AN EXTREMAL PROBLEM AND INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

ANDRÉS CHIRRE, DIMITAR K. DIMITROV, AND EMILY QUESADA-HERRERA

Abstract

We study two variations of the classical one-delta problem for entire functions of exponential type, known also as the Carathéodory-Fejér-Turán problem. The first variation imposes the additional requirement that the function is radially decreasing while the second one is a generalization which involves derivatives of the entire function. Various interesting inequalities, inspired by results due to Duffin and Schaeffer, Landau, and Hardy and Littlewood, are also established.

1. Introduction

In the present note we study some extremal problems concerning certain quantities over specific families of entire functions of exponential type. For $\Delta>0$, we say that an entire function $G: \mathbb{C} \rightarrow \mathbb{C}$ has exponential type at most $2 \pi \Delta$ if, for all $\varepsilon>0$, there exists a positive constant C_{ε} such that

$$
|G(z)| \leq C_{\varepsilon} e^{(2 \pi \Delta+\varepsilon)|z|}, \quad \text { for all } z \in \mathbb{C} .
$$

We adopt the usual convention that an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be real if its restriction to \mathbb{R} is real-valued, as well as, that the function $g^{*}(z)$ is defined by $g^{*}(z)=\overline{g(\bar{z})}$. For $f, g \in L^{1}(\mathbb{R})$ we denote by $f * g$ their convolution, which is defined by $(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) \mathrm{d} y$.
1.1. The one-delta problem. The classical one-delta problem is to determine the infimum

$$
\mathcal{A}=\inf _{\substack{f \in \mathcal{F} \\ f(0) \neq 0}} \frac{\|f\|_{1}}{f(0)},
$$

where the family \mathcal{F} consists of real entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ of exponential type at most 2π such that $f \in L^{1}(\mathbb{R})$, and $f(x) \geq 0$ for all $x \in \mathbb{R}$. This is a classical problem, and several of its variations are named after Carathéodory, Fejér and Turán. We refer to [9, 11, 14, 16] for comprehensive information about its history and for some recent contributions. It is known that $\mathcal{A}=1$, and the unique extremal solution of the one-delta problem is the Fejér kernel, given by

$$
\begin{equation*}
K(z)=\left(\frac{\sin \pi z}{\pi z}\right)^{2} \tag{1.1}
\end{equation*}
$$

To obtain an equivalent formulation of this problem, we may consider a decomposition result due to Krein [1. p. 154]. It states that if $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function of exponential type at most 2π such that $f \in L^{1}(\mathbb{R})$ and $f(x) \geq 0$ for all $x \in \mathbb{R}$, then there exists an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ in the Paley-Wiener

[^0]space $P W^{2}$ such that $f(z)=g(z) g^{*}(z)$. Here, $P W^{2}$ is the subspace of $L^{2}(\mathbb{R})$ consisting of entire functions of exponential type at most π. Therefore, the one-delta problem can also be stated as finding
\[

$$
\begin{equation*}
\mathcal{B}=\inf _{\substack{g \in P W^{2} \\ g(0) \neq 0}} \frac{\|g\|_{2}}{|g(0)|}, \tag{1.2}
\end{equation*}
$$

\]

and clearly $\mathcal{B}=1$, too. Other L^{p}-variations of this problem have also been studied in [4, 6, 13]. Note that (1.2) can be stated in yet another alternative way as follows: the inequality

$$
\begin{equation*}
1 \leq \int_{-\infty}^{\infty}|g(x)|^{2} \mathrm{~d} x \tag{1.3}
\end{equation*}
$$

holds for every $g \in P W^{2}$ such that $g(0)=1$, and (1.3) reduces to an equality if and only if

$$
g(z)=\frac{\sin \pi z}{\pi z}
$$

Our main goal is to study some natural variations of each of the above versions of the one-delta problem.
1.2. Monotone-delta problem. The monotone-delta problem is to find

$$
\begin{equation*}
\mathcal{A}_{1}=\inf _{\substack{f \in \mathcal{F}_{1} \\ f(0) \neq 0}} \frac{\|f\|_{1}}{f(0)} \tag{1.4}
\end{equation*}
$$

where the family \mathcal{F}_{1} consists of real entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ of exponential type at most 2π, such that $f \in L^{1}(\mathbb{R}), f(x) \geq 0$ for all $x \in \mathbb{R}$, and f is radially decreasing, that is, f is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$. In the following theorem, we present some qualitative and quantitative information about this problem.

Theorem 1. The following statements about the monotone-delta problem hold:
(a) There exists an even function $F \in \mathcal{F}_{1}$ with $F(0)=1$ that extremizes (1.4).
(b) All the zeros of any even extremizer F lie in the set $S=\{z \in \mathbb{C}:|\operatorname{Re} z|>|\operatorname{Im} z|>0\}$.
(c) The constant \mathcal{A}_{1} satisfies $1<\mathcal{A}_{1} \leq 1.2771 \ldots$

We conjecture that the upper bound in part (c) is sharp in the sense that the first four significant digits of \mathcal{A}_{1} are those shown above. One of the reasons for this claim is that our proof of part (c) of Theorem 1 is constructive. We construct concrete examples for which the value $1.2771 \ldots$ is attained. To obtain \mathcal{A}_{1}, we first reformulate the monotone-delta problem (see Lemma 6 below) to the one of determining the infimum

$$
\begin{equation*}
\mathcal{A}_{1}=\inf _{\substack{h \in \mathcal{F}_{2} \\ h \neq 0}} \frac{2 \int_{-\infty}^{\infty}|x|^{2}|h(x)|^{2} \mathrm{~d} x}{\int_{-\infty}^{\infty}|x||h(x)|^{2} \mathrm{~d} x} \tag{1.5}
\end{equation*}
$$

where the family \mathcal{F}_{2} consists of entire functions $h: \mathbb{C} \rightarrow \mathbb{C}$ of exponential type at most π such that $x h \in L^{2}(\mathbb{R})$ and $|h(x)|=|h(-x)|$. Then we find an explicit example of a function $h_{0} \in \mathcal{F}_{2}$ (see (2.9)). For this h_{0}, we compute explicitly the quotient in (1.5), which turns out to be $1.2771 \ldots$.. Despite that h_{0} is not the extremal function for (1.5), our conjecture is that the value $1.2771 \ldots$ is so close to the infimum \mathcal{A}_{1}, that they differ only in the decimal digits after the fourth one. In Section 3.2 we give a deeper discussion of numerical issues, and a sharper conjecture for the value of \mathcal{A}_{1}.

The monotone-delta problem has also been considered in \mathbb{R}^{d}, for $d \geq 2$. In [5], using techniques from the theory of de Branges spaces, the authors found the exact solution of the monotone-delta problem when d is
even. Nonetheless, the authors state that the case when d is odd seems more subtle and remains open in general.

Despite that Lemma6 below provides an integral representation of any function in \mathcal{F}_{1}, the first interesting explicit example of a function in this class we constructed was based on the classical method of Sonin, which was itself invented with the intention to obtain information about the monotonicity of the successive relative minima and maxima of certain oscillatory solutions of ordinary differential equations (see [18, Section 7.31]). If $g: \mathbb{C} \rightarrow \mathbb{C}$ is a real entire function in $P W^{2}$ and satisfies a second-order differential equation of the form $y^{\prime \prime}+(B / x) y^{\prime}+C y=0$, with $B, C>0$, Sonin's method suggests to construct the function

$$
\begin{equation*}
f(z)=(g(z))^{2}+\frac{\left(g^{\prime}(z)\right)^{2}}{C} \tag{1.6}
\end{equation*}
$$

It is clear that $f \in \mathcal{F}_{1}$. Moreover $f(x)$ is a "lid" of $g^{2}(x)$ in the sense that $f(x) \geq g^{2}(x)$ for every $x \in \mathbb{R}$ and f interpolates g^{2} and possesses inflection points at its local maxima. Figure 1 shows Fejér's kernel $K(x)$ and its lid $f(x)$.

Figure 1. The Fejér kernel $K(x)$ defined in (1.1) and its lid $f(x)$.
1.3. The one-delta problem with derivatives. The function in (1.6) appears in a classical inequality for entire functions. Duffin and Schaeffer [8, p. 239] proved that if a real entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ of exponential type at most π is such that $|g(x)| \leq 1$ for all $x \in \mathbb{R}$, then

$$
(g(x))^{2}+\frac{\left(g^{\prime}(x)\right)^{2}}{\pi^{2}} \leq 1, \quad \text { for all } x \in \mathbb{R}
$$

Inspired by this inequality, we prove that specific sums of the L^{2} - norms of a function $g \in P W^{2}$, normalized by $g(0)=1$, and its consecutive derivatives, are bounded from below. Our result may be considered a variation of the one-delta problem where one wishes to minimize sums of L^{2}-norms of an entire function and of its derivatives, and reads as follows:

Theorem 2. Let N be a nonnegative integer and the real polynomial

$$
\mathcal{P}(x)=\sum_{n=0}^{N} a_{n} x^{n}
$$

be positive for every $x \in[0,1]$. Then the inequality

$$
\begin{equation*}
\left(\int_{0}^{1} \frac{1}{\mathcal{P}\left(t^{2}\right)} \mathrm{d} t\right)^{-1} \leq \int_{-\infty}^{\infty} \sum_{n=0}^{N} \frac{a_{n}}{\pi^{2 n}}\left|g^{(n)}(x)\right|^{2} \mathrm{~d} x \tag{1.7}
\end{equation*}
$$

holds for every $g \in P W^{2}$ which obeys the normalization $g(0)=1$. Moreover, equality in (1.7) is attained if and only if

$$
\begin{equation*}
g(z)=\left(\int_{0}^{1} \frac{1}{\mathcal{P}\left(t^{2}\right)} \mathrm{d} t\right)^{-1} \int_{0}^{1} \frac{\cos (\pi z t)}{\mathcal{P}\left(t^{2}\right)} \mathrm{d} t \tag{1.8}
\end{equation*}
$$

Note that when $N=0$ and $a_{0}=1$, we recover the inequality (1.3), which once again shows that the latter is a natural result in the spirit of the one-delta problem. Moreover, choosing the polynomial $\mathcal{P}(x)=1+a \pi^{2} x$, we obtain the following corollary.

Corollary 3. Fix $a>0$. Then the inequality

$$
\begin{equation*}
\frac{\pi \sqrt{a}}{\arctan (\pi \sqrt{a})} \leq \int_{-\infty}^{\infty}\left(|g(x)|^{2}+a\left|g^{\prime}(x)\right|^{2}\right) \mathrm{d} x \tag{1.9}
\end{equation*}
$$

holds for every $g \in P W^{2}$ with $g(0)=1$ and the unique extremal function for which (1.9) reduces to an equality is

$$
g(z)=\frac{\pi \sqrt{a}}{\arctan (\pi \sqrt{a})} \int_{0}^{1} \frac{\cos (\pi z t)}{1+a \pi^{2} t^{2}} \mathrm{~d} t
$$

Observe that for $a=1 / \pi^{2}$ (1.9) reduces to the following lower bound for the integral of the function in (1.6):

$$
\int_{-\infty}^{\infty}\left(|g(x)|^{2}+\frac{\left|g^{\prime}(x)\right|^{2}}{\pi^{2}}\right) \mathrm{d} x \geq \frac{4}{\pi}, \quad g \in P W^{2}, \quad g(0)=1
$$

Different choices of the polynomial $\mathcal{P}(x)$ allow us to obtain other interesting inequalities.
Corollary 4. Fix $0<a<1 / \pi^{2}$. Then

$$
\begin{equation*}
a \int_{-\infty}^{\infty}\left|g^{\prime}(x)\right|^{2} \mathrm{~d} x+\left(\frac{1}{2 \pi \sqrt{a}} \log \left(\frac{1+\sqrt{a} \pi}{1-\sqrt{a} \pi}\right)\right)^{-1} \leq \int_{-\infty}^{\infty}|g(x)|^{2} \mathrm{~d} x \tag{1.10}
\end{equation*}
$$

for every $g \in P W^{2}$ which obeys $g(0)=1$.
In particular, letting $a \rightarrow 1 / \pi^{2}$ in (1.10) we obtain

$$
\int_{-\infty}^{\infty}\left|g^{\prime}(x)\right|^{2} \mathrm{~d} x \leq \pi^{2} \int_{-\infty}^{\infty}|g(x)|^{2} \mathrm{~d} x, \quad g \in P W^{2}, \quad g(0)=1
$$

which is exactly the L^{2} - version of the classical Bernstein inequality that holds for every $L^{p}, p \geq 1$ (see [2, Theorem 11.3.3]).

Observe that the Bernstein inequality follows from Theorem 2 if we set $\mathcal{P}(t)=1+\varepsilon-t$ and let $\varepsilon \rightarrow 0$. Applying the same reasoning with $\mathcal{P}(t)=(1+\varepsilon-t)^{N}$, we obtain:

Corollary 5. Let N be a nonnegative integer. Then the inequality

$$
\sum_{k=0}^{N} \frac{(-1)^{k}}{\sigma^{2 k}}\binom{N}{k} \int_{-\infty}^{\infty}\left|f^{(k)}(x)\right|^{2} \mathrm{~d} x \geq 0
$$

holds for every function of exponential type at most σ such that $f \in L^{2}(\mathbb{R})$. In particular, for $N=2$,

$$
\int_{-\infty}^{\infty}\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x \leq \frac{1}{2}\left(\sigma^{2} \int_{-\infty}^{\infty}|f(x)|^{2} \mathrm{~d} x+\frac{1}{\sigma^{2}} \int_{-\infty}^{\infty}\left|f^{\prime \prime}(x)\right|^{2} \mathrm{~d} x\right)
$$

The latter is a curious result that resembles some classical ones, due to Landau and Hardy and Littlewood. In 1913, Landau [15] proved that if f is a real function, $f \in C^{2}(\mathbb{R})$, and the inequalities $\|f\|_{\infty} \leq 1$ and $\left\|f^{\prime \prime}\right\|_{\infty} \leq 1$ for the uniform norms of f and $f^{\prime \prime}$ on the real line hold, so does $\left\|f^{\prime}\right\|_{\infty} \leq \sqrt{2}$.

Hardy and Littlewood [12, Theorem 6] proved that, if y and $y^{\prime \prime}$ are in $L^{2}[0, \infty)$, then

$$
\left(\int_{0}^{\infty}\left[y^{\prime}(x)\right]^{2} \mathrm{~d} x\right)^{2} \leq 4 \int_{0}^{\infty}[y(x)]^{2} \mathrm{~d} x \int_{0}^{\infty}\left[y^{\prime \prime}(x)\right]^{2} \mathrm{~d} x
$$

Moreover, the constant 4 is the best possible. The equality is attained if and only if $y(x)=c Y(a x)$, where c and a are real constants and

$$
Y(x)=e^{-x / 2} \sin \left(\frac{\sqrt{3}}{2} x-\frac{\pi}{3}\right)
$$

Theorem 7 in 12 states that, under the same requirements, the inequality

$$
\int_{0}^{\infty}\left(y^{2}(x)+\left[y^{\prime \prime}(x)\right]^{2}-\left[y^{\prime}(x)\right]^{2}\right) \mathrm{d} x \geq 0
$$

holds with equality as before, but with $a=1$.

2. Proof of Theorem 1

For $f \in L^{1}(\mathbb{R})$, we normalize the Fourier transform \widehat{f} of f as

$$
\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \xi} \mathrm{~d} x
$$

2.1. Proof of a). Replacing $f(x)$ by $(f(x)+f(-x)) / 2$, we see that we may restrict our search for the infimum (1.4) to the even functions in \mathcal{F}_{1}. To prove the existence of an extremizer, we follow an argument in [4, which consists in showing that a certain weak limit is a viable candidate. Consider an extremizing sequence $\left\{f_{n}\right\}_{n \geq 1} \subset \mathcal{F}_{1}$ such that f_{n} is even, $f_{n}(0)=\left\|f_{n}\right\|_{\infty}=1$, and $\lim _{n \rightarrow \infty}\|f\|_{1}=\mathcal{A}_{1}$. Hence, $\left\{f_{n}\right\}_{n \geq 1}$ is a bounded sequence in $L^{2}(\mathbb{R})$, which implies that there exists $F \in L^{2}(\mathbb{R})$ such that $\left\{f_{n}\right\}$, after passing to a subsequence, converges to F weakly in $L^{2}(\mathbb{R})$. Now the Paley-Wiener theorem [17, Theorem 4.1] and Mazur's lemma [3, Corollary 3.8] yield that $\operatorname{supp}(\widehat{F}) \subset[-1,1]$, and by Fourier inversion, F is an entire function of exponential type at most 2π. Moreover, using the weak convergence, we conclude that, for every $x \in \mathbb{R}$,

$$
\begin{aligned}
f_{n}(x)=\int_{-1}^{1} \widehat{f_{n}}(\xi) e^{2 \pi i x \xi} \mathrm{~d} \xi & =\int_{-\infty}^{\infty} f_{n}(y) \frac{\sin 2 \pi(y-x)}{\pi(y-x)} \mathrm{d} x \rightarrow \int_{-\infty}^{\infty} F(y) \frac{\sin 2 \pi(y-x)}{\pi(y-x)} \mathrm{d} x \\
& =\int_{-1}^{1} \widehat{F}(\xi) e^{2 \pi i x \xi} \mathrm{~d} \xi=F(x) \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore, F is an even radially decreasing function such that $F(x) \geq 0$ and $F(0)=1$. Finally, using Fatou's lemma, we conclude that $F \in L^{1}(\mathbb{R})$.
2.2. Proof of b). Let F be an even extremizer with $F(0)=1$. Clearly, it has no real zeros. Indeed, since F is real, nonnegative and decreasing on the positive real axis, if it vanishes at $x_{0}>0$, it does for all $x>x_{0}$ which is impossible because F is entire and $F(0)=1$. A similar argument shows that F cannot vanish at a negative x_{0}. Therefore, all the zeros of F satisfy $|\operatorname{Im} z|>0$. Now, assume that F has a zero at $z=i b$, for $b \in \mathbb{R}$. Since F is real-valued, it also has $z=-i b$ as a zero. Consider the entire function

$$
G(z)=\frac{b^{2} F(z)}{z^{2}+b^{2}}
$$

Note that $G(0)=1$ and $G \in \mathcal{F}_{1}$. Since

$$
\int_{-\infty}^{\infty} G(x) \mathrm{d} x<\int_{-\infty}^{\infty} F(x) \mathrm{d} x
$$

we get a contradiction. Therefore, all the zeros of F satisfy $|\operatorname{Re} z|>0$. Now, assume that $z=a+i b$ is a zero of F with $|b| \geq|a|>0$. Since F is real-valued and even, we have that $z=a-i b, z=-a+i b$, and $z=-a-i b$ are also zeros. Note that all these zeros are different. Then, the entire function

$$
H(z)=\frac{\left(a^{2}+b^{2}\right)^{2} F(z)}{\left((z-a)^{2}+b^{2}\right)\left((z+a)^{2}+b^{2}\right)}
$$

is in \mathcal{F}_{1}, and using that $|b| \geq|a|$, it is easy to see that

$$
\int_{-\infty}^{\infty} H(x) \mathrm{d} x<\int_{-\infty}^{\infty} F(x) \mathrm{d} x
$$

which gives a contradiction. We conclude that $|b|<|a|$.
2.3. Representation lemma. The following lemma gives a representation for any even function in \mathcal{F}_{1}.

Lemma 6. If $f \in \mathcal{F}_{1}$, then it can be represented in \mathbb{R} in the form

$$
\begin{equation*}
f(x)=\int_{-\infty}^{x}-t|h(t)|^{2} \mathrm{~d} t \tag{2.1}
\end{equation*}
$$

where $h: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function of exponential type at most π such that $|h(x)|=|h(-x)|$ for all $x \in \mathbb{R}$, and $x h \in L^{2}(\mathbb{R})$. Conversely, if f is a function of the form (2.1), then it has an analytic extension to \mathbb{C} which is an even function in \mathcal{F}_{1}.

Proof. Let $f \in \mathcal{F}_{1}$ be even. Then clearly $\lim _{x \rightarrow \pm \infty} x f(x)=0$. Integration by parts yields

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{\infty}-x f^{\prime}(x) \mathrm{d} x \tag{2.2}
\end{equation*}
$$

By the Plancherel-Pólya theorem, f^{\prime} has exponential type 2π and so does $-z f^{\prime}(z)$. The monotonicity requirement implies $-x f^{\prime}(x) \geq 0$ for all $x \in \mathbb{R}$, and then (2.2) yields $-x f^{\prime} \in L^{1}(\mathbb{R})$. From the Krein decomposition theorem [1, p. 154], it follows that $-z f^{\prime}(z)=g(z) g^{*}(z)$ for some $g \in P W^{2}$. Moreover, since f attains its maximum at $x=0$, then $f^{\prime}(0)=0$. Defining $h(z)=g(z) / z$, we rewrite the latter in the form

$$
\begin{equation*}
-z f^{\prime}(z)=z^{2} h(z) h^{*}(z) \tag{2.3}
\end{equation*}
$$

where h is an entire function of exponential type at most π and $x h \in L^{2}(\mathbb{R})$. Since f^{\prime} is odd, then $|h(x)|=$ $|h(-x)|$ for $x \in \mathbb{R}$. Finally, integrating (2.3) appropriately, we arrive at (2.1). Conversely, assume the representation (2.1). Note that f has an analytic extension on \mathbb{C} (also denoted by f) of the form

$$
f(z)=\int_{-\infty}^{0}-t|h(t)|^{2} \mathrm{~d} t+\int_{[0, z]}-s h(s) h^{*}(s) \mathrm{d} s
$$

where $[0, z]$ denotes the straight segment connecting 0 and z. Since h is an entire function of exponential type at most π, f is an entire function of exponential type at most 2π. From (2.1) it follows that $\lim _{x \rightarrow-\infty} f(x)=0$, and using the fact that $|h(x)|=|h(-x)|$, we conclude that f is also even and $\lim _{x \rightarrow \infty} f(x)=0$. On the other hand, differentiating (2.1) we derive

$$
\begin{equation*}
f^{\prime}(x)=-x|h(x)|^{2} \quad \text { for } \quad x \in \mathbb{R} \tag{2.4}
\end{equation*}
$$

which implies that f is radially decreasing and $f(x) \geq 0$. Moreover, (2.4) and $x h \in L^{1}(\mathbb{R})$ imply $\lim _{x \rightarrow \pm \infty} x f(x)=$ 0 . Integration by parts shows that

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} x^{2}|h(x)|^{2} \mathrm{~d} x
$$

which yields $f \in L^{1}(\mathbb{R})$.
2.4. Proof of $\mathbf{c})$. Since $K(x)$ is the unique extremal solution for the one-delta problem, we have that $1<\mathcal{A}_{1}$. On the other hand, as mentioned in the introduction, from Lemma 6, we can reformulate the monotone-delta problem as the one to determine

$$
\begin{equation*}
\mathcal{A}_{1}=\operatorname{iif}_{\substack{h \in \mathcal{F}_{2} \\ h \neq 0}} \frac{2 \int_{-\infty}^{\infty}|x|^{2}|h(x)|^{2} \mathrm{~d} x}{\int_{-\infty}^{\infty}|x||h(x)|^{2} \mathrm{~d} x}, \tag{2.5}
\end{equation*}
$$

where the family \mathcal{F}_{2} consists of those entire functions $h: \mathbb{C} \rightarrow \mathbb{C}$ of exponential type at most π such that $x h \in L^{2}(\mathbb{R})$ and $|h(x)|=|h(-x)|$.

We now transform this optimization problem over \mathcal{F}_{2} into another unrestricted, smooth optimization problem over \mathbb{R}^{d+1}, so that we may construct functions h in a systematic way with standard numerical optimization methods. For this purpose, we make a couple of helpful observations. First, note that if $h \in \mathcal{F}_{2}$ then $h \in L^{1}(\mathbb{R})$. In fact, by the Cauchy-Schwarz inequality, we have

$$
\int_{1}^{\infty}|h(x)| \mathrm{d} x=\int_{1}^{\infty}|x h(x)| \cdot \frac{1}{x} \mathrm{~d} x \leq \sqrt{\int_{1}^{\infty} x^{2}|h(x)|^{2} \mathrm{~d} x} \cdot \sqrt{\int_{1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x}<\infty
$$

Therefore, \widehat{h} is continuous in \mathbb{R}, and in particular $\widehat{h}(\pm 1 / 2)=0$. Denoting $I=[-1 / 2,1 / 2]$ we have that $\operatorname{supp} \widehat{h} \subset I$. Therefore, by the Stone-Weierstrass theorem we may approximate \widehat{h} uniformly by a polynomial times χ_{I}, where χ_{I} denotes the characteristic function of the interval I.

With the previous observations in mind, we consider functions of the form

$$
\begin{equation*}
\widehat{h}(x)=\left(\frac{1}{4}-x^{2}\right) g(x) \chi_{I}(x) \tag{2.6}
\end{equation*}
$$

where

$$
g(x)=\sum_{i=0}^{d} a_{i} x^{i} \in \mathbb{R}[x]
$$

is a polynomial of degree d. Note that the factor $\left(\frac{1}{4}-x^{2}\right)$ means that $\widehat{h}(\pm 1 / 2)=0$. Denoting $\mathbf{a}=$ $\left(a_{0}, a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{d+1}$, the infimum in (2.5), restricted to this class, becomes

$$
\begin{equation*}
\mathcal{A}_{1, d}:=\min _{\mathbf{a} \in \mathbb{R}^{d+1} \backslash 0} \frac{2 \mathbf{a} \cdot N \mathbf{a}}{\mathbf{a} \cdot D \mathbf{a}}, \tag{2.7}
\end{equation*}
$$

where $N, D \in \mathbb{R}^{(d+1) \times(d+1)}$ are defined by

$$
N_{i j}=\int_{-\infty}^{\infty}|x|^{2} f_{i}(x) \overline{f_{j}(x)} \mathrm{d} x ; \quad D_{i j}=\int_{-\infty}^{\infty}|x| f_{i}(x) \overline{f_{j}(x)} \mathrm{d} x ; \quad f_{i}(x)=\left[\left(\frac{1}{4}-y^{2}\right) y^{i} \chi_{I}\right]^{\wedge}(-x)
$$

For all $d \leq 20$ and $0 \leq i \leq d$, it is easy to see by direct computation of f_{i} that $x f_{i} \in L^{2}(\mathbb{R})$, so that $h=\mathbf{a} \cdot\left(f_{0}, \ldots, f_{d}\right) \in \mathcal{F}_{2}$ for all $\mathbf{a} \in \mathbb{R}^{d+1}$. The matrices N and D may be computed explicitly for a given d, and this is then a smooth optimization problem over \mathbb{R}^{d+1}. Solving it numerically for $d=2$, we find

$$
\begin{equation*}
\widehat{h_{0}}(x)=\left(\frac{1}{4}-x^{2}\right)\left(1-\frac{9}{5} x^{2}\right) \chi_{I}(x) \tag{2.8}
\end{equation*}
$$

which yields

$$
\begin{equation*}
h_{0}(x)=\frac{\left(108-25 \pi^{2} x^{2}\right) \sin (\pi x)-\pi x\left(11 \pi^{2} x^{2}+108\right) \cos (\pi x)}{40 \pi^{5} x^{5}} \tag{2.9}
\end{equation*}
$$

By direct computation in exact rational arithmetic, this gives

$$
\mathcal{A}_{1} \leq \frac{49484}{38745}=1.27717 \ldots
$$

This proves part (c). Moreover, using the representation (2.1) we obtain the function in \mathcal{F}_{1}

$$
\begin{equation*}
f_{0}(x)=\frac{P(\pi x)+Q(\pi x) \sin (2 \pi x)+R(\pi x) \cos (2 \pi x)}{738 \pi^{8} x^{8}} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& P(x)=242 x^{6}+3001 x^{4}+4176 \\
& Q(x)=-242 x^{5}-576 x^{3}-11664 x \\
& R(x)=1463 x^{4}+7488 x^{2}-5832
\end{aligned}
$$

see Figure 2

Figure 2. The function $f_{0}(x)$ defined in equation (2.10).

Additionally, we solve (2.7) for all $d \leq 20$ and observe that, as the degree d increases, the sequence $\mathcal{A}_{1, d}$ decreases very slowly, showing only a tiny improvement from $1.27717 \ldots$ only in the fifth decimal digit. More precisely, we obtain $\mathcal{A}_{1} \leq 1.27713505 \ldots$ with those much more detailed calculations performed with large degree d of the polynomials g. In Section 3.2. we will show some tables with the results of these computations (see Table 1), and compare the results with those of another numerical approach. In Figure 3 and Figure 4]

Figure 3. The function $\widehat{h_{0}}(x) / \widehat{h_{0}}(0)$ defined in equation (2.8).

Figure 4. The function $h_{0}(x) / h_{0}(0)$ defined in equation (2.9).
we plot the functions $4 \widehat{h}_{0}$ and $\frac{600}{91} h_{0}$, respectively, where, since $h_{0}(0)=\frac{91}{600}$ and $\widehat{h}_{0}(0)=\frac{1}{4}$, we renormalized the plots accordingly.

3. Some functions in \mathcal{F}_{1}

3.1. The lid function. In this subsection, we apply Sonin's method to construct a nice sequence of functions in \mathcal{F}_{1}. For any positive real numbers B and C, consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}+\frac{B}{x} y^{\prime}+C y=0 . \tag{3.1}
\end{equation*}
$$

Let $y=g, g: \mathbb{R} \rightarrow \mathbb{R}$ be a solution of the equation (3.1). The lid of g^{2} is the function defined by

$$
\begin{equation*}
f(x)=(g(x))^{2}+\frac{\left(g^{\prime}(x)\right)^{2}}{C} \tag{3.2}
\end{equation*}
$$

Note that $f(x) \geq 0$ for all $x \in \mathbb{R}$, and

$$
f^{\prime}(x)=-\frac{2 B\left(g^{\prime}(x)\right)^{2}}{x C} .
$$

This implies that f is radially decreasing. Moreover, if we suppose that the solution g has an analytic extension on \mathbb{C} of exponential type at most π, and $g \in L^{2}(\mathbb{R})$, we conclude that $f \in \mathcal{F}_{1}$.

Let us show some examples of lids. For $\alpha>0$, consider the Bessel function of the first kind of order α, which is defined by

$$
J_{\alpha}(z)=\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}(z / 2)^{\alpha+2 \nu}}{\nu!\Gamma(\nu+\alpha+1)} .
$$

Let us remark some properties of the Bessel functions mentioned in [18, Section 1.71]. It is known (see [18, Equation 1.71.3]) that J_{α} satisfies the differential equation

$$
\begin{equation*}
y^{\prime \prime}+x^{-1} y^{\prime}+\left(1-\alpha^{2} x^{-2}\right) y=0 . \tag{3.3}
\end{equation*}
$$

Now, define the function

$$
g_{\alpha}(z)=\frac{J_{\alpha}(\pi z)}{(\pi z)^{\alpha}} .
$$

A straightforward change of variables in (3.3) shows that g_{α} satisfies the differential equation

$$
y^{\prime \prime}+\frac{2 \alpha+1}{x} y^{\prime}+\pi^{2} y=0 .
$$

The function g_{α} is an even entire function of exponential type π. Moreover, using the decay of J_{α} (see 18 , Equations 1.71 .10 and 1.71 .11$]$ we see that $g_{\alpha} \in L^{2}(\mathbb{R})$. Therefore, inserting g_{α} in (3.2) we actually construct the lid of g_{α}^{2}, with $B=2 \alpha+1$ and $C=\pi^{2}$. In the particular case $\alpha=1 / 2$ we known that

$$
g_{1 / 2}(x)=\frac{\sin (\pi x)}{\pi x},
$$

and therefore

$$
f_{1 / 2}(x)=\left(g_{1 / 2}(x)\right)^{2}+\frac{\left(g_{1 / 2}^{\prime}(x)\right)^{2}}{\pi^{2}}
$$

is the lid of $K(x)$. Straightforward calculations show that the Fourier transform of $f_{1 / 2}$ is

$$
\begin{equation*}
\widehat{f_{1 / 2}}(\xi)=\max \{1-|\xi|, 0\}+\frac{1}{\pi^{2}} \widehat{\left(g_{1 / 2}^{\prime}\right)^{2}}(\xi) \tag{3.4}
\end{equation*}
$$

Then the Fourier transform - convolution de Margan type law yields

$$
\widehat{\left(g_{1 / 2}^{\prime}\right)^{2}}(\xi)=\left(\widehat{g_{1 / 2}^{\prime}} * \widehat{g_{1 / 2}^{\prime}}\right)(\xi)=\left(\left(2 \pi i x \widehat{g_{1 / 2}}\right) *\left(2 \pi i x \widehat{g_{1 / 2}}\right)\right)(\xi)=-4 \pi^{2} \int_{-\infty}^{\infty} x \widehat{g_{1 / 2}}(x)(\xi-x) \widehat{g_{1 / 2}}(\xi-x) \mathrm{d} x
$$

where we used the fact that $\widehat{g_{1 / 2}}(x)=\chi_{I}(x)$. This, together with (3.4), implies

$$
\widehat{f_{1 / 2}}(\xi)= \begin{cases}\frac{2}{3}(1-|\xi|)^{2}(|\xi|+2), & \text { if }|\xi| \leq 1 \\ 0, & \text { if }|\xi|>1\end{cases}
$$

In particular, this example allows us to obtain the bound $\mathcal{A}_{1} \leq 1.333 \ldots$ In fact, one can repeat the same argument for the function f_{α}, for any $\alpha>0$. The Fourier transform of f_{α} can be computed using [18, Equation 1.71.6]. Finally, we minimize the ratio $\widehat{f_{\alpha}}(0) / f_{\alpha}(0)$ with respect to α, and obtain that it is attained for $\alpha_{0}=0.787 \ldots$ and $\widehat{f_{\alpha_{0}}}(0) / f_{\alpha_{0}}(0)=1.284 \ldots$ Hence $\mathcal{A}_{1} \leq 1.284 \ldots$.
3.2. An L^{2}-computational approach. Another natural approach for constructing functions in \mathcal{F}_{2} (and therefore in \mathcal{F}_{1}), and computationally solving (2.5), starts by finding an orthonormal system for the space $L^{2}\left(\mathbb{R}, x^{2} \mathrm{~d} x\right)$. Note that \mathcal{F}_{2} is a Hilbert space with the inner product

$$
\langle f, g\rangle_{\mathcal{F}_{2}}=\langle x f, x g\rangle_{L^{2}(\mathbb{R})} .
$$

For odd integers $k \geq 1$, we define the even functions

$$
h_{k}(x)=\frac{4 \sqrt{2} \cos \pi x}{\pi\left(k^{2}-4 x^{2}\right)}
$$

and note that $h_{k} \in \mathcal{F}_{2}$ for all odd integers $k \geq 1$. Gorbachev [10] previously considered this family of functions to obtain fine numerical estimates for other Fourier extremal problems, and the first and third authors [7] have also used this family for similar purposes in related extremal problems introduced by Carneiro, Milinovich, and Soundararajan [4]. Regarding this system, we can say the following:

Proposition 7. The family $\left(h_{k}\right)_{\substack{k \geq 1 \\ k \\ \text { odd }}}$ is a complete orthonormal system in the closed subspace $\left\{h \in \mathcal{F}_{2}\right.$: h is even.\}.

Proof. Note that, if $h \in \mathcal{F}_{2}$ is even, then $x h \in L^{2}(\mathbb{R})$ is odd. Furthermore, we have that

$$
\begin{equation*}
\widehat{\left(x h_{k}\right)}(t)=i(-1)^{\frac{k+1}{2}} \sqrt{2} \sin (\pi k t) \chi_{I}(t)=: s_{k}(t) \tag{3.5}
\end{equation*}
$$

To see this, since $s_{k} \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$, we may compute \widehat{s}_{k} in a straightforward manner to verify that $\widehat{s}_{k}(x)=-x h_{k}(x)$, and then we conclude (3.5) by Fourier inversion in $L^{2}(\mathbb{R})$. Now consider the operator

$$
T: \mathcal{F}_{2} \rightarrow L^{2}(I)
$$

defined by $T h(t):=\widehat{(x h)}(t) e^{\pi i t}$. By Plancherel's theorem and the Paley-Wiener theorem, T is a linear isometry, that is, $\langle f, g\rangle_{\mathcal{F}_{2}}=\langle T f, T g\rangle_{L^{2}(I)}$. Therefore, for odd positive integers k and j, we find that

$$
\left\langle h_{k}, h_{j}\right\rangle_{\mathcal{F}_{2}}=\left\langle s_{k}, s_{j}\right\rangle_{L^{2}(I)}=\delta_{k j},
$$

where $\delta_{k j}=1$ if $k=j$, and 0 otherwise. Here, to compute the inner product over $L^{2}(I)$, we may apply the identity $2 \sin (\pi k t) \sin (\pi j t)=\cos (\pi(k-j) t)-\cos (\pi(k+j) t)$ and use that $k \pm j$ is an even integer. This shows that h_{k} is orthonormal.

We now show that it is complete. Let $h \in \mathcal{F}_{2}$ be even, such that $\left\langle h, h_{k}\right\rangle_{\mathcal{F}_{2}}=0$ for all odd positive integers k. We must show that $h \equiv 0$. First, denote $H(t)=\widehat{(x h)}(t)$, and note that, by Plancherel's theorem and
(3.5), the condition $\left\langle h, h_{k}\right\rangle_{\mathcal{F}_{2}}=0$ implies that

$$
\begin{equation*}
\int_{I} H(t) \sin (\pi(2 j-1) t) \mathrm{d} t=0 \tag{3.6}
\end{equation*}
$$

for all positive integers j. Actually, $\operatorname{since} \sin (-x)=-\sin x$, (3.6) holds for all integers j.
Now, since T is an isometry into $L^{2}(I)$, by the theory of Fourier series on $L^{2}(I)$, it is enough to show that $\left\langle T h, e_{j}\right\rangle_{L^{2}(I)}=0$ for all integers j, where $e_{j}(t)=e^{2 \pi i j t}$. In fact, for an integer j, we have

$$
\begin{aligned}
\left\langle T h, e_{j}\right\rangle_{L^{2}(I)} & =\int_{I} H(t) e^{\pi i t} e^{-2 \pi i t j} \mathrm{~d} t \\
& =\int_{I} H(t) \cos (\pi(2 j-1) t) \mathrm{d} t-i \int_{I} H(t) \sin (\pi(2 j-1) t) \mathrm{d} t
\end{aligned}
$$

The first integral in the last line is 0 since H is odd, and the second integral is 0 by (3.6). Therefore, $\left\langle T h, e_{j}\right\rangle_{L^{2}(I)}=0$ for all integers j, and then $T h \equiv 0$ and $h \equiv 0$, as desired.

Once we have a complete orthonormal system, we proceed to obtain numerical examples as follows. For a positive integer d, let $\mathcal{F}_{2, d}=\operatorname{span}\left\{h_{2 j-1}: 1 \leq j \leq d\right\} \subset \mathcal{F}_{2}$. Let $Q \in \mathbb{R}^{d \times d}$ be the matrix defined by

$$
Q_{i j}=\int_{-\infty}^{0}-x h_{2 i-1}(x) h_{2 j-1}(x) \mathrm{d} x .
$$

Then, since h_{k} are orthonormal, one can see that the reciprocal of the infimum in (2.5), when taken over the space $\mathcal{F}_{2, d}$, satisfies

$$
\left|\lambda_{d}\right|=\max _{\substack{h \in \mathcal{F}_{2, d} \\ h \neq 0}} \frac{\int_{-\infty}^{0}-x|h(x)|^{2} \mathrm{~d} x}{\int_{-\infty}^{\infty}|x|^{2}|h(x)|^{2} \mathrm{~d} x}
$$

where λ_{d} is the largest eigenvalue (in absolute value) of Q, and the maximum is attained when

$$
\begin{equation*}
h=\mathbf{a} \cdot\left(h_{1}, h_{3}, \ldots, h_{2 d-1}\right) \tag{3.7}
\end{equation*}
$$

for $\mathbf{a} \in \mathbb{R}^{d}$ an eigenvector of Q associated to λ_{d}. We calculate the eigensystems numerically for $d \leq 1000$. We find that $\lambda_{1000}=0.783002554 \ldots$, giving a proof for the bound $\mathcal{A}_{1} \leq 1 / \lambda_{1000}=1.277135042 \ldots$, which is only slightly smaller than our example (2.8) in the proof of Theorem - again coinciding in the first four decimal digits. Moreover, this also coincides with the first seven decimal digits given by the polynomials of degree $d=20$ that we constructed with the approach in Section 2.4

In Table 1, we compare the speed of convergence of the two numerical approaches we have presented. The first approach is described in Section [2.4 with functions h defined as in (2.6), via polynomials g of some degree d. The second approach is the L^{2}-approach described in the present section, with functions h defined by (3.7). In both cases, the parameter d is the number of degrees of freedom in the construction of the function h. In both cases, the bounds for \mathcal{A}_{1} appear to quickly converge to the first few decimal digits, yet we observe that in the polynomial approach, the bound for \mathcal{A}_{1} seems to converge much faster to more decimal digits with small values of d. Together, all of this gives evidence to the conjecture that the sharp value of \mathcal{A}_{1}, up to its first 8 significant digits, is

$$
\begin{equation*}
\mathcal{A}_{1}=1.27713504 \ldots \tag{3.8}
\end{equation*}
$$

Furthermore, the normalized plot of the function h we constructed by using (3.7) with $d=1000$ is almost indistinguishable from the plot of h_{0} shown in Figure 4 . Since the explicit function h_{0} defined in (2.9) already
agrees with our conjecture (3.8) to four significant digits, we might expect it to behave close to an extremizer for \mathcal{A}_{1}. Indeed, in Table 2 we compare the first 10 zeros of the functions h_{0} in (2.9) and h in (3.7) (the latter with $d=1000$). Note that there is a good agreement up to the second decimal digit. We remark that the latter do not change with respect to the values with $d=500$, up to the digits shown, except for a minor change in the last digit of $x_{10}=10.5240 \ldots$ (for $d=500$).

d	\mathcal{A}_{1} (polynomials)	d	$\mathcal{A}_{1}\left(L^{2}\right)$
2	1.277171240	10	1.277199350
4	1.277148060	50	1.277136017
6	1.277137688	100	1.277135195
8	1.277135865	150	1.277135093
10	1.277135348	200	1.277135065
12	1.277135173	300	1.277135050
14	1.277135104	400	1.277135046
16	1.277135074	500	1.277135044
20	1.277135052	1000	1.277135042

Table 1. Comparison of the numerical bounds for \mathcal{A}_{1} in the polynomial construction of Section 2.4 and in the L^{2}-construction of Section 3.2, as the corresponding parameter d grows.

.	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
Pol	1.5839	2.5715	3.5573	4.5470	5.5395	6.5340	7.5297	8.5264	9.5238	10.5220
L^{2}	1.5866	2.5648	3.5525	4.5444	5.5387	6.5344	7.5311	8.5284	9.5261	10.5243

TABLE 2. First positive zeros of the function h_{0} via polynomials of degree 2 given in (2.9), and via the L^{2}-approach as in (3.7) with $d=1000$.

4. Proof of Theorem 2

Let $g \in P W^{2}$. By Paley-Wiener's theorem, \widehat{g} has compact support in $\left[-\frac{1}{2}, \frac{1}{2}\right]$, and using Plancherel's theorem, we obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} \sum_{n=0}^{N} \frac{a_{n}}{\pi^{2 n}}\left|g^{(n)}(x)\right|^{2} \mathrm{~d} x=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\sum_{n=0}^{N} a_{n}\left(4 t^{2}\right)^{n}\right)|\widehat{g}(t)|^{2} \mathrm{~d} t=\int_{-\frac{1}{2}}^{\frac{1}{2}} \mathcal{P}\left(4 t^{2}\right)|\widehat{g}(t)|^{2} \mathrm{~d} t \tag{4.1}
\end{equation*}
$$

Since $g \in P W^{2}$, then

$$
\begin{equation*}
g(z)=\int_{-\frac{1}{2}}^{\frac{1}{2}} \widehat{g}(t) e^{2 \pi i z t} \mathrm{~d} t \tag{4.2}
\end{equation*}
$$

Then the fact that $g(0)=1$, the positivity of $\mathcal{P}(x)$, the Cauchy-Schwarz inequality and (4.1) yield

$$
\begin{equation*}
1=\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} \widehat{g}(t) \mathrm{d} t\right|^{2}=\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{\mathcal{P}\left(4 t^{2}\right)} \widehat{g}(t) \cdot \frac{1}{\sqrt{\mathcal{P}\left(4 t^{2}\right)}} \mathrm{d} t\right|_{12}^{2} \leq\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \mathcal{P}\left(4 t^{2}\right)|\widehat{g}(t)|^{2} \mathrm{~d} t\right)\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\mathcal{P}\left(4 t^{2}\right)} \mathrm{d} t\right) \tag{4.3}
\end{equation*}
$$

which implies (1.7). Note that equality in (4.3) holds if and only if there is $\lambda \in \mathbb{C}$, such that

$$
\widehat{g}(t)=\frac{\lambda}{\mathcal{P}\left(4 t^{2}\right)}
$$

almost everywhere in $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Hence, from (4.2) we conclude that

$$
g(z)=\lambda \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{e^{2 \pi i z t}}{\mathcal{P}\left(4 t^{2}\right)} \mathrm{d} t=\lambda \int_{0}^{1} \frac{\cos (\pi z t)}{\mathcal{P}\left(t^{2}\right)} \mathrm{d} t
$$

Since $g(0)=1$, then the extremal function is unique and it is is given by (1.8).
Remark 8. Since $\mathcal{P}(x)>0$ for all $x \in[0,1]$, the expression in (4.1) is nonnegative. Thus we obtain a norm in $P W^{2}$, defined by

$$
\|g\|_{\mathcal{P}}=\left(\int_{-\infty}^{\infty} \sum_{n=0}^{N} \frac{a_{n}}{\pi^{2 n}}\left|g^{(n)}(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

which can be viewed as a Sobolev-type norm.

Acknowledgements

Part of this paper was written while A.C. was a Visiting Researcher in Department of Mathematics at the State University of São Paulo UNESP. He is grateful for their kind hospitality. We are thankful to Emanuel Carneiro for helpful discussions related to the material of this paper.

References

[1] N. I. Achieser, Theory of Approximation, Frederick Ungar Publishing, New York, 1956.
[2] R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954.
[3] H. Bresis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
[4] E. Carneiro, M. B. Milinovich and K. Soundararajan, Fourier optimization and prime gaps, Comment. Math. Helv. 94, no. 3 (2019), 533-568.
[5] E. Carneiro, C. González-Riquelme, L. Oliveira, A. Olivo, S. Ombrosi, A. P. Ramos and M. Sousa, Sharp embeddings between weighted Paley-Wiener spaces, preprint.
[6] A. Chirre, O. F. Brevig, J. Ortega-Cerda and K. Seip, Point evaluation in Paley-Wiener spaces, Preprint available in arXiv:2210.13922.
[7] A. Chirre and E. Quesada-Herrera, Fourier optimization and quadratic forms, Q. J. Math. 73 (2022), no. 2, $539-577$.
[8] R. J. Duffin and A. C. Schaeffer, Some properties of functions of exponential type, Bull. Amer. Math. Soc. 44 (1938), no. 4, 236-240.
[9] D. V. Gorbachev, Extremum problem for periodic functions supported in a ball, Mat. Zametki 69 (2001) $346-352$.
[10] D. V. Gorbachev, An integral problem of Konyagin and the (C,L)-constants of Nikol'skii, Trudy Inst. Mat. i Mekh. UrO RAN, 11, (2005), no. 2, 72-91.
[11] D. V. Gorbachev and V. I. Ivanov, Turán's and Fejér's extremal problems for Jacobi transform, Anal. Math. 44 (2018), 419-432.
[12] G. H. Hardy and J. E. Littlewood, Some integral inequalities connected with the calculus of variations, The Quarterly Journal of Mathematics, 3 (1932), 241-252.
[13] J. Korevaar, An inequality for entire functions of exponential type, Nieuw Arch. Wiskunde (2) 23 (1949), 55-62.
[14] S. Krenedits and S. Gy. Révész, Carathéodory Fejér type extremal problems on locally compact Abelian groups, J. Approx. Theory 194 (2015), 108-131.
[15] E. Landau, Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc. 13 (1913), 43-49.
[16] S. Gy. Révész, Turán extremal problems on locally compact abelian groups, Anal. Math. 37 (2011), 15-50.
[17] E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971.
[18] G. Szegö, Orthogonal polynomials, Fourth edition. American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., 1975.

Department of Mathematics, University of Rochester, Rochester, NY 14627, USA
Email address: cchirrec@math.rochester.edu

Departamento de Matemática, IBILCE, Universidade Estadual Paulista UnESP, São José do Rio Preto 15054, Brazil

Email address: d_k_dimitrov@yahoo.com
Graz University of Technology, Institute of Analysis and Number Theory, Kopernikusgasse 24/II, 8010 Graz, Austria

Email address: quesada@math.tugraz.at

[^0]: 2010 Mathematics Subject Classification. 42A38, 30D15, 41A17.
 Key words and phrases. One-delta problem, extremal problem, extremal function, entire function of exponential type.
 Research supported by the Brazilian Science Foundations FAPESP under Grants 2016/09906-0, 2019/12413-4 and 2021/13340-0 and CNPq under Grant 309955/2021-1, the Bulgarian National Research Fund through Contract KP-06-N62/4, and the Austrian Science Fund (FWF) via Project P-35322.

