AN EXTREMAL PROBLEM FOR POSITIVE dEFINITE MATRICES

BY

T. W. ANDERSON and I. OLKIN

TECHNICAL REPORT NO. 34
JULY 1978

PREPARED UNDER CONTRACT N00014-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH
THEODORE W. ANDERSON, PROJECT DIRECTOR

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

AN EXTREMAL PROBLEM FOR POSITIVE DEFINITE MATRICES

by

T. W. ANDERSON and I. OLKIN

TECHNICAL REPORT NO. 34
JULY 1978

PREPARED UNDER CONTRACT NO0014-75-C-0442
(NR-042-034)
OFFICE OF NAVAL RESEARCH

Theodore W. Anderson, Project Director

Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government. Approved for public release; distribution unlimited.

Also issued as Technical Report No. 130 under National Science Foundation Grant MPS 75-09450 - Department of Statistics, Stanford University.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

T. W. Anderson and I. Olkin
Stanford University
Abstract

A problem studied by Flanders (1975) is to minimize the function $f(R)=\operatorname{tr}\left(S R+T R^{-1}\right)$ over the set of positive definite matrices R, where S and T axe positive semiodefinite matrices. Alternative proofs that may have some intrinsic interest are provided. The proofs explicitly yield the infimum of $f(R)$. One proof is based on a convexity argument and the other on a sequence of reductions to a univariate problem.

1. Introduction.

Flanders (1975) studied a matrix problem that arose in electric circuit theory. Let $z_{1}, \ldots, z_{m}, w_{1}, \ldots, w_{m}$ be complex columen vectors of length n and consider the reai-valued function

$$
\begin{equation*}
f(R)=z_{1}^{*} R z_{1}+\cdots+z_{m}^{*} R z_{m}+w_{1}^{*} R^{-1} w_{1}+\cdots+w_{m}^{*} R^{-1} w_{m}, \tag{1}
\end{equation*}
$$

where $R>0$ denotes an $n x$ positive definite Hermitian matrix. The problem is to minimize $f(R)$ over the set of positive definite R. If we set

$$
\begin{aligned}
& Z=\left(z_{1}, \ldots, z_{m}\right), \quad W=\left(w_{1}, \ldots, w_{m}\right), \\
& S=Z Z^{*}, \quad T=W W^{*},
\end{aligned}
$$

then (I) becomes

$$
\begin{align*}
f(R) & =\operatorname{tr} R\left(z_{I} z_{l}^{*}+\cdots+z_{m} z_{m}^{*}\right)+\operatorname{tr} R^{-1}\left(w_{1} w_{l}^{*}+\cdots+w_{m} w_{m}^{*}\right) \tag{2}\\
& =\operatorname{tr} R Z Z^{*}+\operatorname{tr} R^{-1} w W^{*} \\
& =\operatorname{tr} R S+\operatorname{tr} R^{-1} T,
\end{align*}
$$

where S and T are positive semi-definite matrices of order n. We shall write $A \geq 0$ and $A>0$ to denote that A is positive semi-definite and positive definite, respectively.

The result obtained by Flanders (1975) is as follows:

Theorem 1. If $f(R)$ is defined on the set of positive definite matrices by (I) or (2), and if $A=Z^{*} W$, then
(i) $\inf _{R>0} f(R)=2 \operatorname{tr}\left(A A^{*}\right)^{I / 2}=2 \operatorname{tr}\left(A^{*} A\right)^{I / 2}$,
(ii) $f\left(R_{0}\right)=2 \operatorname{tr}\left(A A^{*}\right)^{1 / 2}$ for some $R_{0}>0$ if and only if
rank $(Z)=\operatorname{rank}(W)=r a n k(A)$.
Flanders first proves that

$$
f(\mathrm{R}) \geq 2 \operatorname{tr}\left(\mathrm{AA}^{*}\right)^{1 / 2}
$$

and then discusses the approach to equality. However, the matrix R that achieves equality (when the condition of (ii) is satisfied) is not exhibited in any simple manner. We now provide alternative somewhat simpler proofs of (i) that may have some intrinsic interest.

2. Matrices are of full rank.

First Alternative Proof. This proof is based on the fact that $f(R)$ is a convex function of R. The function tr $R S$ is linear in R, and $\operatorname{tr} R^{-1} T$ is convex in R, i.e.,

$$
\operatorname{tr}\left(\alpha_{R_{1}}+(I-\alpha) R_{2}\right)^{-I} T \leq \alpha \operatorname{tr} R_{1}^{-I} T+(I-\alpha) \operatorname{tr} R_{2}^{-I} T, \quad 0 \leq \alpha \leq 1,
$$

for R_{I} and R_{2} positive definite. The inequality is strict unless $R_{I}=R_{2}$ or $\alpha=0$ or I. Consequently, $f(R)$ is (strictly) convex, and we need to minimize a convex function over a convex set. Since $f(R) \rightarrow \infty$ as $R \rightarrow 0$ or as $R \rightarrow \infty$, the minimum is achieved at an interior point, namely where $d f(R) / d R=0$. But

$$
d f=\operatorname{tr} S(d R)-\operatorname{tr} R^{-1}(d R) R^{-1} T=\operatorname{tr} d R\left(S R^{-1} T R^{-1}\right) ;
$$

so that there is an interior point \widetilde{R} satisfying $S-\widetilde{R}^{-1} T \tilde{R}^{-1}=0$, or equivalently,

$$
\begin{equation*}
\widetilde{R} S \widetilde{R}=T \text {, } \tag{3}
\end{equation*}
$$

that is the minimizer of $f(R)$. Note that $\operatorname{tr} \widetilde{R} S=\operatorname{tr} \widetilde{R}^{-l} T$, so that

$$
f(\widetilde{R})=2 \operatorname{tr} \widetilde{R} S
$$

Furthermore, from (3),

$$
\mathrm{S}^{1 / 2} \widetilde{\mathrm{RS}} \widetilde{\mathrm{RS}}^{1 / 2}=\left(\mathrm{S}^{1 / 2} \widetilde{R S}^{1 / 2}\right)^{2}=\mathrm{S}^{1 / 2} \mathrm{TS}^{1 / 2} ;
$$

so that

$$
S^{1 / 2} \widetilde{R S}^{1 / 2}=\left(S^{I / 2} \mathrm{TS}^{I / 2}\right)^{1 / 2},
$$

and

$$
f(\widetilde{R})=2 \operatorname{tr} \widetilde{R} S=2 \operatorname{tr}\left(S^{1 / 2} \mathrm{TS}^{1 / 2}\right)^{1 / 2}
$$

Here we have used the positive definite square root. However, any square root, e.g., $S=L L^{*}, T=M M^{*}$ can be used, in which case the result is

$$
f(\widetilde{R})=2 \operatorname{tr}\left(I^{*} M^{*} L\right)^{I / 2}=2 \operatorname{tr}\left(M^{*} L^{*} M\right)^{I / 2}
$$

Let λ_{i} (A) denote the characteristic roots of the matrix A. Because

$$
\begin{aligned}
\operatorname{tr}\left(\mathrm{L}^{*} \mathrm{MM}^{*} \mathrm{~L}\right)^{I / 2} & =\Sigma \lambda_{i}\left[\left(\mathrm{~L}^{*} \mathrm{MM}^{*} \mathrm{~L}\right)^{I / 2}\right]=\Sigma\left[\lambda_{i}\left(\mathrm{I}^{*} \mathrm{MM}^{*} \mathrm{~L}\right)\right]^{I / 2} \\
& =\Sigma\left[\lambda_{i}\left(\mathrm{MM}^{*} \mathrm{LI} \mathrm{I}^{*}\right)\right]^{I / 2}=\Sigma\left[\lambda_{i}(\mathrm{TS})\right]^{I / 2}, \\
& =\operatorname{tr}\left(\mathrm{T}^{I / 2} \mathrm{SI}^{I / 2}\right)^{I / 2}=\operatorname{tr}\left(\mathrm{S}^{I / 2} \mathrm{TS}^{I / 2}\right)^{I / 2},
\end{aligned}
$$

we see that all square roots yield the same result.

Second Alternative Proof. This proof is based on a sequence of reductions until finally we obtain an extremal problem of distinct variables. There exists a nonsingular matrix H such that

$$
\mathrm{T}^{-1}=\mathrm{HH}^{*}, \quad \mathrm{~S}=\mathrm{HD}_{\mathrm{d}} \mathrm{H}^{*}
$$

where D_{d} is a diagonal matrix with real eiements (d_{1}, \ldots, d_{n}) ordered $0<\mathrm{d}_{1} \leq \cdots \leq \mathrm{d}_{\mathrm{n}}$, which are the roots of

$$
0=\left|S-\mathrm{yT}^{-1}\right|=\left|\mathrm{T}^{-1}\right| \cdot|\mathrm{ST}-\mathrm{yI}|=\left|\mathrm{T}^{-1}\right| \cdot\left|\mathrm{S}^{I / 2} \mathrm{TS}^{I / 2}-\mathrm{yI}\right| \cdot
$$

Then

$$
\begin{aligned}
f(R) & =\operatorname{tr} R H D_{d} H^{*}+\operatorname{tr} R^{-1} H^{*-1} H^{-1} \\
& =\operatorname{tr} H^{*} R H D_{d}+\operatorname{tr}\left(H^{*} R H\right)^{-1} \equiv \operatorname{tr} G D_{d}+\operatorname{tr} G^{-1},
\end{aligned}
$$

where $G=H^{*}$ RH. Let $G=Q D_{\lambda} Q^{*}$, where Q is unitary and $D_{\lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is diagonal with positive diagonal elements ordered $0<\lambda_{n} \leq \cdots \leq \lambda_{1}$. The function to be minimized (with respect to Q and D_{λ}) is

$$
\begin{equation*}
\operatorname{tr} Q D_{\lambda} Q^{*} D_{d}+\operatorname{tr} D_{\lambda}^{-1}=\sum_{i, j=1}^{n} d_{i} \lambda_{j}\left|q_{i j}\right|^{2}+\sum_{j=1}^{n} \lambda_{j}^{-1} . \tag{4}
\end{equation*}
$$

By a theorem of von Neumann (1937) [see also Fan (1951)], the minimum of the first sum in (4) with respect to Q is $\sum_{j=1}^{n} d_{j} \lambda_{j}$, and
the minimizing Q is I. Then the minimum of $\sum_{j=1}^{n} d_{j} \lambda_{j}+\sum_{j=1}^{n} \lambda_{j}^{-l}$ with respect to $\lambda_{1}, \ldots, \lambda_{n}$, is attained at $\lambda_{j}=d_{j}^{-1 / 2}$ and the minimized value of (4) is $2 \sum_{j=1}^{n} d_{j}^{l / 2}$.
Remark. If one or more of the d_{j} are 0 , then the infimum cannot be attained.

The minimizing matrix R is

$$
R=\left(\mathrm{H}^{*}\right)^{-1} \mathrm{GH}^{-1}=\left(\mathrm{H}^{*}\right)^{-1} \mathrm{D}_{\mathrm{d}}^{-1 / 2} \mathrm{H}^{-1}=\left(\mathrm{HD}_{\mathrm{d}}^{\left.-1 / 2_{H^{*}}\right)^{-1}}\right.
$$

This matrix satisfies (3).
3. Matrices not full of rank.

In the case when rank(S) and/or rank(T) is less than n we show how to reduce the problem to a canonical form from which we may then invoke the result for full rank.

Note that $f(R)=\operatorname{tr} R S+\operatorname{tr} R^{-1} T$ is invariant with respect to the transformation

$$
(R, S, T) \rightarrow\left(Q R Q^{*}, Q^{*-1} S_{Q}^{-1}, Q T Q^{*}\right)
$$

for any nonsingular matrix Q. Furthermore, the ranks of S, T and $S T$ are invariant under this transformation. By judiciously choosing a matrix Q we can effect a simplification of the problem.

Theorem 2. If $S \geq 0, T \geq 0$, then there exists a nonsingular matrix V such that
(5) $\quad \tilde{\Upsilon}=V V^{*}=\left|\begin{array}{ll}I_{\tau} & 0 \\ 0 & 0\end{array}\right| \quad, \quad \widetilde{S} \equiv V^{*-I} S^{-1}=\left|\begin{array}{ll}D_{d} & 0 \\ 0 & M\end{array}\right|$,
where $\tau=\operatorname{rank}(T), D_{d}=\operatorname{diag}\left(d_{1}, \ldots, d_{\tau}\right), \operatorname{rank}(M)=\operatorname{rank}(S)-\operatorname{rank}(S T)$, and $\operatorname{rank}\left(D_{d}\right)=\operatorname{rank}(S T)$.

Suppose for the moment that Theorem 2 holds. Then

$$
\begin{aligned}
f(R) & =\operatorname{tr} R V^{*}\left|\begin{array}{cc}
D_{d} & 0 \\
0 & M
\end{array}\right| V+\operatorname{tr} R^{-1} V^{-1}: \left.\begin{array}{cc}
I_{\tau} & 0 \\
0 & 0
\end{array} \right\rvert\, V^{*-I} \\
& =\operatorname{tr} \widetilde{R}\left(\left.\begin{array}{ll}
D_{d} & 0 \\
0 & M
\end{array}\left|+\operatorname{tr} \widetilde{R}^{-1}\right| \begin{array}{ll}
I_{\tau} & 0 \\
0 & 0
\end{array} \right\rvert\,,\right.
\end{aligned}
$$

where $\tilde{R}=V R V^{*}$. Minimization of $f(R)$ over $R>0$ is equivalent to minimization over $\widetilde{R}>0$. Consequently,

$$
\begin{aligned}
f(R) & =\operatorname{tr} \widetilde{R}_{11} D_{d}+\operatorname{tr} \widetilde{R}_{22}^{M}+\operatorname{tr}\left(\widetilde{R}^{-1}\right)_{11} \\
& =\operatorname{tr} \widetilde{R}_{11} D_{d}+\operatorname{tr} \widetilde{R}_{22} M+\operatorname{tr}\left(\widetilde{R}_{I I}-\widetilde{R}_{12} \widetilde{R}_{22}^{-1} \widetilde{R}_{21}\right)^{-1}
\end{aligned}
$$

Since $\operatorname{tr}\left(\widetilde{R}_{11}-\widetilde{R}_{12} \widetilde{R}_{22}^{-1} \widetilde{R}_{21}\right)^{-1} \geq \operatorname{tr} \tilde{R}_{11}^{-1}, \quad f(R)$ is minimized by taking $\widetilde{R}_{12}=0$. Then

$$
\begin{aligned}
& \quad \text { Min } f(R)=\quad \text { Min }\left[\operatorname{tr} \widetilde{R}_{11} D_{d}+\operatorname{tr} \widetilde{R}_{11}^{-1}+\operatorname{tr} \widetilde{R}_{22}^{M]} .\right. \\
& \widetilde{R}_{12}, \widetilde{R}_{11}, \widetilde{R}_{22} \widetilde{R}_{11}, \widetilde{R}_{22}
\end{aligned}
$$

Three rank cases need to be considered.
(i) $\operatorname{Rank}(\mathbb{T})>\operatorname{rank}(S T)$. Then one or more of the d_{j} are 0 , in which case the infimum is not attained. (See discussion leading to the remark in the second alternative proof.)
(ii) $\operatorname{Rank}(S)>\operatorname{rank}(S T)$. Then $M \neq 0$ and the infimum of 0 is not attained.
(iii) $\operatorname{Rank}(T)=\operatorname{rank}(S)=\operatorname{rank}(S T)$. Then $M=0$ and $\operatorname{rank}\left(D_{d}\right)=\tau$, so that

$$
\inf _{\widetilde{R}>0} f(\widetilde{R})=\tilde{R}_{11}>0\left(\operatorname{tr} \widetilde{\mathrm{R}}_{11} D_{d}+\operatorname{tr} \widetilde{\mathrm{R}}_{11}^{-1}\right)
$$

and the problem has been reduced to the case of the one with full rank. This completes the proof of Theorem 1. \|

To prove Theorem 2 we use the following two lemmas.

Lemma 1. A nonsingular matrix

$$
G=\left|\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right|, G_{11}: \tau \times \tau
$$

satisfoies

$$
G\left|\begin{array}{ll}
I_{\tau} & 0 \tag{6}\\
0 & 0
\end{array}\right| G^{*}=\left|\begin{array}{cc}
I_{\tau} & 0 \\
0 & 0
\end{array}\right|
$$

if and only if $G_{21}=0, G_{11}$ is unitary, and G_{22} is nonsingular. Proof. Multiply in (6) to obtain $G_{11} G_{11}^{*}=I_{\tau}, G_{21} G_{21}^{*}=0$, from which the conclusion follows. \|

Lemma 2. Given $Q \geq 0$ there exists a G_{12} and a nonsingular G_{22} such that

$$
Q_{11} G_{12}+Q_{12} G_{22}=0 .
$$

Proof. Q has the triangular decomposition

$$
Q=\left|\begin{array}{cc}
\mathrm{T}_{11}^{\prime} & 0 \\
\mathrm{~T}_{12}^{\prime} & \mathrm{T}_{22}^{\prime}
\end{array}\right|\left|\begin{array}{cc}
\mathrm{T}_{11} & \mathrm{~T}_{12} \\
0 & \mathrm{~T}_{22}
\end{array}\right|=\left|\begin{array}{ll}
\mathrm{T}_{11}^{\prime} \mathrm{T}_{11} & \mathrm{~T}_{11} \mathrm{~T}_{12} \\
\mathrm{~T}_{12}^{\prime} \mathrm{T}_{11} & \mathrm{~T}_{12}^{\prime} \mathrm{T}_{12}+\mathrm{T}_{22}^{\prime} \mathrm{T}_{22}
\end{array}\right|
$$

The rows of ($\mathrm{T}_{11}, \mathrm{~T}_{12}$) span a space of dimension less than or equal to τ. The $n-\tau$ columns of (${ }_{G_{22}} 12$) can be chosen to be orthogonal to the rows of (T_{11}, T_{12}) and linearly independent (so that G_{22} is nonsingular). \|

Proof of Theorem 2. Let U be any nonsingular matrix such that

$$
T=\left.U\right|_{0} ^{I_{\tau}} \begin{array}{ll}
0 & 0
\end{array} U^{*}
$$

and define

$$
\hat{\mathrm{S}}=\mathrm{U}^{*} \mathrm{SU},
$$

Let G be any nonsingular matrix satisfying Lemma 2 and define

$$
\begin{aligned}
& \tilde{\mathrm{S}}=G^{*} \hat{S}_{G} \\
& =\left(\begin{array}{cl}
G_{11}^{*} \hat{S}_{11} G_{11} & G_{11}^{*}\left(\hat{S}_{11} G_{12}+\hat{S}_{12} G_{22}\right) \\
\left(G_{12}^{*} \hat{S}_{11}+G_{22}^{*} \hat{S}_{21}\right) G_{11} & G_{12}^{*}\left(\hat{S}_{11} G_{12}+\hat{S}_{12} G_{22}\right)+G_{22}^{*}\left(\hat{S}_{11} G_{12}+\hat{S}_{22} G_{22}\right)
\end{array}\right) .
\end{aligned}
$$

Using Lemma 2, the matrix G_{12} can be chosen so that $\hat{S}_{11} G_{12}+\hat{S}_{12} G_{22}=0$; so that

$$
\widetilde{S}=\left|\begin{array}{cc}
G_{11}^{*} S_{11} G_{11} & 0 \\
0 & G_{22}^{*}\left(\hat{S}_{21} G_{12}+\hat{S}_{22} G_{22}^{-1}\right) G_{22}
\end{array}\right|
$$

Since $G_{\text {II }}$ is unitary, we may choose it to diagonalize $\hat{S}_{\text {II }}$. This completes the proof of Theorem 2. ||

Remark. In the second alternative proof we used the fact that if A and B are positive definite, then both can be diagonalized simultaneously by a nonsingular matrix W, i.e.,

$$
\begin{equation*}
A=W W^{*}, B=W D_{\theta} W^{*}, \tag{7}
\end{equation*}
$$

where $D_{\theta}=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{n}\right)$, and $\theta_{1} \geq \cdots \geq \theta_{n} \geq 0$ are the characteristic roots of $A^{-1} B$. When the hypotheses of positive definiteness are removed the simultaneous decomposition may no longer be accomplished in general. Theorem 2 complements the above result by providing a simultaneous decomposition. This can be stated in a form parallel to (7).

Theorem 3. If $\mathrm{A} \geq 0, \mathrm{~B} \geq 0$, then there exists a nonsingular matrix W such that

$$
W^{*} W^{*}=\left(\begin{array}{cccc}
I_{\tau} & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad W B W^{*}=\left(\begin{array}{cccc}
D_{\theta} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where $D_{\theta}=\operatorname{diag}\left(\theta_{I}, \ldots, \theta_{\tau}\right)$ are the nonzero characteristic roots of $|B-\theta A|=0$.

Proof. The result follows from Theorem 2 by noting that if V is a matrix satisfying (5), then for any nonsingular matrix C,

$$
W=V\left(\begin{array}{ll}
I & 0 \\
0 & C
\end{array}\right)
$$

also satisfies (5). Since $M \geq 0$, there exists a C such that CMC ${ }^{*}=\operatorname{diag}(I, O) . \|$

An equivalent form of Theorem 3 was obtained (but not published) by Olkin (1951). We suspect that this result is even older, but have not been able to locate a reference.

References

1. Fan, K. (1951). Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators. Proc. Nat. Acad. Sci. USA 37, 760-766.
2. Flanders, H. (1975). An Extremal Problem in the Space of Positive Definite Matrices. Linear and Multilinear Algebra 3, 33-39.
3. Von Neumann, J. (1937). Some Matrix Inequalities and Metrization of Matric-Space. Tomsk, University Review 1, 286-300. Reprinted in John Von Neumann Collected Works, Vol. 4, (ed. by A. H. Taub), Pergamon Press, New York, 1962.
4. Olkin, I. (1951). On Distribution Problems in Multivariate Analysis. Thesis, (Technical Report) University of North Carolina, Chapel Hill, N.C.

OFFICE OF NAVAL RESEARCH CONTTACT NOOO14-67-A-0112-0030 (NR-042-034)

1. "Confidence Limits for the Expected Value of an Arbitrary Bounded Random Variable with a Continuous Distribution Function," T. W. Anderson, October 1, 1969.
2. "Efficient Estimation of Regression Coefficients in Time Series," T.W. Anderson, October 1, 1970.
3. "Determining the Appropriate Sample Size for Confidence Limits for a Proportion," T. W. Anderson and H. Burstein, October 15, 1970.
4. "Some General Results on Time-Ordered Classification," D. V. Hinkley, July 30, 1971.
5. "Tests for Randomness of Directions against Equatorial and Bimodal Alternatives," T.W. Anderson and M. A. Stephens, August 30, 1971.
6. "Estimation of Covariance Matrices with Linear Structure and Moving Average Processes of Finite Order," T. W. Anderson, October 29, 1971.
7. "The Stationarity of an Estimated Autoregressive Process," T. W. Anderson, November 15, 1971.
8. "On the Inverse of Some Covariance Matrices of Toeplitz Type," Raul Pedro Mentz, July 12, 1972.
9. "An Asymptotic Expansion of the Distribution of "Studentized" Classification Statistics," T. W. Anderson, September 10, 1972.
10. "Asymptotic Evaluation of the Probabilities of Misclassification by Linear Discriminant Functions," T. W. Anderson, September 28, 1972.
11. "Population Mixing Models and Clustering Algoxithms," Stanley L. Sclove, February 1, 1973.
12. "Asymptotic Properties and Computation of Maximum Likelihood Estimates in the Mixed Model of the Analysis of Variance," John James Miller, November 21, 1973.
13. "Maximum Likelihood Estimation in the Birth-and-Death Process," Niels Keiding, November 28, 1973.
14. "Random Orthogonal Set Functions and Stochastic Models for the Gravity Potential of the Earth," Steffen L. Lauritzen, December $27,1973$.
15. "Maximum Likelihood Estimation of Parameters of an Autoregressive Process with Moving Average Residuals and Other Covariance Matrices with Linear Structure," T. W. Anderson, December, 1973.
16. "Note on a Case-Study in Box-Jenkins Seasonal Forecasting of Time series," Steffen L. Lauritzen, April, 1974.
17. "General Exponential Models for Discrete Observations," Steffen L. Lauritzen, May, 1974.
18. "On the Interrelationships among Sufficiency, Total Sufficiency and Some Related Concepts," Steffen L. Lauritzen, June, 1974.
19. "Statistical Inference for Multiply Truncated Power Series Distributions," T. Cacoullos, September 30, 1974.

Office of Naval Research Contract N00014-75-C-0442 (NR-042-034)
20. "Estimation by Maximum Likelihood in Autoregressive Moving Average iiodels in the Time and Frequency Domains," T. W. Anderson, June 1975.
21. "Asymptotic Properties of Some Estimators in Moving Average Models," Raul Pedro Mentz, September 8, 1975.
22. "On a Spectral Estimate Obtained by an Autoregressive Model Fitting," Mituaki Huzii, February 1976.
23. "Estimating Means when Some Observations are Classified by Linear Discriminant Function," Chien-Pai Han, April 1976.
24. "Panels and Time Series Analysis: Markov Chains and Autoregressive Processes," T. W. Anderson, July 1976.
25. "Repeated Measurements on Autoregressive Processes," T. W. Anderson, September 1976.
26. "The Recurrence Classification of Risk and Storage Processes," J. Michael Harrison and Sidney I. Resnick, September 1976.
27. "The Generalized Variance of a Stationary Autoregressive Process," T. W. Anderson and Raul P.Mentz, October 1976.
28. "Estimation of the Parameters of Finite Location and Scale Mixtures," Javad Behboodian, October 1976.
29. "Identification of Parameters by the Distribution of a Maximum Random Variable," T. W. Anderson and S.G. Ghurye, November 1976.
30. "Discrimination Between Stationary Guassian Processes, Large Sample Results," Will Gersch, January 1977.
31. "Principal Components in the Nonnormal Case: The Test for Sphericity," Christine M. Waternaux, October 1977.
32. "Nonnegative Definiteness of the Estimated Dispersion Matrix in a Multivariate Linear Mode1," F. Pukelsheim and George P.H. Styan, May 1978.

TECHNICAL REPORTS (continued)

33. "Canonical Correlations with Respect to a Complex Structure," Steen A. Andersson, July 1978.
34. "An Extremal Problem for Positive Definite Matrices," T.W. Anderson and I. Olkin, July 1978.

UNCLASSIFTED
SECURITY CLASSIFICATION OF THIS PAGE (Whon Dita Entored)

