib, for

b ∈ R. Since F is real-valued, it also has z = −ib as a zero. Consider the entire function

G(z) =
b2F (z)

z2 + b2

Note that G(0) = 1 and G ∈ F1. Since
∫ ∞

−∞

G(x) dx <

∫ ∞

−∞

F (x) dx

5



we get a contradiction. Therefore, all the zeros of F satisfy |Re z| > 0. Now, assume that z = a + ib is a

zero of F with |b| ≥ |a| > 0. Since F is real-valued and even, we have that z = a − ib, z = −a + ib, and

z = −a− ib are also zeros. Note that all these zeros are different. Then, the entire function

H(z) =
(a2 + b2)2F (z)

((z − a)2 + b2) ((z + a)2 + b2)

is in F1, and using that |b| ≥ |a|, it is easy to see that
∫ ∞

−∞

H(x) dx <

∫ ∞

−∞

F (x) dx

which gives a contradiction. We conclude that |b| < |a|.

2.3. Representation lemma. The following lemma gives a representation for any even function in F1.

Lemma 6. If f ∈ F1, then it can be represented in R in the form

f(x) =

∫ x

−∞

−t |h(t)|2 dt, (2.1)

where h : C → C is an entire function of exponential type at most π such that |h(x)| = |h(−x)| for all x ∈ R,

and xh ∈ L2(R). Conversely, if f is a function of the form (2.1), then it has an analytic extension to C

which is an even function in F1.

Proof. Let f ∈ F1 be even. Then clearly lim
x→±∞

x f(x) = 0. Integration by parts yields

∫ ∞

−∞

f(x) dx =

∫ ∞

−∞

−x f ′(x) dx. (2.2)

By the Plancherel-Pólya theorem, f ′ has exponential type 2π and so does −zf ′(z). The monotonicity

requirement implies −xf ′(x) ≥ 0 for all x ∈ R, and then (2.2) yields −xf ′ ∈ L1(R). From the Krein

decomposition theorem [1, p. 154], it follows that −zf ′(z) = g(z)g∗(z) for some g ∈ PW 2. Moreover, since

f attains its maximum at x = 0, then f ′(0) = 0. Defining h(z) = g(z)/z, we rewrite the latter in the form

−zf ′(z) = z2h(z)h∗(z), (2.3)

where h is an entire function of exponential type at most π and xh ∈ L2(R). Since f ′ is odd, then |h(x)| =
|h(−x)| for x ∈ R. Finally, integrating (2.3) appropriately, we arrive at (2.1). Conversely, assume the

representation (2.1). Note that f has an analytic extension on C (also denoted by f) of the form

f(z) =

∫ 0

−∞

−t|h(t)|2 dt+
∫

[0,z]

−s h(s)h∗(s) ds,

where [0, z] denotes the straight segment connecting 0 and z. Since h is an entire function of exponential type

at most π, f is an entire function of exponential type at most 2π. From (2.1) it follows that lim
x→−∞

f(x) = 0,

and using the fact that |h(x)| = |h(−x)|, we conclude that f is also even and lim
x→∞

f(x) = 0. On the other

hand, differentiating (2.1) we derive

f ′(x) = −x |h(x)|2 for x ∈ R, (2.4)

which implies that f is radially decreasing and f(x) ≥ 0. Moreover, (2.4) and xh ∈ L1(R) imply lim
x→±∞

xf(x) =

0. Integration by parts shows that
∫ ∞

−∞

f(x) dx =

∫ ∞

−∞

x2|h(x)|2 dx,
6



which yields f ∈ L1(R). �

2.4. Proof of c). SinceK(x) is the unique extremal solution for the one-delta problem, we have that 1 < A1.

On the other hand, as mentioned in the introduction, from Lemma 6, we can reformulate the monotone-delta

problem as the one to determine

A1 = inf
h∈F2

h 6≡0

2

∫ ∞

−∞

|x|2|h(x)|2 dx
∫ ∞

−∞

|x||h(x)|2 dx
, (2.5)

where the family F2 consists of those entire functions h : C → C of exponential type at most π such that

xh ∈ L2(R) and |h(x)| = |h(−x)|.
We now transform this optimization problem over F2 into another unrestricted, smooth optimization

problem over Rd+1, so that we may construct functions h in a systematic way with standard numerical

optimization methods. For this purpose, we make a couple of helpful observations. First, note that if h ∈ F2

then h ∈ L1(R). In fact, by the Cauchy-Schwarz inequality, we have

∫ ∞

1

|h(x)| dx =

∫ ∞

1

|xh(x)| · 1
x
dx ≤

√∫ ∞

1

x2|h(x)|2 dx ·
√∫ ∞

1

1

x2
dx < ∞.

Therefore, ĥ is continuous in R, and in particular ĥ(±1/2) = 0. Denoting I = [−1/2, 1/2] we have that

supp ĥ ⊂ I. Therefore, by the Stone-Weierstrass theorem we may approximate ĥ uniformly by a polynomial

times χI , where χI denotes the characteristic function of the interval I.

With the previous observations in mind, we consider functions of the form

ĥ(x) =

(
1

4
− x2

)
g(x)χI(x), (2.6)

where

g(x) =

d∑

i=0

aix
i ∈ R[x]

is a polynomial of degree d. Note that the factor
(
1
4 − x2

)
means that ĥ (±1/2) = 0. Denoting a =

(a0, a1, . . . , ad) ∈ Rd+1, the infimum in (2.5), restricted to this class, becomes

A1,d := min
a∈Rd+1\0

2a ·Na

a ·Da
, (2.7)

where N , D ∈ R(d+1)×(d+1) are defined by

Nij =

∫ ∞

−∞

|x|2fi(x)fj(x) dx; Dij =

∫ ∞

−∞

|x|fi(x)fj(x) dx; fi(x) =

[(
1

4
− y2

)
yiχI

]∧
(−x).

For all d ≤ 20 and 0 ≤ i ≤ d, it is easy to see by direct computation of fi that xfi ∈ L2(R), so that

h = a · (f0, . . . , fd) ∈ F2 for all a ∈ Rd+1. The matrices N and D may be computed explicitly for a given d,

and this is then a smooth optimization problem over Rd+1. Solving it numerically for d = 2, we find

ĥ0(x) =

(
1

4
− x2

)(
1− 9

5
x2

)
χI(x), (2.8)

which yields

h0(x) =

(
108− 25π2x2

)
sin(πx) − πx

(
11π2x2 + 108

)
cos(πx)

40π5x5
. (2.9)

7



By direct computation in exact rational arithmetic, this gives

A1 ≤ 49484

38745
= 1.27717...

This proves part (c). Moreover, using the representation (2.1) we obtain the function in F1

f0(x) =
P (πx) +Q(πx) sin(2πx) +R(πx) cos(2πx)

738π8x8
, (2.10)

where

P (x) = 242x6 + 3001x4 + 4176,

Q(x) = −242x5 − 576x3 − 11664x,

R(x) = 1463x4 + 7488x2 − 5832;

see Figure 2.
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Figure 2. The function f0(x) defined in equation (2.10).

Additionally, we solve (2.7) for all d ≤ 20 and observe that, as the degree d increases, the sequence A1,d

decreases very slowly, showing only a tiny improvement from 1.27717... only in the fifth decimal digit. More

precisely, we obtain A1 ≤ 1.27713505... with those much more detailed calculations performed with large

degree d of the polynomials g. In Section 3.2, we will show some tables with the results of these computations

(see Table 1), and compare the results with those of another numerical approach. In Figure 3 and Figure 4,
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Figure 3. The function ĥ0(x)/ĥ0(0)
defined in equation (2.8).
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Figure 4. The function h0(x)/h0(0)
defined in equation (2.9).
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we plot the functions 4ĥ0 and 600
91 h0, respectively, where, since h0(0) =

91
600 and ĥ0(0) =

1
4 , we renormalized

the plots accordingly.

3. Some functions in F1

3.1. The lid function. In this subsection, we apply Sonin’s method to construct a nice sequence of functions

in F1. For any positive real numbers B and C, consider the differential equation

y′′ +
B

x
y′ + Cy = 0. (3.1)

Let y = g, g : R → R be a solution of the equation (3.1). The lid of g2 is the function defined by

f(x) = (g(x))2 +
(g′(x))2

C
. (3.2)

Note that f(x) ≥ 0 for all x ∈ R, and

f ′(x) = −2B(g′(x))2

xC
.

This implies that f is radially decreasing. Moreover, if we suppose that the solution g has an analytic

extension on C of exponential type at most π, and g ∈ L2(R), we conclude that f ∈ F1.

Let us show some examples of lids. For α > 0, consider the Bessel function of the first kind of order α,

which is defined by

Jα(z) =

∞∑

ν=0

(−1)ν(z/2)α+2ν

ν! Γ(ν + α+ 1)
.

Let us remark some properties of the Bessel functions mentioned in [18, Section 1.71]. It is known (see [18,

Equation 1.71.3]) that Jα satisfies the differential equation

y′′ + x−1y′ + (1 − α2x−2)y = 0. (3.3)

Now, define the function

gα(z) =
Jα(πz)

(πz)α
.

A straightforward change of variables in (3.3) shows that gα satisfies the differential equation

y′′ +
2α+ 1

x
y′ + π2y = 0.

The function gα is an even entire function of exponential type π. Moreover, using the decay of Jα (see [18,

Equations 1.71.10 and 1.71.11] we see that gα ∈ L2(R). Therefore, inserting gα in (3.2) we actually construct

the lid of g2α, with B = 2α+ 1 and C = π2. In the particular case α = 1/2 we known that

g1/2(x) =
sin(πx)

πx
,

and therefore

f1/2(x) = (g1/2(x))
2 +

(g′1/2(x))
2

π2

is the lid of K(x). Straightforward calculations show that the Fourier transform of f1/2 is

f̂1/2(ξ) = max{1− |ξ|, 0}+ 1

π2
(̂g′1/2)

2(ξ). (3.4)

9



Then the Fourier transform - convolution de Margan type law yields

(̂g′1/2)
2(ξ) = (ĝ′1/2 ∗ ĝ′1/2)(ξ) =

(
(2πix ĝ1/2) ∗ (2πix ĝ1/2)

)
(ξ) = −4π2

∫ ∞

−∞

xĝ1/2(x)(ξ − x)ĝ1/2(ξ − x) dx,

where we used the fact that ĝ1/2(x) = χI(x). This, together with (3.4), implies

f̂1/2 (ξ) =





2

3
(1− |ξ|)2(|ξ|+ 2), if |ξ| ≤ 1;

0, if |ξ| > 1.

In particular, this example allows us to obtain the bound A1 ≤ 1.333 . . .. In fact, one can repeat the same

argument for the function fα, for any α > 0. The Fourier transform of fα can be computed using [18,

Equation 1.71.6]. Finally, we minimize the ratio f̂α(0)/fα(0) with respect to α, and obtain that it is attained

for α0 = 0.787 . . . and f̂α0
(0)/fα0

(0) = 1.284 . . .. Hence A1 ≤ 1.284 . . ..

3.2. An L2−computational approach. Another natural approach for constructing functions in F2 (and

therefore in F1), and computationally solving (2.5), starts by finding an orthonormal system for the space

L2(R, x2dx). Note that F2 is a Hilbert space with the inner product

〈f, g〉F2
= 〈xf, xg〉L2(R).

For odd integers k ≥ 1, we define the even functions

hk(x) =
4
√
2 cosπx

π(k2 − 4x2)
,

and note that hk ∈ F2 for all odd integers k ≥ 1. Gorbachev [10] previously considered this family of

functions to obtain fine numerical estimates for other Fourier extremal problems, and the first and third

authors [7] have also used this family for similar purposes in related extremal problems introduced by

Carneiro, Milinovich, and Soundararajan [4]. Regarding this system, we can say the following:

Proposition 7. The family (hk) k≥1
k odd

is a complete orthonormal system in the closed subspace {h ∈ F2 :

h is even.}.

Proof. Note that, if h ∈ F2 is even, then xh ∈ L2(R) is odd. Furthermore, we have that

(̂xhk)(t) = i(−1)
k+1

2

√
2 sin(πkt)χI(t) =: sk(t). (3.5)

To see this, since sk ∈ L1(R) ∩ L2(R), we may compute ŝk in a straightforward manner to verify that

ŝk(x) = −xhk(x), and then we conclude (3.5) by Fourier inversion in L2(R). Now consider the operator

T : F2 → L2(I)

defined by Th(t) := (̂xh)(t)eπit. By Plancherel’s theorem and the Paley-Wiener theorem, T is a linear

isometry, that is, 〈f, g〉F2
= 〈Tf, T g〉L2(I). Therefore, for odd positive integers k and j, we find that

〈hk, hj〉F2
= 〈sk, sj〉L2(I) = δkj ,

where δkj = 1 if k = j, and 0 otherwise. Here, to compute the inner product over L2(I), we may apply the

identity 2 sin(πkt) sin(πjt) = cos(π(k− j)t)− cos(π(k+ j)t) and use that k± j is an even integer. This shows

that hk is orthonormal.

We now show that it is complete. Let h ∈ F2 be even, such that 〈h, hk〉F2
= 0 for all odd positive integers

k. We must show that h ≡ 0. First, denote H(t) = (̂xh)(t), and note that, by Plancherel’s theorem and
10



(3.5), the condition 〈h, hk〉F2
= 0 implies that

∫

I

H(t) sin(π(2j − 1)t) dt = 0 (3.6)

for all positive integers j. Actually, since sin(−x) = − sinx, (3.6) holds for all integers j.

Now, since T is an isometry into L2(I), by the theory of Fourier series on L2(I), it is enough to show that

〈Th, ej〉L2(I) = 0 for all integers j, where ej(t) = e2πijt. In fact, for an integer j, we have

〈Th, ej〉L2(I) =

∫

I

H(t)eπite−2πitj dt

=

∫

I

H(t) cos(π(2j − 1)t) dt− i

∫

I

H(t) sin(π(2j − 1)t) dt.

The first integral in the last line is 0 since H is odd, and the second integral is 0 by (3.6). Therefore,

〈Th, ej〉L2(I) = 0 for all integers j, and then Th ≡ 0 and h ≡ 0, as desired. �

Once we have a complete orthonormal system, we proceed to obtain numerical examples as follows. For

a positive integer d, let F2,d =span {h2j−1 : 1 ≤ j ≤ d} ⊂ F2. Let Q ∈ Rd×d be the matrix defined by

Qij =

∫ 0

−∞

−xh2i−1(x)h2j−1(x) dx.

Then, since hk are orthonormal, one can see that the reciprocal of the infimum in (2.5), when taken over the

space F2,d, satisfies

|λd| = max
h∈F2,d

h 6≡0

∫ 0

−∞

−x|h(x)|2 dx
∫ ∞

−∞

|x|2|h(x)|2 dx
,

where λd is the largest eigenvalue (in absolute value) of Q, and the maximum is attained when

h = a · (h1, h3, . . . , h2d−1), (3.7)

for a ∈ Rd an eigenvector of Q associated to λd. We calculate the eigensystems numerically for d ≤ 1000.

We find that λ1000 = 0.783002554..., giving a proof for the bound A1 ≤ 1/λ1000 = 1.277135042..., which is

only slightly smaller than our example (2.8) in the proof of Theorem 1 – again coinciding in the first four

decimal digits. Moreover, this also coincides with the first seven decimal digits given by the polynomials of

degree d = 20 that we constructed with the approach in Section 2.4.

In Table 1, we compare the speed of convergence of the two numerical approaches we have presented.

The first approach is described in Section 2.4, with functions h defined as in (2.6), via polynomials g of

some degree d. The second approach is the L2−approach described in the present section, with functions h

defined by (3.7). In both cases, the parameter d is the number of degrees of freedom in the construction of

the function h. In both cases, the bounds for A1 appear to quickly converge to the first few decimal digits,

yet we observe that in the polynomial approach, the bound for A1 seems to converge much faster to more

decimal digits with small values of d. Together, all of this gives evidence to the conjecture that the sharp

value of A1, up to its first 8 significant digits, is

A1 = 1.27713504... (3.8)

Furthermore, the normalized plot of the function h we constructed by using (3.7) with d = 1000 is almost

indistinguishable from the plot of h0 shown in Figure 4. Since the explicit function h0 defined in (2.9) already
11



agrees with our conjecture (3.8) to four significant digits, we might expect it to behave close to an extremizer

for A1. Indeed, in Table 2, we compare the first 10 zeros of the functions h0 in (2.9) and h in (3.7) (the

latter with d = 1000). Note that there is a good agreement up to the second decimal digit. We remark that

the latter do not change with respect to the values with d = 500, up to the digits shown, except for a minor

change in the last digit of x10 = 10.5240... (for d = 500).

d A1 (polynomials) d A1 (L2)

2 1.277171240 10 1.277199350

4 1.277148060 50 1.277136017

6 1.277137688 100 1.277135195

8 1.277135865 150 1.277135093

10 1.277135348 200 1.277135065

12 1.277135173 300 1.277135050

14 1.277135104 400 1.277135046

16 1.277135074 500 1.277135044

20 1.277135052 1000 1.277135042

Table 1. Comparison of the numerical bounds for A1 in the polynomial construction of
Section 2.4 and in the L2−construction of Section 3.2, as the corresponding parameter d
grows.

. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Pol 1.5839 2.5715 3.5573 4.5470 5.5395 6.5340 7.5297 8.5264 9.5238 10.5220

L2 1.5866 2.5648 3.5525 4.5444 5.5387 6.5344 7.5311 8.5284 9.5261 10.5243

Table 2. First positive zeros of the function h0 via polynomials of degree 2 given in (2.9),
and via the L2−approach as in (3.7) with d = 1000.

4. Proof of Theorem 2

Let g ∈ PW 2. By Paley-Wiener’s theorem, ĝ has compact support in [− 1
2 ,

1
2 ], and using Plancherel’s

theorem, we obtain

∫ ∞

−∞

N∑

n=0

an
π2n

∣∣g(n)(x)
∣∣2 dx =

∫ 1
2

− 1
2

(
N∑

n=0

an(4t
2)n

)
∣∣ĝ(t)

∣∣2 dt =
∫ 1

2

− 1
2

P(4t2)
∣∣ĝ(t)

∣∣2 dt. (4.1)

Since g ∈ PW 2, then

g(z) =

∫ 1
2

− 1
2

ĝ(t) e2πizt dt. (4.2)

Then the fact that g(0) = 1, the positivity of P(x), the Cauchy-Schwarz inequality and (4.1) yield

1 =

∣∣∣∣∣

∫ 1
2

− 1
2

ĝ(t) dt

∣∣∣∣∣

2

=

∣∣∣∣∣

∫ 1
2

− 1
2

√
P(4t2) ĝ(t) · 1√

P(4t2)
dt

∣∣∣∣∣

2

≤
(∫ 1

2

− 1
2

P(4t2)
∣∣ĝ(t)

∣∣2 dt
)(∫ 1

2

− 1
2

1

P(4t2)
dt

)
, (4.3)
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which implies (1.7). Note that equality in (4.3) holds if and only if there is λ ∈ C, such that

ĝ(t) =
λ

P(4t2)

almost everywhere in [− 1
2 ,

1
2 ]. Hence, from (4.2) we conclude that

g(z) = λ

∫ 1
2

− 1
2

e2πizt

P(4t2)
dt = λ

∫ 1

0

cos (πzt)

P(t2)
dt.

Since g(0) = 1, then the extremal function is unique and it is is given by (1.8).

Remark 8. Since P(x) > 0 for all x ∈ [0, 1], the expression in (4.1) is nonnegative. Thus we obtain a norm

in PW 2, defined by

‖g‖P =

(∫ ∞

−∞

N∑

n=0

an
π2n

∣∣g(n)(x)
∣∣2dx

)1/2

,

which can be viewed as a Sobolev-type norm.
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[18] G. Szegö, Orthogonal polynomials, Fourth edition. American Mathematical Society, Colloquium Publications, Vol. XXIII.

American Mathematical Society, Providence, R.I., 1975.

Department of Mathematics, University of Rochester, Rochester, NY 14627, USA

Email address: cchirrec@math.rochester.edu
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