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Abstract

A general methodology for modeling loss data depending on covariates is developed. The
parameters of the frequency and severity distributions of the losses may depend on covariates.
The loss frequency over time is modeled with a non-homogeneous Poisson process with rate
function depending on the covariates. This corresponds to a generalized additive model which
can be estimated with spline smoothing via penalized maximum likelihood estimation. The loss
severity over time is modeled with a non-stationary generalized Pareto distribution (alternatively,
a generalized extreme value distribution) depending on the covariates. Since spline smoothing
can not directly be applied in this case, an efficient algorithm based on orthogonal parameters
is suggested. The methodology is applied both to simulated loss data and a database of real
operational risk losses. Estimates, including confidence intervals, for risk measures such as Value-
at-Risk as required by the Basel II/III framework are computed. Furthermore, an implementation
of the statistical methodology in R is provided.
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1 Introduction
The aim of the paper is threefold: first, we present a statistical approach for the modeling of
business loss data as a function of covariates; second, this methodology is exemplified in the
context of an Operational Risk dataset to be detailed later in the paper; third, a publicly available
software implementation (including a simulated data example) is developed to apply the presented
methodology.

The fact that we apply the new statistical tools to business “loss” data is not really essential but
rather reflects the properties of the Operational Risk dataset at hand (and data of a similar kind).
“Losses” can without any problem be changed into “gains”; relevant is that we concentrate our
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1 Introduction

analysis on either the left or the right tail of an underlying performance distribution function. This
more general interpretation will become clear from the sequel. Slightly more precise, the typical data
to which our methodology applies is of the marked point process type, that is, random losses occur
at random time points and one is interested in estimating the aggregate loss distribution dynamically
over time. Key features will be the existence of extreme (rare) events, the availability of covariate
information, and a dynamic modeling of the underlying parameters as a function of the covariates.
Operational Risk data typically exhibits such features; see later references. Our concentration on
an example from the financial services industry also highlights the recent interest shown in more
stringent capital buffers for banks (under the Basel guidelines) and insurance (referring to Solvency
2); for some background on these regularity frameworks, see for instance McNeil et al. (2005) and
the references therein.
The methodology presented in this paper is applied to a database of OpRisk losses collected

from public media. We are aware that other databases are available. In particular, it would have
been interesting to get further explanatory variables such as firm size (not present in our database)
which may have an impact on the loss severity and frequency; see, for instance Ganegoda and Evans
(2013), Shih et al. (2000) and Cope and Labbi (2008). The database at our disposal is, however,
original, rather challenging to model (mainly due to data scarcity), and shows stylized features any
OpRisk losses can show. Our findings regarding the estimated parameters, are in accordance with
Moscadelli (2004) (infinite-mean models), the latter being based on a much larger database. We
also provide an implementation including a reproducible simulation study in a realistic OpRisk
context; it shows that even under these difficult features, the methodology provides a convincing fit.

Recall that, under the capital adequacy guidelines of the Basel Committee on Banking Supervision
(see http://www.bis.org/bcbs, shortened throughout the paper as Basel or the Basel Committee),
Operational Risk (OpRisk) is defined as “The risk of a loss resulting from inadequate or failed
internal processes, people and systems or from external events. This definition includes legal risk,
but excludes strategic and reputational risk.”; see BIS (2006, p. 144). By nature, this risk category,
as opposed to Market and Credit Risk, is much more akin to non-life insurance risk or loss experience
from industrial quality control. OpRisk came under regulatory scrutiny in the wake of Basel II in
the late nineties; see BIS (2006). This is relevant as data was only systematically collected fairly
recently, leading to reporting bias in all OpRisk datasets. We will come back to this issue later in the
paper. An important aspect of the Basel framework is industry’s freedom of choice of the internal
model. Of course, industry has to show to the regulators that the model fits well; on the latter,
Dutta and Perry (2006) contains a list of basic principles an internal model has to satisfy. Recent
events like Société Générale (rogue trading), UBS (rogue trading), the May 6, 2010 Flash Crash
(algorithmic trading), the Libor scandal (fraud involving several banks), and litigation coming out
of the subprime crisis have catapulted OpRisk very high on the regulators’ and politicians’ agenda.
Basel II allows banks to opt for an increasingly sophisticated approach, starting from the Basic

Indicator Approach and the Standardized Approach to the Advanced Measurement Approach. The
latter is commonly realized via the Loss Distribution Approach (LDA) which we will consider in
this paper. All LDA models in use aim for a (loss-frequency, loss-severity) approach. Regulators
prescribe the use of the risk measure Value-at-Risk (VaR) over a one-year horizon at the 99.9%
confidence level, denoted by VaR0.999. Note that in this notation we stick to the use of “confidence
level” in order to refer to what statisticians prefer to call “percentile”; this unfortunate choice is by
now universal in the regulatory as well as more practical academic literature. For the latter, see for
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1 Introduction

instance Jorion (2007, Section 16.1.2).
The wisdom of the choice of VaR0.999 is highly contested; see for instance Daníelsson et al. (2001).

We will see later that Expected Shortfall (ES) as another risk measure is not always a viable
alternative, mainly due to the extreme (even infinite mean) heavy-tailedness of OpRisk data. In
this respect, we would like to point to the current discussion triggered by the Basel document BIS
(2012), see in particular Question 8 on page 41, and the relevant paper on risk measure forecasting
Gneiting (2011). In summary, BIS (2012) asks for a possible transition for market risk from VaR to
ES as the underlying risk measure. We know that in general VaR is not subadditive, whereas ES is.
However, Gneiting (2011) implies that, whereas VaR in general is statistically backtestable (VaR is
elicitable in the terminology of Gneiting (2011)), ES is not. Furthermore, whereas VaR in general
has certain robustness properties, ES does not, at least as discussed in Cont et al. (2010). We
therefore strongly believe that VaR, despite all its shortcomings, will remain in force for a further
while. As a consequence of this, and the extreme heavy-tailedness of OpRisk data, we will focus on
VaR in this paper. For further details on this, see Embrechts et al. (2013a).

Key publications on OpRisk from the regulatory front are de Fontnouvelle et al. (2004), de
Fontnouvelle et al. (2005), Dutta and Perry (2006), Mori et al. (2007), and Moscadelli (2004). The
latter paper uses Extreme Value Theory (EVT) to analyze data from the second Quantitative
Impact Study with over 47 000 observations. Interesting contributions from industry include Baud
et al. (2002), Baud et al. (2003) and Frachot et al. (2004) for Crédit Lyonnais, Aue and Kalkbrener
(2006) for Deutsche Bank, and Soprano et al. (2009) for UniCredit Group. More methodological
papers relevant for our approach are Chavez-Demoulin and Embrechts (2004), El-Gamal et al.
(2007), and Böcker and Klüppelberg (2010). For the analysis of economic business factors influencing
OpRisk, as well as the resulting reputational risk consequences, see for instances Cummins et al.
(2006), Jarrow (2008), Jarrow et al. (2010), and Chernobai et al. (2011). Unfortunately, publically
available OpRisk data is hard (if not impossible) to come by. An excellent source of statistical
information on consortium data (based on the ORX data) can be found on the ORX website:
www.orx.org/orx-research. Questions researched include data homogeneity, scaling, correlation,
and capital modeling. For another study on real OpRisk data (from several Italian banking groups),
explicitly modeling dependence between weekly aggregated losses of business lines or event types
via a copula approach, see Brechmann et al. (2013). Finally, more recent textbook treatments are
Cruz (2002), Akkizidis and Bouchereau (2006), Panjer (2006), Böcker (2010), Shevchenko (2011),
and Bolancé et al. (2012); see also McNeil et al. (2005, Chapter 10).
For the LDA, the Basel Committee has decomposed a bank’s activities into business lines (the

standard is 8) and event types (typically 7) so that it is possible to model along substructures of this
matrix; often aggregation to business line level is chosen. Some methodological issues underlying the
analysis of loss data in such a matrix structure, which is also known as Unit of Measure (UOM) in
the regulatory jargon, are discussed in Embrechts and Puccetti (2008). Papers analyzing data at the
business line and event type levels include Moscadelli (2004), de Fontnouvelle et al. (2004) at the
individual bank level, Dutta and Perry (2006) at the enterprise level. The latter two also attempt a
modeling by time. Papers on modeling operational risk data using covariates include Ganegoda and
Evans (2013), Shih et al. (2000), and Cope and Labbi (2008) where the authors investigate whether
the size of operational risk losses can be correlated with firm size and geographical region. Na et al.
(2006) supposes that the operational loss can be broken down into a component common to all
banks and idiosyncratic components specific to each loss. Dahen and Dionnne (2010) investigates
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2 Classical EVT approach for modeling losses

how severity and frequencies of external losses can be scaled for integration with internal data.
Going down to more granular levels of modeling increases the variance of the resulting estimators

due to data scarcity. The methodology presented in the following sections allows for “pooling” of the
data (explained later), introducing business line, event type, and time as covariates. This approach
allows for a greater flexibility in analyzing the data, as well as making model comparisons possible.
The paper is organized as follows. Section 2 provides a brief introduction to EVT in terms of

the block maxima and the Peaks-over-Threshold (POT) approaches. In Section 3 we extend these
classical approaches, allowing the (constant) parameters of the model to (dynamically) vary with
covariates. This constitutes the main statistical methodology used in the paper and focus is put
on the dynamic POT approach. A fitting method is developed in Section 3.3 and it is applied to
simulated data in Section A.2. In Section 4 we model a dataset of publicly available OpRisk losses
with the presented dynamic, EVT-based approaches. Section 5 provides an in-depth discussion of
the presented methodology.

2 Classical EVT approach for modeling losses
The standard approaches for describing the extreme events of a stationary time series are the block
maxima approach (which models the maxima of a set of blocks dividing the series) and the POT
approach (which focuses on exceedances over a fixed high threshold). The POT method has the
advantage of being more flexible in modeling data, because more data points are incorporated. The
method we use is an extension of the POT method to a non-stationary setup; an extension of the
block maxima method to the non-stationary case is also proposed and serves as another possibility
to evaluate risk measures. We begin with the latter.

2.1 The Block Maxima Method
Consider the maximum of a sequence of independent and identically distributed random variables
X1, . . . , Xq from a continuous distribution F . Suppose there exists a point x0 (possibly ∞) such
that limx→x0 F (x) = 1. For any fixed x < x0 we have

P(max{X1, . . . , Xq} ≤ x) = P(Xi ≤ x, i = 1, . . . , q) = F q(x),

which tends to 0 as q →∞. To obtain a non-degenerate limiting distribution for the maximum, the
Xi’s must be rescaled by sequences (aq) (positive) and (bq) leading to Wq = a−1

q (max(X1, . . . , Xq)−
bq). As q →∞, a possible limiting distribution of Wq is such that P (Wq ≤ w) = F q(bq + aqw) has
a limit. It can be shown that the latter expression, rewritten as

(
1− q(1−F (bq+aqw))

q

)q
, has a limit if

and only if limq→∞ q(1− F (bq + aqw)) exists. If so, the only possible limit is

lim
q→∞

q(1− F (bq + aqw)) =


(
1 + ξw−µσ

)−1/ξ

+
, if ξ 6= 0,

exp(−w−µ
σ ), if ξ = 0,

(1)

where (x)+ = max{x, 0} with ξ, µ ∈ R and σ > 0. We shall not go into details about (1). In
theory, it requires that F satisfies some properties of regular variation but in the vast majority
of applications, simpler conditions are sufficient. This leads to the remarkable result that given
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suitable sequences (aq) and (bq), the non-degenerate limiting distribution must be a generalized
extreme value (GEV) distribution, given by

Hξ,µ,σ(w) =

exp
(
−
(
1 + ξw−µσ

)−1/ξ
+

)
, if ξ 6= 0,

exp
(
− exp(−(w−µσ ))

)
, if ξ = 0.

(2)

The parameters µ ∈ R and σ > 0 are respectively the location and scale parameters of the
distribution. The parameter ξ ∈ R controls the shape of the distribution.
In applications, we consider Xt′1

, . . . , Xt′
n′

following a non-degenerate, continuous distribution
function F . We interpret Xt′1

, . . . , Xt′
n′

(≥ 0) as losses in some monetary unit over a time period
[0, T ] with 0 ≤ t′1 ≤ · · · ≤ t′n′ ≤ T . We fit the GEV distribution (2) to the series of (typically)
annual maxima. Taking q to be the number of observations in a year and considering m′ years
observed over the period [0, T ] (such that m′q = n′), we have block maxima M (1)

q , . . . ,M
(m′)
q from

m′ blocks of size q. Assuming these block maxima to be independent, the log-likelihood is given by

`(ξ, µ, σ;M (1)
q , . . . ,M (m′)

q ) = log
( m′∏
i=1

hξ,µ,σ(M (i)
q )1{1+ξ(M(i)

q −µ)/σ>0}

)
,

where hξ,µ,σ(w) denotes the density of Hξ,µ,σ(w). By maximizing the log-likelihood with respect
to ξ, µ, σ, one obtains the maximum likelihood estimators ξ̂, µ̂, σ̂. The fitted distribution is used
to estimate the 1/p-year return level, that is, the level exceeded once every 1/p years on average,
p ∈ (0, 1). This is equivalent to using VaRα at confidence level α = 1− p as risk measure. Based on
the estimates ξ̂, µ̂, σ̂, VaRα is estimated by

V̂aRα =
{
µ̂+ σ̂

(
(− log(1− α))−ξ̂ − 1

)
/ξ̂, if ξ̂ 6= 0,

µ̂+ σ̂
(
− log(− log(1− α))

)
, if ξ̂ = 0.

(3)

The latter estimation is an approximation in the limit of a large quantile level, α being typically
close to 1.

2.2 The Peaks-over-Threshold approach
Given a suitably large threshold u ≥ 0, let {t1, . . . , tn} ⊆ {t′1, . . . , t′n′} denote those time points (in
increasing order) for which Xt′1

, . . . , Xt′
n′

exceed u, that is, let Xt1 , . . . , Xtn denote the exceedances
over u with corresponding excesses Yti = Xti − u, i ∈ {1, . . . , n}. It follows from Embrechts et al.
(1997, pp. 166) that
1) the number of exceedances Nt approximately follows a Poisson process with intensity λ, that is,

Nt ∼ Poi(Λ(t)) with integrated rate function Λ(t) = λt;
2) the excesses Yt1 , . . . , YtNt over u approximately follow (independently of Nt) a generalized Pareto

distribution (GPD), denoted by GPD(ξ, β) for ξ ∈ R, β > 0, with distribution function

Gξ,β(x) =

1−
(
1 + ξx/β

)−1/ξ
, if ξ 6= 0,

1− exp(−x/β), if ξ = 0,

for x ≥ 0, if ξ ≥ 0, and x ∈ [0,−β/ξ], if ξ < 0.
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2 Classical EVT approach for modeling losses

For a precise formulation and the full details of the proof, see Leadbetter (1991); note that ξ is the
same as in (1).
In the following, we assume ξ > −1. If ξ > 0 (which is in accordance with most OpRisk loss

models), the mathematical condition needed in order for the above asymptotics to hold is known as
regular variation, that is,

F̄ (x) = 1− F (x) = x−1/ξL(x) (4)

for some slowly varying function L : (0,∞)→ (0,∞) measurable so that

lim
x→∞

L(tx)
L(x) = 1 for all t > 0.

The underlying theorems are known under the names of Gnedenko and Pickands–Balkema–de Haan;
see McNeil et al. (2005, Theorems 7.8 and 7.20). Equation (4) implies that the tail of the loss
distribution is of power- (or Pareto-) type, a property which typically holds for OpRisk data. One
can show that a model satisfying (4) with ξ ∈ (0, 1) has at least a finite first moment whereas
for ξ > 1, F has infinite first moment; for examples of the latter within an OpRisk context, see
Moscadelli (2004). More methodological consequences are for instance to be found in Nešlehová
et al. (2006) and the references therein; see also Section 5. The asymptotic independence condition
between Poisson exceedance times and GPD excesses yields an approximate likelihood function of
the form

L(λ, ξ, β;Y ) = (λT )n

n! exp(−λT )
n∏
i=1

gξ,β(Yti),

where Y = (Yt1 , . . . , Ytn) and gξ,β is the density of Gξ,β . It follows that the log-likelihood splits into
two parts

`(λ, ξ, β;Y ) = `(λ;Y ) + `(ξ, β;Y ),

where

`(λ;Y ) = −λT + n log(λ) + log(Tn/n!) and `(ξ, β;Y ) =
n∑
i=1

`(ξ, β;Yti)

with

`(ξ, β; y) =


− log(β)− (1 + 1/ξ) log(1 + ξy/β), if ξ > 0, y ≥ 0 or ξ < 0, y ∈ [0,−β/ξ),
− log(β)− y/β, if ξ = 0,
−∞, otherwise.

The maximization for the two estimation problems related to 1) and 2) can thus be carried out
separately. One can further show that this standard EVT (POT) methodology also holds for certain
classes of stationary models beyond the assumption of independence and identical distribution; see
Embrechts et al. (1997, Section 4.4).
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3 A dynamic EVT approach

3 A dynamic EVT approach
In practice, it is often the case that stationarity assumptions (such as independence and identical
distribution) for time series extremes are violated. For example, OpRisk losses might depend on
covariates, that is, on additional variables which are possibly predictive of the outcome. Covariates
can be economic factors, business lines and/or event types, or also time.
We now extend the classical approaches described above to more dynamic ones, in which we

let the model parameters depend on covariates. The new methodology allows the dependence (on
covariates) to be parametric, non-parametric, or semi-parametric and can also include interactions.
In this work, we focus on two covariates: a factor x (in Section 4: business line) and time t (in
Section 4: year). The model presented can easily be extended to more covariates. Let θ ∈ Rp be
the vector of p EVT model parameters (p = 3 for the GEV distribution and p = 2 for the GPD). A
general model for θ can then be built via

gk(θk) = fk(x) + hk(t), k ∈ {1, . . . , p}, (5)

where gk denotes a link function (constrained to the parameter space), fk maps the factor levels to
correspondingly many constants, and hk(t) is either a linear (parametric) function or, in most of
the cases, a smoothed (non-parametric) function of t ∈ A ⊆ R.

The idea of letting GEV parameters depend on covariates in a parametric way has been developed
in Coles (2001, Chapter 6). Its generalization to a semi-parametric form using smoothing splines is
new. This approach allows any functional form for the dependence of the (annual, say) maxima
over time which may be useful in various kinds of applications where there is a significant evolution
through time (in the form of a trend or seasonality). Assuming all hk in (5) to be smoothed
functions, the parameter vector θ of the EVT model can be estimated by maximizing the penalized
log-likelihood

`(θ; · )−
p∑

k=1

(
γk

∫
A
h

′′
k(t)2 dt

)
, (6)

where the first term `(θ; · ) is the log-likelihood based on either the block-maxima or the EVT
POT-model. The introduction of the penalty terms is a standard technique to avoid over-fitting
when one is interested in fitting smooth functions hk (see Hastie and Tibshirani (1990) or Green
and Silverman (2000)). Intuitively, the penalty functions

∫
A h
′′
k(t)2 dt measure the roughness of

twice-differentiable curves and the parameters γk are chosen to regulate the smoothness of the
estimates ĥk. Large values of γk produce smoother curves, while smaller values produce rougher
curves.

In this paper, we mainly consider the methodology for the POT approach, which is more relevant
in our case because it allows one to incorporate more data. However, as a further assessment of the
results, we also apply the semi-parametric GEV-based approach to yearly maxima of OpRisk losses;
this is done in Section 4.2.3.
Focusing on the POT approach, we follow Chavez-Demoulin and Davison (2005) and let the

intensity λ, as well as the GPD parameters ξ and β depend on covariates (x and t). This is done in
Sections 3.1 and 3.2. Section 3.3 then presents the details about the fitting procedure.
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3 A dynamic EVT approach

3.1 Loss frequency
The number of exceedances is assumed to follow a non-homogeneous Poisson process with rate
function

λ = λ(x, t) = exp(fλ(x) + hλ(t)) (7)

where fλ denotes a function mapping the factor levels of the covariate x to correspondingly many
constants and hλ : [0, T ]→ R a general measurable function not depending on specific parameters.
This model is a standard generalized additive model which leads to an estimate for λ; see,

for example, Wood (2006). In the statistical software R for example, such models can be fit
with the function gam(..., family=poisson) from the package mgcv. Pointwise asymptotic
confidence intervals can be constructed from the estimated standard errors obtained by predict(...,
se.fit=TRUE). For how to use these and other functions we implemented (in the R package QRM (≥
0.4-10)), see the simulation examples in Section A.2.

3.2 Loss severity
We use a similar form as (7) for each of the parameters ξ and β of the approximate GPD of the
excesses. However, for convergence of the simultaneous fitting procedure for ξ and β, it is crucial that
these parameters are orthogonal with respect to the Fisher information metric; see Chavez-Demoulin
(1999, p. 96) for a counter-example otherwise. We therefore reparameterize the GPD parameter β
by

ν = log((1 + ξ)β) (8)

which is orthogonal to ξ in this sense; see Cox and Reid (1987) for the general theory and Chavez-
Demoulin and Davison (2005) for a similar reparameterization in a EVT POT-context. Note
that this reparameterization is only valid for ξ > −1 (which is a rather weak assumption for the
applications we consider). The corresponding reparameterized log-likelihood `r for the excesses is
thus

`r(ξ, ν;Y ) = `(ξ, exp(ν)/(1 + ξ);Y ).

We assume that ξ and ν are of the form

ξ = ξ(x, t) = fξ(x) + hξ(t), (9)
ν = ν(x, t) = fν(x) + hν(t), (10)

where fξ, fν denote functions in the factor levels of the covariate x as in (7) and hξ, hν : [0, T ]→ R

are general measurable functions. Concerning the excesses, our goal is to estimate ξ and ν, and thus

β = β(x, t) = exp(ν(x, t))
1 + ξ(x, t) (11)

as functions of the covariate x and of time t based on estimators f̂ξ, ĥξ, f̂ν , ĥν of fξ, hξ, fν , hν ,
respectively. The latter estimates are obtained from the observed vectors zi = (ti, xi, yti), i ∈

8



3 A dynamic EVT approach

{1, . . . , n}, where 0 ≤ t1 ≤ · · · ≤ tn ≤ T denote the exceedance times, xi, i ∈ {1, . . . , n}, the
corresponding observed covariates, and yti the corresponding realization of the (random) excess Yti
over the threshold u, i ∈ {1, . . . , n}. In contrast to (7), simultaneously fitting (9) and (10) does not
lie within the scope of a standard generalized additive modeling procedure. We therefore develop a
suitable backfitting algorithm (including a bootstrap for computing confidence intervals) for this
task in the following section.

Before doing so, let us briefly mention a graphical goodness-of-fit test for the GPD model. If the
excesses Yti , i ∈ {1, . . . , n}, (approximately independently) follow GPD(ξi, βi) distributions, then
Ri = 1−Gξi,βi(Yti), i ∈ {1, . . . , n}, (approximately) forms a random sample from a standard uniform
distribution. We can thus graphically check (for example, with a Q-Q plot) whether, approximately,

ri = − log(1−Gξ̂i,β̂i(yti)), i ∈ {1, . . . , n}, (12)

are distributed as independent standard exponential variables.

3.3 The penalized maximum likelihood estimator and its computation
In this section, we present the penalized maximum likelihood estimator and a backfitting algorithm
for simultaneously estimating the parameters ξ and ν (thus β) associated with the approximate
GPD for the excesses; see (9) and (10) above. In our application in Section 4, covariates will be
business line x and year t (in which the loss happened) of the OpRisk loss under consideration.
In order to fit reasonably smooth functions hξ, hν to the observations zi, i ∈ {1, . . . , n}, we use

the penalized likelihood (6). The penalized log-likelihood `p corresponding to the observations zi,
i ∈ {1, . . . , n}, is given by

`p(fξ, hξ, fν , hν ; z1, . . . ,zn) = `r(ξ,ν;y)− γξ
∫ T

0
h′′ξ (t)2 dt− γν

∫ T

0
h′′ν(t)2 dt (13)

where γξ, γν ≥ 0 denote smoothing parameters, y = (yt1 , . . . , ytn), and

`r(ξ,ν;y) =
n∑
i=1

`r(ξi, νi; yti) (14)

for `r(ξi, νi; yti) = `(ξi, exp(νi)/(1 + ξi); yti). Larger values of the smoothing parameters lead to
smoother fitted curves.

Let 0 = s0 < s1 < · · · < sm < sm+1 = T denote the ordered and distinct values among {t1, . . . , tn}.
A function h defined on [0, T ] is a cubic spline with the above knots if the two following conditions
are satisfied: 1) on each interval [si, si+1], i ∈ {1, . . . ,m}, h is a cubic polynomial; 2) at each knot
si, i ∈ {1, . . . ,m}, h and its first and second derivatives are continuous, hence the same is true on
the entire domain [0, T ]. A cubic spline on [0, T ] is a natural cubic spline if in addition to the two
latter conditions it satisfies the natural boundary condition: 3) the second and third derivatives of
h at 0 and T are zero. It follows from Green and Silverman (2000, p. 13) that for a natural cubic
spline h with knots s1, . . . , sm, one has∫ T

0
h′′(t)2 dt = h>Kh,

9



3 A dynamic EVT approach

where h = (hs1 , . . . , hsm) = (h(s1), . . . , h(sm)) and K is a symmetric (m,m)-matrix of rank m− 2
only depending on the knots s1, . . . , sm. The penalized log-likelihood (13) can thus be written as

`p(fξ, hξ, fν , hν ; z1, . . . ,zn) = `r(ξ,ν;y)− γξh>ξ Khξ − γνh>ν Khν (15)

with hξ = (hξ(s1), . . . , hξ(sm)) and hν = (hν(s1), . . . , hν(sm)).
With these formulas, it is possible to develop a backfitting algorithm for estimating the GPD

parameters ξ and ν (thus β). The basic idea is an iterative weighted least squares procedure (see
Algorithm 3.2 below) that alternates between Newton steps for ξ and ν (see Algorithm 3.1 below).
We construct bootstrapped pointwise two-sided confidence intervals with a post-blackend bootstrap
(see Algorithm 3.3 below).

Algorithm 3.1 computes one Newton step (for both parameters) for solving the likelihood equations.
The quantities f (1)

ξ , h
(1)
ξ , f

(1)
ν , h

(1)
ν denote initial values for fξ, hξ, fν , hν , respectively. They are

computed from the classical (non-dynamic) approach described in Section 2; see Algorithm 3.2 below
for this step. The formulas xi.formula and nu.formula refer to the (parametric, non-parametric,
or semi-parametric) model specification; see, for example, (24)–(29) in Section 4. The derivatives of
the reparameterized log-likelihood appearing in the following algorithm can be found in Section A.1.

Algorithm 3.1 (Newton step; QRM:::gamGPDfitUp())
Let k ∈ N and n-dimensional parameter vectors ξ(k) = (ξ(k)

1 , . . . , ξ
(k)
n ) and ν(k) = (ν(k)

1 , . . . , ν
(k)
n ) be

given. Furthermore, let zi = (ti, xi, yti), i ∈ {1, . . . , n}, be given.
1) Setup: Specify formulas xi.formula and nu.formula for the calls to gam() in Steps 2.2) and

3.2) below for fitting (9) and (10), respectively.
2) Update ξ(k):

2.1) Newton step for the score component: Compute (componentwise)

ξNewton = ξ(k) −
`rξ(ξ(k),ν(k);y)
`rξξ(ξ(k),ν(k);y)

.

2.2) Fitting: Compute ξ(k+1) via calling fitted(xiObj) for

xiObj <- gam(ξNewton~xi.formula,. . . ,weights=−`rξξ)

for the specified formula xi.formula.

3) Given ξ(k+1), update ν(k):

3.1) Newton step for the score component: Compute (componentwise)

νNewton = ν(k) − `rν(ξ(k+1),ν(k);y)
`rνν(ξ(k+1),ν(k);y)

.

3.2) Fitting: Compute ν(k+1) via calling fitted(nuObj) for

nuObj <- gam(νNewton~nu.formula,. . . ,weights=−`rνν)

for the specified formula nu.formula.

10



3 A dynamic EVT approach

4) Return ξ(k+1) and ν(k+1).

Based on Algorithm 3.1, the following backfitting algorithm computes the estimators

ξ̂ = (ξ̂(x1, t1), . . . , ξ̂(xn, tn)),

β̂ =
(exp(ν̂(x1, t1))

1 + ξ̂(x1, t1)
, . . . ,

exp(ν̂(xn, tn))
1 + ξ̂(xn, tn)

)
of the GPD parameters at each of the observed vectors zi, i ∈ {1, . . . , n}, where entries corresponding
to the same covariates and time points are equal.

Algorithm 3.2 (Fitting the GPD parameters; QRM::gamGPDfit())
1) Setup: Fix εξ, εν > 0 sufficiently small (for example, εξ = εν = 10−5).
2) Initialization step (use gpd.fit() from the R package ismev):

2.1) Compute the (classical) maximum likelihood estimators ξMLE and βMLE of the GPD
parameters based on all the data yti , i ∈ {1, . . . , n}, as described in Section 2 2).

2.2) Compute νMLE = log((1 + ξMLE)βMLE).
2.3) Set k = 1, ξ(k) = (ξMLE, . . . , ξMLE), and ν(k) = (νMLE, . . . , νMLE).

3) Iteration:

3.1) Based on ξ(k) and ν(k), compute the new, updated parameter vectors ξ(k+1) and ν(k+1)

with Algorithm 3.1 (Newton step).
3.2) Check convergence: If the mean relative differences satisfy

1
n

n∑
i=1

∣∣∣∣ξ(k)
i − ξ

(k+1)
i

ξ
(k)
i

∣∣∣∣ ≤ εξ and 1
n

n∑
i=1

∣∣∣∣ν(k)
i − ν

(k+1)
i

ν
(k)
i

∣∣∣∣ ≤ εν ,
stop. In this case, compute

β(k+1) =
(

exp(ν(k+1)
1 )

1 + ξ
(k+1)
1

, . . . ,
exp(ν(k+1)

n )
1 + ξ

(k+1)
n

)

and return the estimates ξ̂ = ξ(k+1) and β̂ = β(k+1). Otherwise, set k to k+ 1 and continue
with Step 3.1).

The following algorithm wraps around Algorithm 3.2 to compute a list of estimates (as returned
by Algorithm 3.2) of length B + 1 with the post-blackend bootstrap of Chavez-Demoulin and
Davison (2005), where B denotes the number of bootstrap replications. This list can then be used
to compute bootstrapped pointwise two-sided 1− α confidence intervals for the GPD parameters ξ
and ν (or β) for each combination of covariate x and time point t. Predicted values can also be
computed; see the function GPD.predict() in QRM.

Algorithm 3.3 (Post-blackend bootstrap; QRM::gamGPDboot())

1) Compute estimates ξ̂, ν̂ (and β̂) with Algorithm 3.2 and corresponding residuals ri, i ∈ {1, . . . , n},
as in (12).

11



3 A dynamic EVT approach

2) For b from 1 to B do:

2.1) Within each group of covariates, randomly sample (with replacement) ri, i ∈ {1, . . . , n}, to
obtain r(b)

i , i ∈ {1, . . . , n}.

2.2) Compute the corresponding excesses y(b)
ti = G−1

ξ̂i,β̂i
(1− exp(−r(b)

i )), i ∈ {1, . . . , n}, where, for
all p ∈ [0, 1],

G−1
ξ,β(p) =

{
β((1− p)−ξ − 1)/ξ, if ξ 6= 0,
−β log(1− p), if ξ = 0.

2.3) Compute estimates ξ̂(b), ν̂(b) (and β̂(b)) with Algorithm 3.2.

3) Return a list of length B + 1 containing all estimated objects (including ξ̂, ξ̂(b), ν̂, ν̂(b), and β̂,
β̂(b), b ∈ {1, . . . , B}).

Based on the estimates λ̂, ξ̂, and β̂ for a fixed covariate x and time point t, one can compute
estimates of the risk measures VaR and ES (depending on x and t) as

V̂aRα = u+ β̂

ξ̂

((1− α
λ̂

)−ξ̂
− 1

)
, (16)

ÊSα =


V̂aRα+β̂−ξ̂u

1−ξ̂ , if ξ̂ ∈ (0, 1),
∞, ξ̂ > 1.

(17)

Bootstrapped pointwise two-sided confidence intervals for VaRα and ESα can be constructed from
the fitted values of λ and (list of) bootstrapped estimates of ξ and β by computing the corresponding
empirical quantities.

3.4 Smoothing parameter selection
For simplicity, we consider Model (5) for θ with p = 1 and with link function g equal to the
identity (it is straightforward to extend the following argument to the general form with penalized
log-likelihood as given in (6)). In generalized additive models, asymptotic distribution theory
provides tools for inference and assessment of model fit based on the deviance and its associated
number of parameters used to estimate the model. A quantity related to the smoothing parameter γ
in (6) is the degrees of freedom; see Green and Silverman (2000, p. 110). This gives an indication of
the effective number of parameters used in the model for a specific value of the smoothing parameter.
It is defined as

Df = m− tr(S)− tr
(
(D>A(I − S)D)−1D>A(I − S)2D

)
,

where S = E(E>AE + γK)−1E>A, A = E[− ∂2

∂θ2 `(θ; ·)], D = ∂θ
∂f , and E = ∂θ

∂h . Very often, the
term “degrees of freedom” substitutes the term “smoothing parameter” for simplicity, the degrees of
freedom 1 corresponding to linearity; in R the function s() is used, where, as smoothing parameter,
the input is Df (with Df = 1 representing linearity).

12



4 Application to an OpRisk loss database

There are two different approaches of choosing the smoothing parameter (degrees of freedom), in
practice. When the aim is a pure exploration of data on different scales, varying the smoothing
parameter is an efficient way to proceed. The other approach follows the paradigm that the data itself
must choose the smoothing parameter and thus an automatic procedure is recommended. Following
Hastie and Tibshirani (1990, pp. 158), we suggest the use of Akaike’s Information Criterion (AIC).
The derivation of AIC is intended to create an approximation to the Kullback–Leibler divergence

EfT

[
log fT(x)

fC(x)

]
,

where fT denotes the density of the true model and fC the density of the candidate model. The AIC
criterion is readily adapted to a wide range of statistical models. In the context of semiparametric
models its form is given by

AIC ∝ −2`+ 2 Df, (18)

see Simonoff and Tsai (1999).

4 Application to an OpRisk loss database
In this section, we apply the methodology presented before to a database of OpRisk losses collected4

from public media. The database consists of 1413 OpRisk events reported in the public media
since 1970. For our analysis, we consider the 1387 events since 1980. For each event, the following
information is given: a reference number; the organization affected (one or 0.07% missing); the
country of head office; the country where the event happened (one or 0.07% missing); the business
line; the event type; the type of insurance; the year of the event; the gross loss amount in GBP
(437 or 31.51% missing); the net loss amount in GBP (1353 or 97.55% missing); the regulator
involved (838 or 60.42% missing), the source from which the information was drawn (29 or 2.09%
missing); and a loss description. The data has been sourced from various webpages, newspapers,
press releases, regulator announcements, and databases (Bloomberg, Yahoo Finance etc.). In later
years, webpages were used predominantly (including, for example, Reuters, Financial Times, and
BBC). The reported OpRisk loss events happened in 62 different countries. The countries with the
largest number of events in the considered time period are the USA (615 or 44.34% of the reported
events), the UK (361 or 26.03%; additionally, there is one reported event on the Cayman Islands
and two reported events on the Isle of Man), Japan (70 or 5.05%), Australia (32 or 2.31%), and
India (28 or 2.02%); 15 events (1.08%) are reported under “Various” and not associated with a
specific country. With regards to insurance, 887 of the events (63.95%) were (partially) insured,
483 (34.82%) were not insured (for the remaining 17 losses, 13 were missing and there was no
information available yet for the other 4).

4.1 Descriptive analysis of the loss data
For our analysis of this database, we work with gross losses and adjust the loss amounts for inflation
to the niveau of 2013 with the consumer price index as given in Table 50 in the document Consumer

4by Willis Professional Risks
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4 Application to an OpRisk loss database

Price Inflation Reference Tables, August 2013 obtained from the webpage http://www.ons.gov.
uk/ons/rel/cpi/consumer-price-indices/august-2013/index.html. To obtain an inflation
adjusted value (to the niveau of 2013) of a loss in a certain year, the loss is multiplied by the
composite price index of 2013 divided by the composite price index of the loss’ year. Table 1 shows
a summary of selected information about the ten largest losses, including the corresponding business
line (BL) which is Agency Services (AS), Asset Management (AM), Commercial Banking (CB),
Corporate Finance (CF), Insurance (I), Payment and Settlement (PS), Retail Banking (RBa), Retail
Brokerage (RBr), Trading and Sales (TS), or an unallocated business line (UBL). It also includes
the event type (ET) which is Internal Fraud (IF), External Fraud (EF), Employment Practices
and Workplace Safety (EPWS), Clients, Products, and Business Practices (CPBP), Damage to
Physical Assets (DPA), Business Disruption and System Failures (BDSF), and Execution, Delivery,
and Process Management (EDPM); see BIS (2006, p. 302 and p. 305) for more details on this
classification. Due to space limitation, the description was largely shortened. Insurance coverage
was present for all but the largest, third-largest, and fifth-largest of these losses. However, the
database does not give information about the amount of insurance coverage.

Organization Loss BL ET Year Description

Madoff and investors 40 819 AM EF 2008 B. Madoff’s Ponzi scheme
Parmalat 14 608 PS EF 2003 Dubious transactions with

funds on Cayman Islands
Bank of America et al. 12 500 CB CPBP 2013 Fannie Mae claims regarding

sold mortgage loans
Bank of America 9268 UBL CPBP 2011 Settle Countrywide Financial

Corp.’s residential mortgage-
backed security repurchase ex-
posure

BTA Bank 8518 CB IF 2010 Fraud by chairman, diverting
funds to companies he owned

Agricult. Bank of China 6173 CB IF 2004 Financial crimes and book-
keeping irregularities

T. Imar Bankasi T.A.S. 5528 RBr IF 2003 Fraudulent computer program
Société Générale 4548 UBL IF 2008 A trader entered futures po-

sitions circumventing internal
regulations

Banca Naz. del Lavoro 4407 RBr IF 1989 Four counts of fraud
J.P. Morgan 3760 UBL CPBP 2013 US authorities demand money

due to mis-sold securities to
Fannie Mae and Freddie Mac

Table 1 Summary of the ten largest losses (adjusted for inflation to the level of 2013; rounded to
MGBP).

In what follows, we consider the 950 available gross losses in MGBP. The left-hand side of
Figure 1 provides a graphical summary of these (inflation adjusted) available losses over time. On

14
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4 Application to an OpRisk loss database

the right-hand side of Figure 1, the number of losses over time is given per business line. There are
obvious concerns about changes in measurement. Furthermore, the increasing frequency of events is
probably also due to improved record-keeping (reporting bias), a feature that our model may take
into account; see Section 4.2.

1980 1985 1990 1995 2000 2005 2010

0
20

40
60

80
10

0

Year

N
um

be
r 

of
 e

ve
nt

s 
w

ith
 a

va
ila

bl
e 

(g
ro

ss
) 

lo
ss

es

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

To
ta

l r
ep

or
te

d 
gr

os
s 

lo
ss

 in
 M

 G
B

P

Number of events

Total reported gross loss
in M GBP

1980 1985 1990 1995 2000 2005 2010

0
5

10
15

20
25

30
35

Year

N
um

be
r 

of
 e

ve
nt

s 
w

ith
 a

va
ila

bl
e 

(g
ro

ss
) 

lo
ss

es
 p

er
 B

L

AS
AM
CB
CF
I
PS
RBa
RBr
TS
UBL

Figure 1 OpRisk data. Number of available losses and total available gross losses (aggregated per
year) over time (left). Number of available losses for each business line over time (right).

Figure 2 shows the available, positive gross losses in MGBP per business line on a logarithmic
scale. It seems obvious from this figure that the losses in different business lines are not identically
distributed and thus can not be modeled with the same parameters. Our model will take this into
account by interpreting the business lines (or event types) as covariates. One particular feature
of our approach is that the model can be fitted to all the data simultaneously. This allows us to
“pool” the data, that is, all the data is used to fit the model, not just the data available for a certain
business line (or event type); the latter would not be feasible due to the data being sparse (especially
over time).

Remark 4.1
The OpRisk database under study is clearly fairly limited with respect to sample size. Compare
for instance with the sample sizes in the simulated example in Section A.2. Our analysis hence
should be viewed as a first step towards an LDA model. Before its introduction into practice, more
extensive datasets are needed. On the other hand, as we shall see, our analysis clearly is able to
capture main features of OpRisk (and similar) data.

The Basel matrix B contains the number of available gross losses divided into business lines (rows)
and event types (columns). In our case, this is a (10, 7)-matrix. By summing, for each business
line, over the different event types, one obtains the corresponding Basel vector b. Based on the 950
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Figure 2 OpRisk data. Available positive gross losses in MGBP per business line including the
threshold u chosen in Section 4.2.1 (median of all losses).
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available gross losses since 1980, the Basel matrix B and the Basel vector b are given by

B =

IF EF EPWS CPBP DPA BDSF EDPM



2 1 0 12 0 0 3 AS
12 3 4 55 0 0 6 AM
60 54 4 77 1 0 11 CB
12 4 0 23 0 0 2 CF
13 2 2 32 0 0 4 I
10 3 0 38 2 0 9 PS
3 0 0 4 0 2 3 RBa

71 62 5 73 1 0 14 RBr
13 3 2 28 0 1 2 TS
60 2 20 107 0 3 10 UBL

and b =





18 AS
80 AM

207 CB
41 CF
53 I
62 PS
12 RBa

226 RBr
49 TS

202 UBL

.

Note that the right-hand side of Figure 1 indeed shows the evolution of the Basel vectors over time,
so (bt)t∈{1980,...,2013}, where b =

∑2013
t=1980 bt.

4.2 Dynamic EVT modeling
We now apply the methodology presented in Section 3 to estimate the different parameters entering
the calculation of the annual VaR0.999, including pointwise two-sided 95% confidence intervals.
Due to the data being sparse, we “aggregate”, for each business line, the losses over all event
types; in other words, we proceed as if the label “event type” of the losses was not given. This is
common practice in OpRisk modeling and justified by the fact that business lines are often operated
separately and thus require a separate consideration. In Sections 4.2.1 and 4.2.2 we focus on the
dynamic POT approach, in Section 4.2.3 we present the dynamic block maxima approach.

4.2.1 Dynamic POT analysis

In this section, we consider the median of all losses as threshold u (that is, 11.02 MGBP) and the
475 gross losses from 1980 to 2013 which exceed u. The reason for this choice and the sensitivity of
our analysis on the threshold are addressed in Section 4.2.2.
The choice of the smoothing parameters (γλ for λ and γξ, γν for the GPD related parameters

ξ, ν) or, equivalently, the degrees of freedom, depends on the aim of the analysis. If the purpose is
purely explorative, the smoothers can be made suitably large to suit the situation by interpolating
the data more. We automatically select the smoothing parameters with the AIC criterion (18).
Another option would be cross-validation, but this can become computationally demanding when
the number of losses is large. We also adopt informal inference based on likelihood-ratio statistics
to assess model validation and comparison.
In applications dealing with OpRisk losses, it is not rare that ES does not exist because the

estimated shape parameter ξ is larger than 1. This turns out to be the case here for several business
lines; see Figure 5. Hence, for the remaining part of the paper, we can only present results about
VaR.
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Loss frequency
We fit the following models for λ:

log λ(x, t) = cλ, (19)
log λ(x, t) = fλ(x), (20)
log λ(x, t) = fλ(x) + cλt. (21)

Model (19) is the constant model, neither depending on business lines nor on time. Model (20)
depends on business lines (x is a factor running in AS, AM, CB, CF, I, PS, RBa, RBr, TS, UBL)
but not on time. Model (21) depends on business lines x and, parametrically, on time t (year in
1980 to 2013) as covariates.

Comparing Models (19) with (20) and (20) with (21) via likelihood-ratio tests leads to both
business line and time being significant. With the AIC criterion, we then compare Model (21) to
models of the form

log λ(x, t) = fλ(x) + h
(Df)
λ (t), (22)

for natural cubic splines h(Df)
λ with degrees of freedom Df ∈ {1, . . . , 8}; see Figure 3. Note that

the case Df = 1 corresponds to Model (21). It is clear from this curve, that a non-parametric
dependence on time is suggested. We use the “elbow criterion” to choose the optimal degrees of
freedom as 3; to be more precise, in Figure 3 we choose the smallest degrees of freedom so that
adding another degree does not lead to a smaller AIC.

●

●

●

●
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●
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90
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5

91
0

Determining the degrees of freedom for   hλ(t)

Degrees of freedom

A
IC

Figure 3 OpRisk data. AIC curve for fitted models of the form log λ(x, t) = fλ(x) + h
(Df)
λ (t) with

different degrees of freedom Df ∈ {1, . . . , 8}.
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We therefore select the estimated model

log λ̂(x, t) = f̂λ(x) + ĥ
(3)
λ (t) (23)

for λ, where x denotes the corresponding business line and ĥ(3)
λ (t) is a natural cubic spline with

3 degrees of freedom. In particular, the selected model shows that considering a homogeneous
Poisson process for the occurrence of losses is not adequate. Figure 4 shows λ̂ for each business line
from 1980 to 2013 (solid lines: predicted values; filled dots: fitted values; dashed lines: pointwise
asymptotic 95% confidence intervals). Overall, the curves show an increasing pattern through time
for all business lines.

Loss severity
We now use the methodology explained in Section 3 to fit dynamic models for the GPD parameters
(ξ, ν); recall the reparameterization (8). We fit the following models for (ξ, ν):

ξ(x, t) = cξ, ν(x, t) = cν , (24)
ξ(x, t) = fξ(x), ν(x, t) = cν , (25)
ξ(x, t) = fξ(x) + cξt, ν(x, t) = cν , (26)
ξ(x, t) = fξ(x), ν(x, t) = fν(x), (27)
ξ(x, t) = fξ(x), ν(x, t) = fν(x) + cνt, (28)
ξ(x, t) = fξ(x), ν(x, t) = fν(x) + hν(t), (29)

where hν is a smoothed function of t (with variable degrees of freedom). The likelihood-ratio test
based on Models (24) and (25) reveals that business line has a significant effect on ξ. Comparing
Models (25) with (26) indicates that time does not have a significant effect on ξ. We therefore
use Model (25) for ξ. As the test shows for Models (25) and (27), business line is significant for
ν. Comparing Models (28) and (27) with the likelihood-ratio test indicates that time also has a
significant effect on ν. Finally, Model (29) does not lead to a significant improvement of (28), the
estimated degrees of freedom are very close to one. Therefore, ν in (28) is linear in time. Finally,
we select the estimated models

ξ̂(x, t) = f̂ξ(x), ν̂(x, t) = f̂ν(x) + ĉνt. (30)

The left-hand side of Figure 5 shows the estimates ξ̂ for every business line and corresponding
bootstrapped two-sided 95% confidence intervals for our dataset. The right-hand side shows the
results of Moscadelli (2004, p. 40) for a broad comparison. Note that, with two exceptions, all
estimates (left-hand side) are larger than 1, leading to infinite-mean models (roughly in line with
the estimates found by Moscadelli (2004, p. 40) based on a much larger database). However, the
confidence intervals for all except two business lines also cover values below 1. Figure 2 justifies
somehow that ξ is negative for the business lines AS and TS for which the choice of the threshold
is rather “high” for these two (sub)datasets, leading to low chance of sudden appearance of high
losses, that are, furthermore, not so high above the threshold. The contrary is observed for the other
(sub)datasets for which ξ is bigger than one: Figure 2 shows that for these business lines, there is a
high chance (a high proportion of data above the threshold) of observing sudden high losses (with
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Figure 4 OpRisk data. Estimates λ̂ including 95% confidence intervals depending on time and
business line.

20



4 Application to an OpRisk loss database

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Business line

ξ̂ 
 w

ith
 b

oo
ts

tr
ap

pe
d 

tw
o−

si
de

d 
95

%
 c

on
fid

en
ce

 in
te

rv
al

s

AS TS UBL AM CB I CF PS RBr RBa

●

●

●
●

●

●

● ●

●

●

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Business line

ξ̂ 
 w

ith
 b

oo
ts

tr
ap

pe
d 

tw
o−

si
de

d 
95

%
 c

on
fid

en
ce

 in
te

rv
al

s

AS TS AM CB CF PS RBr RBa

●

●

●

●

●
●

●
●

Figure 5 OpRisk data. Estimates ξ̂ (left: our dataset; right: Moscadelli (2004)) including (boot-
strapped) 95% confidence intervals depending on business lines.

values far above the threshold). The overall larger size of the confidence intervals in comparison to
Moscadelli (2004) is due to the lack of data for each business line; see also Figures 1 and 2.
Figure 6 shows the corresponding estimates β̂ including bootstrapped pointwise two-sided 95%

confidence intervals depending on time and on business lines. The linear effect of time on ν is
apparent and results in a slight increase of β over the years; this means more variability over time.
Figure 7 shows a Q-Q plot of the residuals (12) computed from the selected Model (30) for the

GPD parameters against the quantiles of the standard exponential distribution including pointwise
asymptotic 95% confidence intervals. It follows that there is no reason to reject the model based on
the given data.
Figure 8 displays the effect of the selected models on VaR0.999. Both the effect of business line

and the increase in occurrence of losses are visible. The confidence intervals are rather large for
most of the business lines, indicating considerable uncertainty. We refrain from (over)interpreting
the loss amounts estimated. As the data is gathered across several institutions, it is difficult to put
them in perspective. As mentioned earlier, the main purpose of the paper is to show how the new
methodology presented can be used for modeling OpRisk-type data; see also Embrechts and Puccetti
(2008) for specifics of this kind of data from a QRM point of view. An ideal application would
concentrate on loss data within one company for which then a common total capital denominator
would be available.

4.2.2 Sensitivity with respect to the choice of the threshold and selected model

The outcome of a POT analysis is of course affected by the choice of the threshold u above which
losses are modeled; see, for instance, de Fontnouvelle et al. (2004) and Shevchenko and Temnov
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Figure 6 OpRisk data. Estimates β̂ including bootstrapped pointwise two-sided 95% confidence
intervals depending on time and business line.
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Figure 7 OpRisk data. Q-Q plot of the model’s residuals depending on time and business lines.

(2009) for time varying thresholds. The key question is “by how much"? If the threshold is chosen
too large, the number of losses is small which increases the variance in the statistical estimation;
if the threshold is chosen too small, the asymptotic results by Pickands–Balkema–de Haan from
Section 2.2 and Leadbetter (1991) might not provide a valid approximation and thus an estimation
bias results. To assess the sensitivity of our modeling approach on the choice of the threshold, we
conduct the same analysis with the threshold u being chosen as the 0-quantile (taking all data
into account), 0.2-quantile, 0.3-quantile, and 0.4-quantile; recall that we chose the threshold u as
the 0.5-quantile (median) above. The models selected for the loss severity are given in Table 2.
Residual plots (not included) for smaller values of u showed clear departures from the model. We
have indicated the increasing deterioration with decreasing u by the non-technical E-symbols. The
residuals for the threshold u = 0.5 are given in Figure 7 and show a good overall behavior; whence
we decided on this level of u.

Threshold u Model for ξ Model for ν Q-Q

0-quantile ξ̂(x, t) = f̂ξ(x) + ĉξt ν̂(x, t) = f̂ν(x) + ĉνt EEE
0.2-quantile ξ̂(x, t) = f̂ξ(x) ν̂(x, t) = f̂ν(x) EE
0.3-quantile ξ̂(x, t) = f̂ξ(x) ν̂(x, t) = f̂ν(x) EE
0.4-quantile ξ̂(x, t) = f̂ξ(x) ν̂(x, t) = f̂ν(x) E
0.5-quantile ξ̂(x, t) = f̂ξ(x) ν̂(x, t) = f̂ν(x) + ĉνt X

Table 2 Selected models for the loss severity depending on the choice of threshold.

Another question is how sensitive the selected models (23) and (30) are to the modeled time
period. To address this, we repeated the whole analysis conducted in Section 4.2.1 but only on
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Figure 8 OpRisk data. Estimates V̂aR0.999 including bootstrapped pointwise two-sided 95% confi-
dence intervals depending on time and business line.
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the data from 1980 to 2011. This leaves us with 1192 losses, for 826 the loss amount is available.
As before, the threshold u is chosen as the median of the data. We have not included the explicit
results of this analysis but only summarize our main findings. The selected loss frequency model is
the same as (23). Also, the selected model for the loss severity parameter ξ is the same as before,
see (30). Concerning the loss severity parameter ν, a slightly simpler model than (30) is selected,
not depending on time. The residual Q-Q plot is also fine for this model, similar to Figure 7. The
impact on V̂aR0.999 is barely visible, the estimates including confidence intervals indeed look similar
to Figure 8.

4.2.3 Dynamic block maxima method

In this section, we apply the dynamic block maxima method to the yearly maxima of the logarithmic
gross losses observed from 1980 to 2013; note that in Section A.2.2, a small simulation study is
presented to show how the dynamic block maxima methodology works. The analysis is motivated by
a clear increasing trend of the log-transformed maxima over years. Because there are only 34 yearly
maxima available, we do not consider other covariates (business lines or event types) than year.
If one is interested in VaRα, it can sometimes be useful to work with the log-transformed data.

This is allowed since for 0 < X ∼ FX and logX ∼ FlogX ,

VaRα(X) = F−1
X (α) = exp(F−1

logX(α)) = exp(VaRα(logX)). (31)

A well-known property from EVT states that the log-transform of a random variable (distribution
function) in the maximum domain of attraction (MDA) of a Fréchet (ξ > 0 in (1) and (2)) belongs
to the MDA of the Gumbel (ξ = 0). A special case concerns exact Pareto distribution functions,
the log-transform of which is exponential. See Embrechts et al. (1997, p. 148, Example 3.3.33)
and further examples therein. Besides the relevant (31), log-transformation moves data from the
heavy-tailed (even infinite-mean) case to a more standard short-tailed environment. For the OpRisk
data, the left-hand side of Figure 9 shows for the log-transformed data an increasing trend over
the years; the symbols represent different business lines. The business lines AS and RBa are never
yearly maxima for this period of time. Because we only have a small amount of yearly maxima and
because the different business lines all seem to follow the increasing trend in time, in a first analysis,
it seems reasonable to let only the location parameter µ of the GEV distribution (2) depend on
time (and not on business lines nor event type). We use the penalized log-likelihood of the form (6)
for the block maxima approach (GEV), penalized for µ = µ(t). The resulting dynamic model is a
fully non-parametric model

µ̂ = µ̂(t) = ĥ(2)
µ (t),

that is, a natural cubic spline with two degrees of freedom. The scale and shape parameters are set
to be constant and their estimates are σ̂ = 1.52 (0.25) and ξ̂ = −0.39 (0.10) (standard errors in
parentheses). Note that the model suggests a short tail for the log-losses (ξ̂ < 0). Using (3), where
µ̂ is replaced by ĥ(2)

µ (t) and the two other parameters by their estimates, we obtain an estimated
curve for VaR0.999 including bootstrapped pointwise two-sided 95% confidence intervals for the
yearly log-loss maxima and for the original yearly loss maxima using the relation (31); see the
right-hand side of Figure 9. The confidence intervals are rather large because of the small number
of maxima, highlighting strong uncertainty of the model. Nevertheless, the estimated VaR0.999
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curve captures the increasing trend of the yearly maxima over time (all business lines and event
types superimposed). The results are not comparable but complementary to the ones obtained from
the dynamic POT model in Section 4.2.1. First, (much) less data and therefore less information
is available. Second, it has not been possible to incorporate the additional information about the
business lines. Third, the model is applied to yearly maxima and the corresponding VaRα at level
α (3) is the value of the (log-)loss maxima expected to be exceeded once every 1/(1 − α) years.
The curve V̂aR0.999 on the right-hand side of Figure 9, therefore shows the estimated loss maxima
that can be exceeded only “once every 1000 years on average”. Over our period under study, the
resulting V̂aR0.999 has not been exceeded by the observed losses.
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Figure 9 OpRisk data. Yearly loss maxima in MGBP over the period 1980–2013 (left); symbols
indicate business lines. Estimates V̂aR0.999 including bootstrapped pointwise two-sided
95% confidence intervals for the yearly loss maxima over time (right).

5 Discussion
In recent years, banks and insurance companies have paid increasing attention to OpRisk and there
is a pressing need for a flexible statistical methodology for the modeling of extreme losses in this
context. Recent actions by international regulation show ample evidence of this, especially in the
aftermath of the subprime crisis (legal risk). Further events like the LIBOR-case and the worries
about fixes in FX-markets will no doubt imply more pressure for risk capital increases. For instance,
the Swiss regulation FINMA (October 2013) ordered a 50% increase of the regulatory capital
for UBS, a large Swiss bank. Similar actions throughout the industry worldwide will no doubt
follow. Based on currently (especially publicly) available OpRisk data, yearly high-quantile-type
risk measures (like VaR0.999) are statistically hard to come by. It is to be hoped that more and more
complete and reliable data will eventually become available. In anticipation of this, we developed the
new methodology in this paper. We offer a EVT-based statistical approach that allows one to choose
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5 Discussion

either appropriate loss frequency and loss severity distributions, or loss maximum distribution, by
taking into account dependence of the parameters on covariates and time. The methodology is
applied both to simulated data (see Section A.2) and to a database of publicly available OpRisk
losses (see Section 4) which shows several stylized features of industry-wide OpRisk data.
Some of the assumptions and consequences of the presented EVT-based methodology require a

discussion:
It is important to say something on infinite mean models resulting from fitted ξ̂’s strictly larger
than 1 as we partly saw in Section 4. In the context of OpRisk, several analyses based on
unbounded severity models have resulted in such ξ̂’s. One can, and should question such models;
industry has used various techniques avoiding these models, such as tapering or truncation
from above; see for instance Kagan and Schoenberg (2001) in the context of seismology. For an
interesting overview of these techniques together with applications to wildfire-sizes, earthquake
inter-event times and stock-price data, see Patel (2011). Our experience is that for data of such
very heavy-tailed type, whatever fitting adjustment one tries, capital charges are highly depending
on the tapering or truncation mechanism used. A fully unconditioned POT analysis (possibly
resulting in ξ̂ > 1) points into a direction of extreme uncertainty of high quantile (VaR) estimates.
A relevant, thought provoking paper on the economics of climate change in the presence of (very)
heavy-tailed risks is Weitzman (2009) and the various reactions on that paper, like Nordhaus
(2009). The catch phrase reflecting on uncertainty coming from infinite mean models is “The
Dismal Theorem”. We quote from Weitzman (2009) as it very much reflects our own thinking:
“The economics of fat-tailed catastrophes raises difficult conceptual issues which cause the analysis
to appear less scientifically conclusive and to look more contentiously subjective than what comes
out of [. . .] more usual thin-tailed situations. But if this is the way things are with fat tails, then
this is the way things are, and it is an inconvenient truth to be lived with rather than a fact to
be evaded just because it looks less scientifically objective in cost-benefit applications”. Further
relevant papers on the topic include Embrechts et al. (2013b), Ibragimov and Walden (2007) and
Ibragimov and Walden (2008). Das et al. (2013) contains a discussion in the broader context
of model uncertainty within Quantitative Risk Management. For heavy-tailed data, ξ̂ > 1/3 or
1/4, say, the so-called one big jump heuristic kicks in: “One large loss dwarfs the aggregate of
all other losses over a given time period”. This is a well-known phenomenon which has precise
mathematical formulations and consequences; see for instance Embrechts et al. (1997, Section
8.3.3). Recent fraud (hence OpRisk) events have unfortunately shown how much this principle
holds in the world of banking.
In theory, the model allows all possible interactions between the covariates, in practice this is only
possible for large sample sizes. The simulated example in Section A.2 partly considers interactions
between the variables “group” and “year”. This has been possible because enough data has been
drawn for each combination of interaction level. Furthermore, for sufficiently large datasets,
asymptotic distribution theory provides tools for inference and assessment of model fit based
on the notion of deviance and its associated degrees of freedom of an appropriate χ2 statistic;
see Nelder and Wedderburn (1972). In the context of small samples, standard approximate
distributions for the statistics can be unreliable. For more discussion on these points, see, for
instance, Hastie and Tibshirani (1990) and Appendix B. Indeed “large enough” is difficult to
define. For the OpRisk data considered in this paper, we found it reasonable not to include the
covariate “event type” (in order to gain in sample size). We are aware that a larger dataset would
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A Appendix

usefully allow us to fit all possible interactions (combinations) of “business line”, “event type”
and “year” and also a more reliable comparison of the fitting procedure using likelihood ratio
statistics.
Note that we do not model a specific business line at a given time point. For this one would
clearly not have sufficient data for all year–business lines combinations. We fit a model to all
available losses simultaneously. This is what we mean by “pooling”. Although considering all
data (pooling) provides higher global information and significance for the business-line effect, the
lack of data (at least for some business lines) and possible heterogeneity across risk types may
lead to model misspecification and should be carefully looked at.
In Section 4.2.3, we use log-transformed data. As mentioned, in practice, it has the effect of
reducing the estimated value of the shape parameter ξ. Theoretical proofs of the latter for some
distributions are provided in Embrechts et al. (1997, p. 148). The numerical reduction from ξ̂ > 1
obtained from the original data to ξ̂ < 1 for the log-transformed data may sometimes be useful;
for ξ > 1 (infinite-mean) the usual Taylor expansions can be made but do not yield a consistent
estimator. In this case, the log-likelihood may be arbitrarily large, so a maximum likelihood
estimators may take values which correspond to local maxima of the log-likelihood; see Davison
and Smith (1990).
The fact that we implemented the statistical fitting procedure, the bootstrap, and relevant model
functionals in R is not relevant. The reason why we chose R is that it is open source, widely
known in the statistical community, provides an implementation for the (non-trivial) fitting of
generalized additive models, and graphics. For implementing the model in another programming
language, a fitting procedure for generalized additive models has to be provided in addition to
the functions we implemented; see Wood (2006) for details.
The field of applications clearly extends to broader domains of finance, insurance, environmental
risk, and any industrial domain where the modeling of extremes or extremal point measures like
VaR or ES depending on covariates is of interest.

A Appendix
A.1 Derivatives of the reparameterized log-likelihood
Algorithm 3.1 requires to compute the first two derivatives of the reparameterized log-likelihood
with respect to ξ and ν. We now present these ingredients. The reparameterized log-likelihood
contribution is

`r(ξ, ν; y) = `(ξ, exp(ν)/(1 + ξ); y)

=


log(1 + ξ)− ν − (1 + 1/ξ) log(1 + ξ(1 + ξ) exp(−ν)y), case 1,
−(ν + exp(−ν)y), case 2,
−∞, otherwise,
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with case 1 being the set where ξ > 0 and y ≥ 0, or ξ < 0 and y ∈ [0,− exp(ν)/(ξ(1 + ξ))), and case
2 the one where ξ = 0. This implies

`rξ(ξ, ν; y) = ∂

∂ξ
`r(ξ, ν; y)

=

1/(1 + ξ) + log(1 + ξ(1 + ξ) exp(−ν)y)/ξ2 − (1 + 1/ξ) (1+2ξ) exp(−ν)y
1+ξ(1+ξ) exp(−ν)y , case 1,

0, otherwise

and

`rξξ(ξ, ν; y) = ∂2

∂ξ2 `
r(ξ, ν; y)

=


−1/(1 + ξ)2 − 2 log(1 + ξ(1 + ξ) exp(−ν)y)/ξ3 + 2(1+2ξ) exp(−ν)y

ξ2(1+ξ(1+ξ) exp(−ν)y)

−(1 + 1/ξ) exp(−ν)y 2(1+ξ(1+ξ) exp(−ν)y)−(1+2ξ)2 exp(−ν)y
(1+ξ(1+ξ) exp(−ν)y)2 , case 1,

0, otherwise.

Furthermore,

`rν(ξ, ν; y) = ∂

∂ν
`r(ξ, ν; y) =


−1+(1+ξ) exp(−ν)y
1+ξ(1+ξ) exp(−ν)y , case 1,
−1 + exp(−ν)y, case 2,
0, otherwise

and

`rνν(ξ, ν; y) = ∂2

∂ν2 `
r(ξ, ν; y) =


−(1+ξ)2 exp(−ν)y

(1+ξ(1+ξ) exp(−ν)y)2 , case 1,
− exp(−ν)y, case 2,
0, otherwise.

By replacing ξ by ξi, ν by νi, and y by yti above, we obtain the required derivatives of the
reparameterized log-likelihood as given in (14).

A.2 Demonstration of the dynamic approaches based on simulated data
In this section, we provide an example based on simulated data (sample size of 2000) to check
correctness of our implementation and to indicate how/that our methodology works. We only briefly
discuss this example; all details for the POT approach, including more plots, can be accessed via
game(demo) in QRM.

A.2.1 The dynamic POT approach

We generate a dataset of losses over a time period of 10 years for two groups (factor with levels “A”
and “B”). The simulated losses are drawn from a (non-stationary) GPD depending on the covariates
“year” and “group”. We then fit the (Poisson process) intensity λ and the two GPD parameters ξ
and β depending on “year” and “group” and compute bootstrapped confidence intervals using the
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methodology presented in Sections 3.1 to 3.3. The precise models fitted for the loss frequency and
severity are

log λ(x, t) = fλ(x) + h
(3)
λ (t, x),

ξ(x, t) = fξ(x) + h
(3)
ξ (t, x),

ν(x, t) = fν(x) + h(3)
ν (t, x),

where x denotes the corresponding group and h(3)
λ , h

(3)
ξ , h

(3)
ν are group-specific (hence the interaction

with x) natural cubic splines with 3 degrees of freedom. Finally, we compute dynamic estimates of
VaRα; see Figure 10. Overall, as a comparison with the true parameters and values indicates, our
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Figure 10 Simulated data. Estimates V̂aR0.999 including bootstrapped pointwise two-sided 95%
confidence intervals depending on time and group, obtained from the dynamic POT
method.

methodology can be applied to fit a model to the entire dataset and captures the different functional
forms driven by the covariates.

A.2.2 The dynamic block maxima approach

We run a similar simulation study to assess the performance of the dynamic GEV approach
introduced in Section 4.2.3. We generate a dataset of losses over a time period of 10 years for two
groups (factor with levels “A” and “B”). The simulated losses are drawn from a (non-stationary)
GEV with location parameter µ depending on the covariates “year” and “group” using non-linear
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functions. We fit the semi-parametric model

µ(x, t) = fµ(x) + h(3)
µ (t, x)

for the location parameter µ, where, again, x denotes the corresponding group and h(3)
µ is a group-

specific natural cubic splines with 3 degrees of freedom. The shape and scale parameters are set
constant, like in the application of Section 4.2.3. We then compute dynamic estimates of VaRα; see
Figure 11.
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Figure 11 Simulated data. Estimates V̂aR0.999 including bootstrapped pointwise two-sided 95%
confidence intervals depending on time and group, obtained from the dynamic GEV block
maxima method.
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