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Extreme learning machine algorithm proposed in recent years has been widely used in many 	elds due to its fast training speed
and good generalization performance. Unlike the traditional neural network, the ELM algorithm greatly improves the training
speed by randomly generating the relevant parameters of the input layer and the hidden layer. However, due to the randomly
generated parameters, some generated “bad” parameters may be introduced to bring negative e
ect on the 	nal generalization
ability. To overcome such drawback, this paper combines the arti	cial immune system (AIS) with ELM, namely, AIS-ELM. With
the help of AIS’s global search and good convergence, the randomly generated parameters of ELM are optimized e
ectively and
e�ciently to achieve a better generalization performance. To evaluate the performance of AIS-ELM, this paper compares it with
relevant algorithms on several benchmark datasets.�e experimental results reveal that our proposed algorithm can always achieve
superior performance.

1. Introduction

In recent years, many computational intelligence techniques,
such as neural networks and support vector machines
(SVMs) [1], have been widely used in many real-world appli-
cations. However, those algorithms face some defects such
as slow learning speed, trivial human intervention, and poor
computational scalability.

Recently, to solve the drawbacksmentioned above,Huang
et al. [2–5] proposed a new method named extreme learning
machine (ELM) which has attracted ever-growing research
attention. In contrast to the traditional neural networks such
as BP [6], ELM is a tuning-free algorithm with fast learning
speed by randomly generating input weights and hidden
biases. With the help of least square method and Moore-
Penrose generalized inverse, the ELM is transferred as a linear
learning system. In addition, ELM is theoretically proved to
have a good generalization performance with least human
intervention. �erefore, ELM is widely used in many 	elds
[5]. For example, Chaturvedi et al. [7] extended the extreme
learningmachine (ELM) paradigm to a novel framework that
exploits the features of both Bayesian networks and fuzzy
recurrent neural networks to perform subjectivity detection.

Gastaldo et al. [8] addressed the speci	c role played by feature
mapping in ELM. Cambria et al. [9] explored how the high
generalization performance, low computational complexity,
and fast learning speed of extreme learning machines can
be exploited to perform analogical reasoning in a vector
space model of a
ective common-sense knowledge. Recently
Ragusa et al. [10] tackled the implementation of single hidden
layer feedforward neural networks (SLFNs), based on hard-
limit activation functions, on recon	gurable devices.

It is known that an appropriate selection of initial weight
sets is very vital for training a neural network model [11].
�ere is a strong correlation between the 	nal solution and
the initial weight. However, due to the randomdetermination
of some learning parameters, some nonoptimal parameter
may be introduced to the model [5], which may put negative
impact on the 	nal performance. To solve such a drawback,
many relative works have been proposed in the past ten years.
A straightforward way is to combine evolutionary methods
with ELM[12]. For instance, Zhu et al. [13] utilized di
erential
evolutionary algorithm (DE) to optimize ELM’s generated
parameters to achieve better performance. In [14], Xue et
al. combined genetic algorithm (GA), ELM, and ensemble
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learning to get a better and stable result. Rather than using
GA or DE method, Sarasw athi et al. presented a PSO driven
ELM [15], combining with Integer Coded Genetic Algorithm
(ICGA) to solve gene selection and cancer classi	cation. In
[16], Cao et al. proposed an improved learning algorithm
named self-adaptive evolutionary extreme learning machine
(SaE-ELM). Similarly, Wu et al. presented a novel algorithm
named dolphin swarm algorithm extreme learning machine
(DSA-ELM) [17] to solve optimization problems.

However, all the above evolutionary algorithms have
di
erent search e�ciency to optimize the problem. �ere
is still much space to improve. For example, it is one
of the biggest challenges in ELM that some nonoptimal
parameters may be introduced to ELM algorithm due to
the random generation of parameters. To overcome that
challenge, in this paper we propose a new extreme method
named arti	cial immune system extreme learning machine
(AIS-ELM). Because arti	cial immune system (AIS) [18–20]
has global search ability [21] and good convergence [22],
it can solve some di�culties like slow convergence, getting
stuck in local minima, etc. �erefore, we use AIS to optimize
ELM to get a better initial weight sets capable of avoiding the
training process falling into the local optimum. �e original
version and preliminary results of this paper’s method were
proposed by us in ELM2017 [23]. In this paperwehave revised
the original formulas, compared the AIS-ELM with more
algorithms and added new expressions, regression validation
and more datasets.

�e rest of the paper is arranged as follows. Sections 2
and 3 brie�y describe the traditional ELM and AIS methods.
Section 4 proposes the detailed description of AIS-ELM.
Section 5 carries out corresponding experiment: AIS-ELM
algorithm is compared with traditional ELM, PSO-ELM,
SaE-ELM, and DSA-ELM on 	ve regression problems and
eight classi	cation benchmark problems obtained from the
UCI Machine Learning Repository [24]; the training times
between AIS-ELM and BP and SVM and traditional ELM are
compared on three benchmark classi	cation problems. �e
last section gives a conclusion of this paper.

2. Extreme Learning Machine

�is section will introduce the extreme learning machine [2–
5] proposed by Professor Huang. ELM is developed from
a single hidden layer feedforward network and is extended
to a generalized single hidden layer feedforward network.
Compared to other conventional learning algorithms, the
extreme learning algorithm’s advantage is that the nodes of
the single hidden layer feedforward network need not be
adjusted.

Compared with the traditional learning algorithm, the
extreme learning machine not only has the smaller error
but can reach the smallest norm of weights [5]; because the
hidden layer need not to be adjusted in the limit learning
machine algorithm, the output weight matrix can be solved
by the least squares method.

For � arbitrary training samples {(x�, t�)}��=1, where �� =[x�1, x�2,. . . , xin]� ∈ �n and �� = [t�1, ��2, . . . , ���]� ∈ ��, and

given activation function �(�), the standard mathematical

model of SLFNs with �̃ hidden nodes is modeled as follows:

�̃∑
�=1
	�� (w� ⋅ x� + ��) = o�, � = 1, . . . , � (1)

wherew� = [��1, ��2, . . . ���]� is the weight vector connecting
the input neurons and �th hidden neuron, 	� = [	�1, 	�2,. . . 	��]� is the weight vector connecting the �th hidden
neuron and the output neurons, and �� is the threshold of the�th hidden neuron.

�at standard SLFNs with �̃ hidden neurons given
activation function �(�) can approximate these � samples
with zero error which means that

�∑
�=1

�����o� − t�
����� = 0 (2)

�ere exist 	�, w�, and �� such that

�̃∑
�=1
	�� (w� ⋅ x� + ��) = t�, � = 1, . . . , � (3)

�e above N equations can be written compactly as�	 = � (4)

where

H = [[[[[

h (x1)...
h (x�)

]]]]]
= [[[[[

� (w1 ⋅ x1 + �1) ⋅ ⋅ ⋅ � (w�̃ ⋅ x1 + ��̃)... ⋅ ⋅ ⋅ ...� (w1 ⋅ x� + �1) ⋅ ⋅ ⋅ � (w�̃ ⋅ x� + ��̃)
]]]]]�×�̃

(5)

� = [[[[[

	�1...
	��̃
]]]]]�̃×�

,

T = [[[[[

t�1...
t��

]]]]]�×�

(6)

Here, H is called the hidden layer output matrix [3].�e
column of H is the �th hidden node’s output vector with
respect to inputs x1, x2, . . . x� and the �th row of H is the
output vector of the hidden layer with respect to x�. �en the
vector � (connecting the hidden layer with the output layer)
is estimated using the Moore-Penrose generalized inverse of
the matrix�:

�̂ = H
†
T (7)

ELM algorithm can be summarized as shown in
Algorithm 1.
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Step 1 Randomly generate the input weights w� and hidden biases ��
Step 2 Calculate the hidden-layer output matrix�
Step 3 Compute the output weights matrix as �̂ = �†�

Algorithm 1: Standard ELM.

0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1

1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 1

r=5

Match No match

Figure 1: Matching under the rule of r-contiguous bits. In this example, � = 5, so the le� is matching while the right is not.

3. Artificial Immune System

A relatively new area of bioinspired computing is Arti	cial
Immune Systems (AIS). It is inspired by biological models of
the natural immune systemwhich has the properties of diver-
sity, distributed computation, dynamic learning, error tol-
erance, adaptation, and self-monitoring. AIS can be applied
to many domains [19] in principle for the reason that it is
a general framework for a distributed adaptive system. �is
section will introduce the AIS in three aspects. Firstly, the
clonal selection algorithm is brie�y described in Section 3.1.
Secondly, Section 3.2 introduces the mathematical model
of BCA. Finally, the mathematical model describing the
interaction ofAntigen-Antibody is represented in Section 3.3.

3.1. Mathematical Model of BCA. Each B cell is modeled as
binary strings of 	xed length � for simplicity of calculation.
One of the most important design choices in developing an
Arti	cial Immune Systems algorithm is similaritymeasure or
matching rule [25], and it is closely coupled to the encoding
scheme. Hamming distance and edit distance are the obvious
approximate matching rules.

However, there is a more immunologically plausible rule,
called r-contiguous bits [26]: two strings will match if they
have r-contiguous bits in common (see Figure 1). �e value� is a threshold which serves as indication of the size of the
subset of strings that a single string can match. For example,
if � = �, the matching is completely special; i.e., the string will
match only a single string (itself), but if � = 0, the matching
is absolutely general; that is, the string will match every single
string of length �.

Besides, in the algorithm a contiguous region hypermu-
tation operator [27] is used and its form is

 � = 1!2 [
	∑
�=1


−1∑
�=�

(1 − �)�+1−�−� ��
+ 	∑
�=1
# (1 − �)
+1−�−� ��]

(8)

where  � is the probability of transition from zero to some

number � (0 ≤ � ≤ 2
 − 1); ! is the length of the binary
string; & is the bit position of the 	rst “�ip” bit starting from
themost signi	cant bit; � is the bit position of the last “�ip” bit

starting from the most signi	cant bit; ' is the number of bits
that must be �ipped to mutate from 0 to �. � is the mutation
probability of a bit given a contiguous region. {!, &, �, ', �} ∈
Z
+; 0 ≤ � ≤ 2
 − 1; & ≤ � ≤ !; { �, �} ∈ R; 0 ≤ r ≤ 1

3.2. Clonal Selection �eory. �e clonal selection theory
(CST) [28] is used to explain how the adaptive immune sys-
tem responds to an antigenic stimulus basically. It establishes
the theory that only cells that are capable of recognizing
an antigen will proliferate, while those that are incapable of
doing so will be eliminated.

Both T cells and B cells can operate clonal selection. In
the case of B cells, when the antigen receptors bind with
an antigen, B cells begin to clone themselves and undergo
somatic hypermutation to introduce diversity into the B cell
population. A�er that B cells become activated and di
er-
entiate into plasma or memory cells. Plasma cells produce
numerous antigen-speci	c antibodies leading to the removal
of the antigen in a successful immune response. Memory
cells remain within the host and promote a rapid secondary
response when encountering the same (or similar) antigen.
�is is the operation of acquired immunity [19].

�e B Cell Algorithm (BCA) as a simple clonal selection
method was introduced in [22]. An outline of BCA is shown
in Algorithm 2.

3.3. Shape Space. An abstract model describing the interac-
tion of Antigen-Antibody is introduced by Perelson & Oster
[29]. In thismodel, it is assumed that the characteristics of the
antibody receptor (combined region) associated with antigen
binding can be described by specifying a total of L shape
parameters. It is also assumed that the same L parameters
can be used to describe the antigen. �ese L parameters are
incorporated into the vector, and the antibody receptor and
antigenic determinant are described as Ab and Ag points,
respectively, in an L–Euclidean shape space. Each molecule
can be considered as a point in the L-dimensional real space
mathematically and the a�nity of Ag-Ab is related to the
reciprocal of the Euclidean distance between them.

It is assumed that the antibody is capable of binding
to any antigenic complement in the distance * (stimulus
region). Each � dimensional ball of radius * takes up a

volume -�*�, where -� is a constant which depends upon the
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Step 1 Initialization: create an initial random population of individuals P
Step 2Main loop: ∀V ∈ 3:
(a) A�nity Evaluation: evaluate g(v);
(b) Clonal Selection and Expansion:
(i) Clone each B-cell: clone v and place in clonal pool C;
(ii) Select a random member of V ∈ 4 and apply the contiguous region hypermutation operator
(iii) Evaluate �(V); if �(k) > �(k) then replace k by clone k

Step 3 Cycle: repeat step (2) until a certain stopping criterion is met.

Algorithm 2: B cell algorithm.

dimensionality of N (for arbitrary�, -� = 26�/2/�Γ(�/2),
where Γ(⋅) is the Gamma function). If there are a total of��b
antibodies, its total coverage volume would not be greater
than ��b-�*� since balls would overlap. Let us assume 9 is
an n-dimensional cube with edge length R. �e total volume
of 9 is then :�.

�e goal is to maximize the coverage of antibody which
can make the immune approach more reliable. �en the
following equation must come into existence:

��b-�*� ≥ :� (9)

�erefore, the range of��b is as follows:
��b ≥ 1-� ⋅ (:* )

�
(10)

where 0 < * < 1.
4. Proposed Extreme Learning Machine Based

on Artificial Immune System

�is section proposes an Extreme learning machine based
on arti	cial immune system, namely, AIS-ELM. Traditional
ELM algorithm randomly generates input weights and hid-
den biases, and among them there may be some sets of
nonoptimal inputweights and hidden biases. It is necessary to
optimize these nonoptimal input weights and hidden biases.
Two methods can be used to solve this problem. One is to
increase hidden neurons which is time-consuming and may
not get a good result. �e other is to optimize the input
weights and hidden biases.

�is paper combines AIS with ELM to optimize the input
weights and hidden biases. AIS-ELM has three main phases:
clone phase, mutation phase, and substitution phase. A�er
the three phases, an optimal antibody will be produced. And
the performance of ELM will be improved if the optimal
antibody is used as the input weights and hidden biases.

One set of input weights and hidden biases are modeled
by an antibody; the ��ℎ antibody is represented by

Abi = [&11, &12, . . . , &1�, &21, &22, . . . , &2�, &�̃1, &�̃2, . . . , &�̃�,
�1, �2, . . . , ��̃] (11)

where � = 1, 2, . . . �, � is the number of training data

and the number of population members. �̃ is the number of
hidden nodes and # is the dimension of input samples. a��(� =

1, 2, . . . , #) are the input weights. �� are the hidden biases.
�e initial values of a�� and �� are randomly generated within
the range of [-1, 1]. �en we calculate each antibody’s 	tnessE��Ab�(� = 1, 2, . . . , �) according to the following equation

with the validation data {(x�, t�)}��=1.
Fit (Abi) = √∑��=1 ‖ ∑�̃�=1

�������� (ai ⋅ xj + ��) − tj
�����229 (12)

where � = [�1, �2, . . . , ��]� is the validation data. �e reason
for using validation data instead of training data is to alleviate
possible over	tting. �e corresponding output weights � are
computed by using the MP generalized inverse by (7).

�e clone section creates a clone pool having N-1 clonal
antibodies Acij(� = 1, 2, . . . , �-1) for every antibody b�, and
each clonal antibody is identical to the original antibody, i.e.,
Acij = Abi (� = 1, 2, . . . , �-1).

In the mutation procedure, each clonal antibody Acij in
the clone pool is mutated by the following formula:

Acij = Abi (1 + 3���	����) (13)

where � = 1, 2, . . . , �-1 and 3���	���� is the mutation
probability of the clonal antibody.

3���	���� = (−1)� ⋅ � ⋅  � ⋅ FitAb� ⋅ * (14)

Where the following holds.

(1) (−1)� ⋅ � avoids the situation in which the directions of
mutation are the same and the result falls into local optimal.

(2)  � is as follows:
 � = 1�2 [[

	∑
�=1

��−1∑
�=�

(1 − �)�+1−�−� ��

+ 	∑
�=1
I (1 − �)��+1−�−� ��]]

(15)

�e above equation is an application of (8), where � is the
total elements of the antibody and � = �̃(# + 1);  � is the
probability of transition from zero to some number � (0 ≤� ≤ 2�� − 1); & is the bit position of the 	rst “on” bit starting
from the most signi	cant bit; � is the bit position of the last
“on” bit starting from themost signi	cant bit; ' is the number
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Table 1: Detailed description of the eight benchmark classi	cation datasets

Dataset Data Attributes Classes

Training Validation Testing

Ecoli 180 78 78 7 8

Diabetes 384 22 192 8 2

Epileptic Seizure 6000 2750 2750 179 5

Heart Disease 150 76 76 75 5

Iris 70 40 40 4 3

Glass 100 57 57 9 7

Image 1200 555 555 19 7

Satellite 3435 1500 1500 36 7

of bits that must be �ipped to mutate from 0 to �; � is the
mutation probability of a bit given a contiguous region.

{�, &, �, ', �} ∈ Z
+; 0 ≤ � ≤ 2�� − 1; & ≤ � ≤ �;

{ �, �} ∈ R; 0 ≤ r ≤ 1. (16)

(3) FitAb� is used to adjust the range of mutation. �e
smaller the value of 	tness is, the smaller the error is, so
the requirement of mutation changes is tinier. On the other
hand, the greater the value of 	tness is, the bigger the need
for mutation changes will be.

(4) * (0 < * < 1) is stimulus region in which the antibody
is capable of binding to any antigenic complement [29].

�e substitution phase is to calculate each clonal anti-
body’s 	tness FitAc��(� = 1, 2, . . . , �-1) in the clone pool, and

to compare �	����� with the cloned antibody’s 	tness FitAb� .

If FitAc�� is smaller than FitAb� , corresponding 	tness and

antibody will be replaced. For instance, if � = 1, � = 1, andE����1 < E����11 , it is necessary to replaceAb1 andE����1 with
Ac11 and E����11 . A�er this iterative process, the antibody
population evolves forward global optimization. �en an
antibody with minimal 	tness which indicates smallest error
is the optimal antibody.

In the above process, our algorithm uses the clonal
selection principle to ensure diversity which has been proved
by De Castro et al. [30]. In addition, the ELM is optimized
by BCA to get a better convergence which has been proved
by Clark et al. [22] through an exact Markov chain model.
Besides, using FitAb� to adjust the mutation matches up
the theory of immune network. Last but not least, the
requirement of shape space is also satis	ed.

In the speci	c experiment process, a number of other
algorithms have to be compared, so the input data z should
be normalized to ensure fairness.

L∗ = L − LminLmax − Lmin

(17)

�en the stop criterion is as follows:

M4 = 1 − √L�L (18)

where L is the mean of the group of z.

L = 1�
�∑
�=1
L�∗ (19)

All in all, the AIS-ELM have three parts. �e 	rst
part is initialization including input data, normalization,
and set parameters. �e second part applies AIS to ELM.
A�er cloning, mutation, and substitution phase, an optimal
antibody meeting the requirements is acquired. �en the
antibody can be used as the input weights and hidden biases
in ELM.�e AIS-ELM is presented in Algorithm 3.

5. Performance Verification

In this section, AIS-ELM is compared with DS-ELM, PSO-
ELM, SaE-ELM, traditional ELM, SVM, and BP. �e exper-
iments are divided into two parts. In the 	rst part, the 	rst
	ve algorithms are tested on eight benchmark classi	cation
problems; next we compare AIS-ELMwith SVM, BP, and tra-
ditional ELMon training time on three benchmark classi	ca-
tion problems. In the second part, 	ve benchmark regression
problems are carried out. �e experimental environment is
MATLAB R2014b running on a windows pc with Intel 2.7
GHz CPU and 8GB RAM.

All the inputs have been normalized into the range [-1, 1]
for fairness. �e number of hidden neurons depends on
di
erent problems and it will be listed in speci	c experiment.
Besides, the parameters for AIS-ELM are set as follows: & =10, � = 50, * = 0.1, ' = 5, � = 0.2.
5.1. Classi�cation. In this subsection, 	ve algorithms’ per-
formances on eight benchmark classi	cation problems are
evaluated.�e eight datasets are Ecoli, Pima Indians Diabetes
(Diabetes), Epileptic Seizure, Iris, Heart Disease, Glass Iden-
ti	cation (Glass), Image Segmentation (Image), and Statlog
(Satellite), respectively. �e detailed description of the eight
datasets is listed in Table 1.

Attributes of all the dataset have been normalized to[-1, 1], and the output is the training time, testing accuracy’s
mean and variance. A 20-fold cross validation method is
taken to get the average of 20 repeated experiments to
minimize the error.�ewhole dataset is divided into training
set, validation set, and testing set without overlap. And
the three sets are kept coincident for each trial of the 	ve
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Step 1 Initialization
Randomly generate the initial antibody population Ab� (� = 1, 2, . . . ,N)
where Ab� = [&11, &12, . . . , &1�, &21, &22, . . . , &2�, &�̃1, &�̃2, . . . , &�̃�, �1, �2, . . . , ��̃].
�en calculate the 	tness of Ab� by Eq.(12),
and get FitAb� = {E����1 , E����2 , . . . , E�����}.
Step 2 Clone Selection
while the stop criterion is not met with do

Step 2.1 Clone Phase
For each antibody Abi clone N-1 antibody, the clone pool named Aci = {Aci1,Aci2, . . . ,AciN-1} where Aci1 = Aci2 = AciN-1

= Abi
Step 2.2 Mutation Phase
For each clone antibody Acij, where � = 1, 2, . . . , � and j = 1, 2, . . . , � − 1
Acij = Abi(1 + 3���	����)3���	���� = (−1)� ⋅ � ⋅  � ⋅ �	���� ⋅ *
 � = 1�2 [[

	∑
�=1

��−1∑
�=�

(1 − �)�+1−�−� �� + 	∑
�=1
I (1 − �)��+1−�−� ��]]

where * is computed by Eq.(10).
�en compute the 	tness of Acij by Eq.(12).

And get FitAc� = {E�����1 , E�����2 , . . . , E�����1�−1 }.
Step 2.3 Substitution Phase
For each antibody Abi, compare E����� and FitAc�� (� = 1, 2, . . . , �-1)
For � = 1, 2, . . . , �-1
E����� = {{{

E������ , if E������ < E�����E����� , otherwise

Abi = {{{
Acij, if E������ < E�����
Abi, otherwise

end while
�e 	nal antibody population is Ab���	� = {Ab1,Ab2, . . . ,AbN} and Abi with the smallest 	tness is the best antibody Abbest. �en

Abbest is used to opitimize the weight.
Step 3 ELM
Calculate the hidden-layer output matrix�with the set of input weights and hidden biases represented by the Abbest.

Compute the output weights matrix �̂ = �†�.
Algorithm 3: Arti	cial immune system extreme learning machine.

algorithms. �e results are shown in Table 2, and the best
results are emphasized in bold font.

Considering the training time, it is obvious that ELM is
the fastest one because all the other four algorithms transfer
ELM repeatedly. Besides, AIS-ELM’s training time is slightly
shorter than the other three methods because the times of
ELM iteration are smaller than other three algorithms.

�en, focusing on the testing accuracy, it is easy to 	nd
that AIS-ELM has the highest mean testing accuracy in all
the classi	cation datasets. As for variance, AIS-ELM is the
smallest in most instances and is slightly worse than the
best one in a few cases. In addition, the good convergence
property of clone selection algorithm shows that AIS-ELM
outperforms the DSA-ELM, PSO-ELM, SaE-ELM, and ELM.

In addition, we have done the Wilcoxon’s signed-rank
test [31], and the W-value is 0, which is less than the critical
value at p<=0.05. �erefore, the results show that AIS-ELM
is signi	cantly di
erent fromDS-ELM, PSO-ELM, SaE-ELM,
and ELM, which indicates that AIS-ELM outperforms the
other four approaches on eight classi	cation datasets.

Besides, we compare the training time between AIS-ELM
and BP, SVM, and traditional ELM on three benchmark
classi	cation problems. �e results are shown in Table 3.

From Table 3, although AIS-ELM is slower than tra-
ditional ELM because of iterations, its training speed is
signi	cantly faster than that of BP and SVM.

5.2. Regression. In this subsection, the 	ve algorithms are
compared on the 	ve regression benchmark problems. �e
	ve datasets are Breast Cancer, Parkinson, SinC, Servo, and
Yacht Hydro (Yacht), respectively. Detailed description of the
	ve datasets is shown in Table 4.

Attributes of all the datasets have been normalized to[-1, 1] and we focus on the training time and testing accu-
racy’s means and variance. A 20-fold cross validationmethod
is taken to get the average of 20 repeated experiments to
minimize the error.�ewhole dataset is divided into training
set, validation set, and testing set without overlap.�e results
are shown in Table 5.



Computational Intelligence and Neuroscience 7

Table 2: Results of the 	ve algorithms on eight benchmark classi	cation datasets.

Dataset Algorithm Training Testing Accuracy (%) Hidden

Time (s) Means StDev Nodes

Ecoli AIS-ELM 2.232 87.087 1.32 20

DS-ELM 2.523 86.352 1.43 20

PSO-ELM 2.257 86.623 1.67 20

SaE-ELM 2.608 85.985 1.78 20

ELM 0.003 84.678 2.12 30

Diabetes AIS-ELM 2.865 82.771 0.67 20

DS-ELM 3.192 80.667 0.65 20

PSO-ELM 3.993 80.123 0.53 20

SaE-ELM 4.216 81.673 0.76 20

ELM 0.004 78.984 1.21 30

Epileptic AIS-ELM 80.379 83.412 0.78 150

DS-ELM 82.458 82.345 0.95 150

PSO-ELM 84.912 81.627 1.12 150

SaE-ELM 84.233 81.765 1.05 150

ELM 3.976 80.026 1.21 180

Heart Disease AIS-ELM 10.923 80.234 1.53 20

DS-ELM 11.329 79.637 1.56 20

PSO-ELM 10.993 78.942 1.73 20

SaE-ELM 12.265 78.762 1.69 20

ELM 0.013 76.149 1,96 30

Iris AIS-ELM 1.0835 96.921 0.35 20

DS-ELM 1.255 96.488 0.69 20

PSO-ELM 1.1315 96.124 0.83 20

SaE-ELM 1.362 95.642 0.74 20

ELM 0.001 93.439 1.26 30

Glass AIS-ELM 2.632 68.453 1.67 20

DS-ELM 3.026 65.345 1.89 20

PSO-ELM 3.067 65.438 1.91 20

SaE-ELM 3.036 65.087 2.23 20

ELM 0.003 60.267 2.12 30

Image AIS-ELM 29.221 94.55 0.659 90

DS-ELM 31.976 93.78 0.528 90

PSO-ELM 32.103 93.23 1.014 90

SaE-ELM 32.641 92.11 0.832 90

ELM 0.0493 92.56 0.783 120

Satellite AIS-ELM 37.424 88.346 0.87 100

DS-ELM 39.856 87.265 0.97 100

PSO-ELM 39.613 86.795 1.08 100

SaE-ELM 40.238 86.715 0.96 100

ELM 0.0624 85.028 0.99 150

Table 3: Results of the four algorithms on three benchmark classi	cation datasets.

Algorithm Satellite Image Epileptic Seizure

Training Times (s) Training Times (s) Training Times (s)

AIS-ELM 37.424 29.221 80.379

SVM 129.235 103.496 339.648

BP 67.329 58.637 186.247

ELM 0.0624 0.0493 3.976



8 Computational Intelligence and Neuroscience

Table 4: Detailed description of the 	ve benchmark regression datasets.

Dataset Data Attributes

Training Validation Testing

Breast Cancer 98 50 50 32

Parkinson 500 270 270 26

SinC 5000 2500 2500 1

Servo 384 192 192 4

Yacht Hydro 150 79 79 13

Table 5: Results of the 	ve algorithms on the 	ve benchmark regression datasets.

Dataset
Algorithm Training Testing Accuracy Hidden

Time (s) Means StDev Nodes

Breast Cancer AIS-ELM 14.898 2.46E-01 1.32E-02 30

DS-ELM 15.367 2.53E-01 1.63E-02 30

PSO-ELM 15.902 2.98E-01 2.35E-02 30

SaE-ELM 16.342 2.65E-01 1.76E-02 30

ELM 0.008 2.99E-01 2.07E-02 50

Parkinson AIS-ELM 20.287 1.68E-01 3.35E-02 30

DS-ELM 21.349 1.79E-01 3.67E-02 30

PSO-ELM 22.547 1.87E-01 4.12E-02 30

SaE-ELM 22.975 1.89E-01 3.95E-02 30

ELM 0.011 2.12E-01 4.53E-02 50

Servo AIS-ELM 14.942 8.81E-02 9.83E-03 20

DS-ELM 15.256 9.41E-02 9.63E-03 20

PSO-ELM 15.278 1.17E-01 1.35E-02 20

SaE-ELM 15.456 1.07E-01 1.45E-02 20

ELM 0.007 1.35E-01 1.95E-02 30

Yacht AIS-ELM 13.478 1.76E-01 4.32E-02 20

DS-ELM 13.755 1.87E-01 4.52E-02 20

PSO-ELM 13.834 2.45E-01 5.63E-02 20

SaE-ELM 14.292 2.23E-01 5.60E-02 20

ELM 0.006 2.67E-01 8.43E-02 30

SinC AIS-ELM 33.012 6.12E-03 3.54E-04 30

DS-ELM 33.514 6.35E-03 4.32E-04 30

PSO-ELM 33.095 7.46E-03 5.41E-04 30

SaE-ELM 33.821 7.93E-03 5.76E-04 30

ELM 0.013 8.01E-03 3.84E-04 50

Considering the training time, it is also obvious that
traditional ELM is the fastest because of the same reason in
5.1. As for the testing accuracy, AIS-ELM, DS-ELM, PSO-
ELM, and SaE-ELM obtain better results with less hidden
nodes than ELM, which means that AIS-ELM, DS-ELM,
PSO-ELM, and SaE-ELM can achieve better generalization
performances with more compact networks. And the RMSE
of AIS-ELM is smaller than other four algorithms.�erefore,
it can be concluded that AIS-ELM can achieve better perfor-
mance than other four algorithms on regression problems.

6. Conclusion

In this paper, 	rst we introduce the standard ELM and
arti	cial immune system; then we propose a new approach

named arti	cial immune system extreme learning machine
(AIS-ELM). In AIS-ELM, AIS is used to optimize the input
weights through clone, mutation, and substitution process.

In the experiment part of this paper, AIS-ELM is com-
pared with DS-ELM, PSO-ELM, SaE-ELM, and the tra-
ditional ELM on thirteen well-known benchmark datasets
(eight classi	cation datasets and 	ve regression datasets)
obtained from UCI Machine Learning Repository. Besides,
the training times between AIS-ELM and BP, SVM, and
traditional ELMare compared on three benchmark classi	ca-
tion problems. Experimental results show that AIS-ELM can
achieve better testing results (smaller RMSE on regression
and higher accuracy on classi	cation) than other DS-ELM,
PSO-ELM, SaE-ELM, and the traditional ELM in most cases,
and its training speed is signi	cantly faster than that of BP
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and SVM. According to the global search ability [21] and
good convergence [22] of AIS, our arti	cial immune system
extreme learning machine is superior to the other methods
both on the eight classi	cation datasets and 	ve regression
datasets in the experiments. In addition, there are six medical
datasets among the thirteen datasets, which can prove that
AIS-ELM can also play an excellent role in healthcare. Future
research works will be concentered on how to apply the
current immune system to some new directions, such as NLP
and computer vision.
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