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JL~ EXTREMAL PROBLEM FOR POSITIVE DEFINITE MATRICES 

T. W. Anderson and I. Olkin 

Stanford University 

Abstract 

A problem studied by Flanders (1975) is to minimize the function 

f(R) tr(SR+TR-1
) over the set of positive definite matrices R, 

where S and T are positive semi~definite matrices9 Alternative 

proofs that may have some intrinsic interest are provided. The proofs 

explicitly yield the infimum of f(R). One proof is based on a convexity 

argument and the other on a sequence of reductions to a univariate problem. 

l. Introduction. 

Flanders (1975) studied a matrix problem that arose in electric 

circuit theory. Let w1 , .•. ,wm be complex column vectors 

of length n a~d consider the real-valued fUnction 

(l) f(R) + e e • + + ••• * -l + w R w , m m 

where R > 0 denotes an n x n positive definite Hermitian matrix. The 

problem is to minimize f(R) over the set of positive definite R. 

If we set 

z 

"'· s zz 
' 

T * ww 

w 

' 
l 



then (1) becomes 

(2) f(R) 

tr R zz* + tr R-l ww* 

tr R S + tr R-l T , 

where S and T are positive semi-definite matrices of order n. We shall 

write A> 0 and A> 0 to denote that A is positive semi-definite and 

positive definite, respectively. 

The result obtained by Flanders (1975) is as follows: 

Theorem 1. If f(R) is defined on the set of positive definite matrices 

by (1) or (2), and if A= z*w, then 

(i) inf f(R) = 2 tr (AA*)
1

/
2 

= 2 tr(A*A)1f2 , 
R>O 

(ii) 
1/2 

f(%) = 2 tr (AA *) for some R0 > 0 if and only if 

rank (Z) = rank (W) = rank (A) • 

Flanders first proves that 

* 1/2 
f(R) > 2 tr(AA ) , 

and then discusses the approach to equality. However, the matrix R 

that achieves equality (when the condition of (ii) is satisfied) is not 

exhibited in any simple manner. We now prov!Lde alternative somewhat 

simpler proofs of (i) that may have some intrinsic interest. 
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2. Matrices are of full rank. 

First Alternative Proof. This proof is based on thte fact that f(R) is 

a convex function of R. The function tr RS is linear in R, and 

tr R-lT . . R • ~s convex ~n , ~.e., 

O<CX<l, 

for ~ and R
0 positive definite. 
c:... 

The inequality is strict unless 

R1 == R or ex== 0 or l. Consequently, f(R) is (strictly) convex, -- 2 

and we need to minimize a convex function over a convex set. Since 

f (R) -+co as R -. 0 or as R ~co, the minimum is achieved at an interior 

point, namely where df(R)/dR == 0. But 

so that there is an interior point R satisf.ying 
~-1 ~-1 

S-R TR == O, or 

equivalently, 

(3) 

that is the minimizer of f(R). Note that tr RS 

f(R) 2 tr RS 

Furthermore, from (3), 
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so that 

' 

and 

Here we have used the positive definite square root. However, 

* * any square root,e.g., S = LL , T = MM can be used, in which 

case the result is 

Let ~- (A) denote the Characteristic roots of the matrix A. Because 
~ 

we see that all square roots yield the same result. 
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Second Alternative Proof. This proof is based on a sequence of reductions 

until finally we obtain an extremal problem of distinct variables. There 

exists a nonsingular matrix H such that 

liD H* 
d ' 

where Dd is a diagonal matrix with real elements (d
1

, ... ,dn) ordered 

0 < d1 ~ ··· ~ dn' which are the roots of 

0 

Then 

where G = H*RH. Let 

-1 
_ tr GD d + tr G , 

where Q is unitary and 

DA. = diag(A.1 , ••. ,:>-.• n) is diagonal with positive diagonal elements 

ordered 0 < A.n ~ ••• ~ A.1 • The function to be minimized (with 

respect to Q and DA.) is 

(4) n 2 ~ -1 
~ d.A..Iq .. 1 + ~:sA.. 

. . 1 ]. J J.J . 1 J J.,J= J= 

By a theorem of von Neumann (1937) [see also Fan (1951)], the 

minimum of the first sum in (l~) with respect to Q is n 
2:: • 1 d .A. . , and 

J= J J 
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the minimizing Q is I. Then the minimum of 
n n -1 
~j=l djf...j + ~j=l f...j 

with respect to f...l, ... ,t..n' is attained at A. • 
J 

-l/2 d. and the 
J 

minimized value of (4) is 

Remark. If one or more of the d. are o, then the infimum 
J 

cannot be attained. 

The minimizing matrix R is 

This matrix satisfies (3). 

3. Matrices not full of rank. 

In the case when rank(S) and/or rank(T) is less than n we 

show how to reduce the pToblem to a canonical form from which we may 

then invake the result for full rank. 

Note that f(R) = tr RS + tr R-lT is invariant with respect to 

the transformation 

for any nonsingular matrix Q. Furthermore, the ranks of S, T and ST 

are invariant under this transformation. By judiciously choosing a 

matrix Q we can effect a simplification of the problem. 

Theorem 2. If S ~ o, T ~ o, then there exists a nonsingular matrix 

V such that 
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( 5) T 
!I O, 

* , T } 
VTV =lo 0 

where T = rank(T), Dd = diag(d1, •.. ,d,), rank(M) = rank(S) - rank(ST), 

and rank (D d) = rank (ST ). 

Suppose for the moment that Theorem 2 holds. Then 

f(R) 

where R = VRV*. Minimization of f(R) over R > 0 is equivalent to 
~ 

minimization over R > 0. Consequently, 

Since tr(R11 -R12R;~R21 )-l > tr Ri~' f(R) is minimized by taking 

R12 =.,0. Then 

Min f(R) 

Rl2' R11' R22 

Three rank cases need to be considered. 

(i) Rank(T) > rank(ST). Then one or more of the d. are 0, 
J 

in which case the infimum is not attained. (See discussion leading 

to the remark in the second alternative proof.) 
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(ii) Rank(S) > rank(ST). Then M ~ 0 and the infimum of 0 is 

not attained. 

(iii) Rank(T) 

so that 

rank(S) rank(ST). Then M == 0 and rank.(Dd) 

inf f(R) 
R>O 

and the problem has been reduced to the case of the one with full rank. 

This completes the proof of 'Iheorem 1. II 
To prove Theorem 2 we use the following two lemmas. 

Lemma 1. A nonsingular matrix 

'G 
G _ i 11 

-\ G21 

satisfies 

(6) f i. 0 1 l'I 0 1, 
G \ or. o) a* == \ o-r o J 

if and only if G21 == 0, a11 is unitary, and G22 is nonsingular. 

Proof. Multiply in (6) to obtain a11G~1 
which the conclusion follows. II 

Lemma 2. Given Q > 0 there exists a a
12 

and a nonsingular G22 
such that 
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Proof. Q has the triangular decomposition 

I Til 0 wll Tl2 \ f Til Tll Ti1T12 \ 
Q = \ 

T22 J ~ Ti2Tll Ti2T12 +T22T22 1 \ Ti2 T22 0 

The rows of (Tll'Tl2) span a space of dimension less than or equal 

to T. The n-T columns of (g12) can be chosen to be orthogonal to 
22 II (T

11
,T

12
) and linearly independent (so that G22 is nonsingular). the rows of 

Proof of. Theorem 2. Let U be any nonsingular matrix such that 

and define 

s u*su 

Let G be any nonsingular matrix satisfying Lemma 2 and define 

Using Lemma 2, the matrix G12 can be chosen so that s11G12+s12G22 = o; 
so that 

9 



~G~lSllGll 
s =! 

0 \ 
! • 

\ 0 
* /' A -1 i 

G22 (s21 Gl2 +S22G22 )G22 I 

/'. 

Since G11 is unitary, we m~ choose it to diagonalize s11• This 

completes the proof of Theorem 2. II 

Remark. In the second alternative proof we used the fact that if A and 

B are positive definite, then both can be diagonalized simultaneously by 

a nonsingular matrix W, i.e., 

(7) * A= WW , 

where De= diag(e1 , ••• ,en), and 

* B = WD W e ' 

e >···>e >o 1- - n-
are the charac-

-l 
teristic roots of A B. When the hypotheses of positive definiteness 

are removed the simultaneous decomposition m~ no longer be accomplished 

in general. Theorem 2 complements the above result by providing a 

simultaneous decomposition. This can be stated in a form parallel to 

(7 ). 

Theorem 3. If A~ 0, B ~ o, then there exists a nonsingular matrix 

W such that 

De 0 0 0 
I 0 0 0 

T 0 0 0 0 

WAW* = 0 I 0 0 WBW* = 
' 0 0 I 0 ' 0 0 0 0 

0 0 0 0 
0 0 0 0 
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where De = diag (el, ... ,e ") are the nonzero characteristic roots of 

I B-eAi = o. 

Proof. The result follows from Theorem 2 by noting that if V is a 

matrix satisfYing (5), then for any nonsingular matrix c, 

also satisfies (5). Since M ~ o, there exists a C such that 

CMC* = diag(I,O ). II 

An equivalent form of Theorem 3 was obtained (but not published) 

by Olkin (1951). We suspect that this resu~t is even older, but have 

not been able to locate a reference. 
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