
For a two-choice response time (RT) task, the observed 
variables are response speed and response accuracy. In 
experimental psychology, inference usually concerns the 
mean response time for correct decisions (i.e., MRT ) and 
the proportion of correct decisions (i.e., Pc). The immedi-
ate problem is that MRT and Pc are in a trade-off relation-
ship: Participants can respond faster, and hence decrease 
MRT, at the expense of making more errors, thereby de-
creasing Pc (see, e.g., Pachella, 1974; Schouten & Bekker, 
1967; Wickelgren, 1977). This so-called speed–accuracy 
trade-off has for a long time bedeviled the field. Consider 
2 participants in an experiment, Amy and Rich. Amy’s and 
Rich’s performance is summarized by MRT  0.422 sec, 
Pc  .881, and MRT  0.467 sec, Pc  .953, respectively. 
Amy responds faster than Rich, but she also commits 
more errors. Thus, it could be that Amy and Rich have 
the same ability, but Amy risks making more mistakes. It 
could also be that Amy’s ability is higher than that of Rich, 
or vice versa. If we only consider MRT and Pc, there ap-
pears to be no way to tell which of these three possibilities 
is in fact true.

Now consider George, whose performance is character-
ized by MRT  0.517 sec, Pc  .953. George responds 
more slowly than Rich, whereas their error rates are identi-
cal. An explanation solely in terms of the speed–accuracy 
trade-off cannot account for this pattern of results, and 
therefore most researchers would confidently conclude 
that Rich performs better than George. Unfortunately, if 
we only consider MRT and Pc, it is impossible to go beyond 
these conclusions in terms of ordinal relations and quan-
tify how much better Rich does than George. Note that 

the same arguments would hold if the example above had 
been in terms of 1 participant who responds in three dif-
ferent experimental conditions presented in three separate 
blocks of trials. In this case, comparison of performance 
across the different conditions is complicated by the fact 
that task performance may be simultaneously influenced 
by task difficulty and response conservativeness.

In sum, both MRT and Pc provide valuable information 
about task difficulty or subject ability, but neither of these 
variables can be considered in isolation. When MRT and 
Pc are considered simultaneously, however, it is not clear 
how to weigh their relative contributions to arrive at a sin-
gle index that quantifies subject ability or task difficulty.

A way out of this conundrum is to use cognitive process 
models to estimate the unobserved variables assumed to 
underlie performance in the task at hand. The field of re-
search that uses cognitive models for measurement has 
been termed cognitive psychometrics (Batchelder, 1998; 
Batchelder & Riefer, 1999; Riefer, Knapp, Batchelder, 
Bamber, & Manifold, 2002), and similar approaches in 
other paradigms have included those of Busemeyer and 
Stout (2002); Stout, Busemeyer, Lin, Grant, and Bonson 
(2004); and Zaki and Nosofsky (2001). Here, the focus 
is on the diffusion model for two-choice RT tasks (see, 
e.g., Ratcliff, 1978). In the diffusion model, the three most 
important unobserved variables are the quality of informa-
tion, response conservativeness, and nondecision time. A 
statistical analysis of these unobserved variables is not 
only immune to speed–accuracy trade-offs, but also af-
fords an unambiguous quantification of performance dif-
ferences. This article introduces the EZ-diffusion model, 
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a simplified version of the diffusion model that is able to 
uniquely determine these three important unobserved vari-
ables from just three observed quantities: MRT, Pc, and the 
variance of response times for correct decisions (VRT ). 
Our mathematical analysis will show that VRT is much 
more informative with respect to subject ability or task 
difficulty than is MRT, echoing recent empirical insights 
in the aging literature and elsewhere (e.g., Hultsch, Mac-
Donald, & Dixon, 2002; Li, 2002; MacDonald, Hultsch, 
& Dixon, 2003; Shammi, Bosman, & Stuss, 1998).

An important practical advantage of the EZ-diffusion 
model is that it does not require a parameter fitting routine 
(cf. signal detection theory). Also, the EZ-diffusion model 
can be applied to common experimental setups in which 
each participant contributes only a moderate amount of 
data and error rate is low (i.e., 5%–10%).

The outline of this article is as follows. The next sec-
tion briefly discusses the methods of analysis that are cur-
rently standard in the field. Then we briefly describe the 
“full” Ratcliff diffusion model and introduce the simpli-
fied, “EZ” version. Subsequent sections detail the perfor-
mance of the EZ method in terms of parameter recovery 
and robustness against misspecification. Then we use a 
real-world data set to compare parameter estimates for the 
EZ model against those for the Ratcliff diffusion model. 
We conclude by stressing the practicality of the present 
approach and by acknowledging the potential dangers of 
blindly applying the EZ model to situations in which its 
assumptions do not hold.

The Standard Analysis of Two-Choice RT Tasks 
and Its Limitation

For many decades, the analysis of data from two-choice 
RT tasks has remained unchanged. The standard analy-
sis separately considers MRT and Pc. Specifically, one 
ANOVA is performed for MRT and a second for Pc. The 
standard analysis is simple but crude, and it can be im-
proved in various ways. For instance, Rouder, Lu, Speck-
man, Sun, and Jiang (2005) recently introduced a Bayes-
ian hierarchical model of Weibull distributions that bases 
inference not just on MRT, but on the entire RT distribu-
tion for correct decisions. Similar sophistications (e.g., 
hierarchical logistic regression) can be proposed for the 
analysis of Pc.

Regardless of the statistical sophistication that the stan-
dard method may undergo, the general framework fails to 
address the core problem of the two-alternative RT task. 
This is the problem of how to combine response speed and 

accuracy in a single index that reflects subject ability or 
task difficulty.

To highlight the limitations of the standard method of 
inference, consider the performance of our hypotheti-
cal participants in a two-alternative RT task, as shown in 
Table 1. Assume that the imaginary experiment involves 
very many trials, so that measurement error is negli-
gible. The standard analysis method is perfectly able to 
rank-order the participants according to either MRT (i.e., 
1. Mark, 2. Amy, 3. Rich, 4. George), Pc (i.e., 1&2. George 
& Rich, 3&4. Mark & Amy), or VRT (i.e., 1&2. Mark & 
Amy, 3&4. George & Rich). However, the standard method 
cannot rank-order the 4 participants on “ability,” since this 
requires response speed and response accuracy to be com-
bined in some unspecified manner. This also means that 
the standard method cannot inform us as to how much bet-
ter or worse one participant performs than another.

The Ratcliff Diffusion Model
A solution to the problem of how to combine response 

speed and response accuracy is to analyze the data in terms 
of the parameters of a cognitive model such as a diffusion 
model. In a diffusion model, illustrated in Figure 1, noisy 
accumulation of information drives a decision process that 
terminates when the accumulated evidence in favor of one 
or the other response alternative exceeds threshold. Thus, 
the diffusion model is a continuous-time, continuous-state 
random-walk sequential sampling model (see Laming, 
1968; Link, 1992; Link & Heath, 1975; Ratcliff, 1978; 
Stone, 1960). The reader is referred to Luce (1986), Rat-
cliff (2002), Ratcliff and Smith (2004), and Townsend and 
Ashby (1983) for detailed accounts of the diffusion model; 
to Gardiner (2004), Honerkamp (1994), and Smith (2000) 
for mathematical foundations; and to Diederich and Buse-
meyer (2003), Ratcliff and Tuerlinckx (2002), Tuerlinckx 
(2004), and Voss, Rothermund, and Voss (2004) for a dis-
cussion of several methods to fit the model to data.

For concreteness, our focus is on the diffusion model as 
it applies to the lexical decision task (Ratcliff, Gomez, & 
McKoon, 2004). In lexical decision, the participant is pre-
sented with a letter string that needs to be classified either as 
an English word (e.g., zebra) or as a nonword (e.g., drapa). 
The diffusion model has also been successfully applied to 
many other two-choice RT paradigms, including short- and 
long-term recognition memory tasks, same/different letter 
string matching, numerosity judgments, visual-scanning 
tasks, brightness discrimination, and letter discrimination 
(see, e.g., Ratcliff, 1978, 1981, 2002; Ratcliff & Rouder, 
1998, 2000; Ratcliff, Van Zandt, & McKoon, 1999). In all 
these applications, the diffusion model provided a close fit 
to response accuracy and the observed RT distributions for 
both correct and error responses.

In the application of the diffusion model to lexical deci-
sion, presentation of a word stimulus will generally lead 
to the accumulation of evidence that supports the correct 
“word” response, as in the two examples shown in Figure 1. 
In the model, easy-to-classify letter strings have relatively 
high absolute drift rate values; that is, these letter strings 
are associated with relatively high signal-to-noise ratios in 
the evidence accumulation process. Drift rate  is defined 

Table 1 
Performance of 4 Hypothetical Participants in a 

Two-Alternative Forced Choice Task

  
Participant

 RT Mean 
(sec)

 RT 
Variance

  
Pc

 

George 0.517 0.024 .953
Rich 0.467 0.024 .953
Amy 0.422 0.009 .881
Mark 0.372 0.009 .881

Note—Which participant did best? RT denotes response time, and Pc the 
proportion of correct responses. See the text for details.
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on the real line;   0 and   0 lead to evidence accumu-
lation consistent with a “word” or a “nonword” response, 
respectively. The case of   0 corresponds to a process 
that, at each point in time, is equally likely to move upward 
as it is to move downward. Drift rate is assumed to vary over 
trials according to  N(v, ). Because drift rate quantifies 
the deterministic component of the noisy information ac-
cumulation process, it can be interpreted as an index for the 
signal-to-noise ratio of the information processing system. 
Therefore, drift rate is an excellent candidate for a mea-
sure that combines respond speed and response accuracy to 
quantify subject ability or task difficulty.

The stochastic, nonsystematic component of the infor-
mation accumulation process on each trial is quantified 
by s. The factor s2 dt is the variance of the change in the 
accumulated information for a small time interval dt (Cox 
& Miller, 1970, p. 208). The s parameter is a scaling pa-
rameter, which means that if s doubles, other parameters 
in the model can be doubled to obtain exactly the same 
result. Thus, the choice of a specific value for s  0 is 
arbitrary; in practice, s is usually set to 0.1, and we ad-
here to this convention throughout the article. Two further 
important parameters are the boundary separation a and 
the starting point z. The boundary separation parameter 
a is especially important here, because large values of a 
indicate the presence of a conservative response criterion: 
When a is large, the system requires more discriminative 
information before deciding on one or the other response 
alternative. A conservative response criterion results in 
long response times, but also in highly accurate perfor-
mance, since with large a it is unlikely that the incorrect 
boundary will be reached by chance fluctuations. There-
fore, in the diffusion model, one of the main mechanisms 
by which speed–accuracy trade-off phenomena arise is 
through changes in a.

The a priori bias against one or the other response alter-
native is given by z. As with drift rate, the exact location of 
z may fluctuate from trial to trial. This fluctuation is quanti-
fied by a uniform distribution with range sz. As shown later, 
in most applications z is estimated to be about equidistant 
from both response boundaries (i.e., z a/2). Finally, the 
diffusion model captures the nondecision component of 
RT by a parameter Ter that varies over trials according to a 
uniform distribution with range st. As is often assumed in 
RT modeling, the total RT is a sum of the nondecision and 
decision components of processing (Luce, 1986):

 RT  DT  Ter, (1)

where DT denotes decision time.
In sum, the Ratcliff diffusion model estimates the fol-

lowing seven parameters:1

1. Mean drift rate (v).
2. Across-trials variability in drift rate ( ).
3. Boundary separation (a).
4. Mean starting point (z).
5. Across-trials range in starting point (sz).
6. Mean of the nondecision component of processing

(Ter).
7. Across-trials range in the nondecision component of 

  processing (st).

In theory, these seven parameters could be estimated sepa-
rately for each experimental condition. In practice, how-
ever, only parameters that are believed to be affected by 
the experimental manipulation are free to vary between 
conditions.

In order to provide some perspective regarding the 
ranges of parameter values that may be expected when 
fitting the Ratcliff diffusion model to data, Figure 2 pro-
vides a visual overview of the best-fitting parameter val-

st
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Figure 1. Diffusion model account of evidence accumulation in the lexical decision task 
(see Ratcliff et al., 2004).
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ues encountered in previous experiments (i.e., Ratcliff, 
Gomez, & McKoon, 2004; Ratcliff & Rouder, 2000; Rat-
cliff & Smith, 2004; Ratcliff, Thapar, Gomez, & McKoon, 
2004; Ratcliff, Thapar, & McKoon, 2001, 2004; Ratcliff 
et al., 1999; Van Zandt, Colonius, & Proctor, 2000; Voss 
et al., 2004). These experiments used tasks such as lexi-
cal decision, letter identification, asterisks discrimina-
tion, recognition memory, and color discrimination. Stud-
ies that manipulated starting point were excluded from 
consideration. Whenever there was a choice, we selected 
parameter values estimated from averaged data.2 Almost 
all experiments vary task difficulty (i.e., drift rate in the 
model), and this is the reason why the top left panel con-
tains relatively many values—when a manipulation is 
thought to affect drift rate, only this parameter is free to 
vary across conditions. The bottom right panel plots the 

best-fitting values for the st parameter. It represents rela-
tively few experiments because this parameter has been 
recently added to the diffusion model. Figure 3 shows the 
relation between boundary separation and starting point as 
obtained in earlier experiments. The solid line has a slope 
of 2. Figure 3 confirms the earlier assertion that in many 
applications, z a/2.

The data needed to fit the Ratcliff diffusion model are 
error rate and RT distributions for correct and error re-
sponses. As mentioned earlier, participants usually do not 
commit very many errors: In most tasks, error rate is lower 
than 10%. This means that it may take a substantial num-
ber of trials to accurately estimate the entire RT distribu-
tion for error responses. On the basis of prior experience 
with the model, a rule of thumb is that about 10 error RTs 
are needed in order to estimate the error RT distribution 
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with an acceptable degree of reliability. This means that 
with an error rate of, say, 5%, each experimental condition 
should contain about 200 observations.

The model is then fit to the data using one of several 
methods (see, e.g., Ratcliff & Tuerlinckx, 2002). Each 
method uses the facts that in the diffusion model, the 
probability of an error (Pe) is given by
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and the probability of an error response before time t is 
given by Equation 3 at the bottom of this page (Cox & 
Miller, 1970), where k indexes the infinite series and a, 
z, , and Ter are free parameters. As t , the part that 
involves the infinite sum goes to zero, and what remains 
is simply the probability of an error response. Thus, Equa-
tion 3 computes the defective distribution (see, e.g., Rat-
cliff & Tuerlinckx, 2002). To obtain the equation that gives 
the probability of a correct response before time t, z and  
should be replaced by a  z and , respectively.

Although Equation 3 may look daunting,3 the real prob-
lem in fitting the diffusion model is in the fact that param-
eters Ter, z, and  vary across trials. Finding the best-fitting 
values for the across-trials variability parameters st , sz, 
and  necessitates the use of time-consuming numerical 
integration procedures. The reason that mathematical psy-
chologists use such a complicated method is the substantial 
payoff involved. The Ratcliff diffusion model provides a 
description of response time that is extremely detailed. Per-
haps more important, however, is the fact that the param-
eter values of the model can provide insights that standard, 
more superficial methods of analysis cannot.

For instance, in an application of the diffusion model 
to aging (Ratcliff et al., 2001), it was found that in an as-
terisks discrimination task, older participants responded 
more slowly but also a little more accurately than the 
younger participants. The diffusion model was fitted to 
the data, and the resulting parameter estimates indicated 
that the parameter that varied between the different age 
groups was boundary separation a (and Ter, the nondeci-
sion RT component, which was about 50 msec longer for 
older adults), whereas mean drift rate v remained fairly 
constant—if anything, drift rate was a little higher for 
the group of older participants. This analysis supports 
the notion that in this particular task, the observed dif-
ferences in performance arose because the older adults 
adopted more conservative response criteria than did the 
younger participants. Such detailed and quantitative con-

clusions could not be based on a standard ANOVA on 
the RTs and error rates (see also Oberauer, 2005; Voss 
et al., 2004).

THE EZ-DIFFUSION MODEL

For a wide range of two-alternative forced choice tasks, 
the Ratcliff diffusion model provides a principled and seem-
ingly satisfactory solution to the speed-versus-accuracy 
dilemma that plagues standard methods of analysis. This 
raises the question as to why the diffusion model is not 
standardly applied as a psychometric analysis tool. One 
of the answers is that the Ratcliff diffusion model requires 
the entire RT distribution as input; critically, this includes 
the RT distribution for incorrect decisions. In many ex-
periments, participants commit few errors overall, and it 
may take very many trials to obtain an accurate estimate 
of the error RT distribution. Therefore, in most practical 
settings it is unclear whether or not the Ratcliff diffusion 
model can be applied. When a model with at least seven 
free parameters is unleashed on a small data set, problems 
such as high-variance parameter estimates and sensitivity 
to starting values may become prominent.

Another important reason why the diffusion model is 
not used more often in empirical studies is the complexity 
of the parameter-fitting procedure (see Diederich & Buse-
meyer, 2003; Ratcliff & Tuerlinckx, 2002; Tuerlinckx, 
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ary separation as encountered in previous research. The solid line 
has a slope of 2, suggesting that in many situations the starting 
point is about equidistant from the two response boundaries.
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2004). Many experimental psychologists, even those with 
a firm background in mathematics and computer pro-
gramming, will find the amount of effort required to fit 
the Ratcliff diffusion model rather prohibitive.

The EZ-diffusion model constitutes an attempt to popu-
larize a diffusion model analysis of two-alternative forced 
choice tasks. In order to achieve this goal, we have consid-
erably simplified the Ratcliff diffusion model. These sim-
plifications are warranted by the fact that the aim of the 
EZ model is much more modest than that of the Ratcliff 
model. The EZ model tries to determine only the most 
psychologically relevant parameters of the Ratcliff model: 
drift rate v (i.e., quality of information), boundary separa-
tion a (i.e., response conservativeness), and nondecision 
time Ter. The EZ model does not seek to address the issue 
of RT distributions, especially not for error responses. 
Thus, the price that has to be paid for the simplification 
of the diffusion model is that it no longer provides a very 
detailed account of the observed behavior, but instead op-
erates at a more macroscopic level. Of course, with few 
data, this may be the only available option. We will return 
to this issue in the General Discussion section.

The first simplification is that the EZ-diffusion model 
does not allow across-trials variability in parameters. This 
means that st, sz, and  are effectively removed from the 
model. The effect of st—that is, the across-trials variabil-
ity in Ter—is usually not very pronounced (see Ratcliff & 
Tuerlinckx, 2002). The effect of sz—that is, across-trials 
variability in starting point—allows the model to handle 
error responses that are on average faster than correct re-
sponses. The effect of —that is, across-trials variability 
in drift rate—is to produce error responses that are on 
average slower than correct responses. From the bird’s-
eye perspective taken by the EZ-diffusion model, these 
aspects of the data are outside the focus of interest.

The second and final simplification is that the starting 
point z is assumed to be equidistant from the response 

boundaries, so that z  a/2. As mentioned earlier, in prac-
tical applications of the diffusion model this is often found 
to be approximately true (see Figure 3). For instance, Rat-
cliff et al. (2001) had participants decide whether a screen 
with asterisks came from a “high” or “low” distribution. 
Since the design of the stimulus materials was symmetric, 
one would not expect participants to be biased toward ei-
ther the “high” or the “low” response category (Ratcliff 
et al., 2001, p. 332).

In other experiments, however, biases in starting point 
are more plausible. Consider a hypothetical situation 
in which participants have an a priori bias to respond 
“word” to letter strings presented in a lexical decision 
task. When such a bias exists, the “vanilla” version of the 
EZ-diffusion model presented here is inappropriate. For-
tunately, there exists an easy check for the presence of 
bias in the starting point: When participants have a start-
ing point bias that favors the “word” response in a lexical 
decision task, this means that for word stimuli the correct 
responses are faster than the error responses, whereas for 
nonword stimuli the correct responses are slower than the 
error responses. Such a pattern of results indicates a bias 
in starting point, and this bias renders the results from an 
EZ-diffusion model analysis suspect. In the General Dis-
cussion, we will discuss an extension of the EZ-diffusion 
model that can be applied to situations in which the start-
ing point is biased. For now, we will work under the as-
sumption that the starting point is equidistant from the 
response boundaries—that is, that z  a/2.

As will soon be apparent, the simplifications above 
allow the EZ-diffusion model to determine v, a, and Ter 
without a complicated parameter-fitting exercise. Fig-
ure 4 shows the EZ-diffusion model and its streamlined 
set of parameters.

Before proceeding, we should issue a general disclaimer. 
Any analysis that involves unobserved variables may lead to 
misleading results when the hypothesized model radically 
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Figure 4. The EZ-diffusion model.
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deviates from reality. This holds for both the EZ-diffusion 
model and the Ratcliff diffusion model. As an example, 
classical signal detection theory assumes the distributions 
for “signal plus noise” and “noise only” to have equal vari-
ances. When assumptions such as this one are violated, 
care must be taken with the interpretation of unobserved 
variables. Fortunately, almost all studies using the diffusion 
model have shown that the model provides a good descrip-
tion of the RT distributions (Ratcliff, 2002) and that the spe-
cific experimental manipulations have selectively affected 
the model’s parameters in the expected direction (see, e.g., 
Voss et al., 2004). Nevertheless, as with any statistical pro-
cedure, one is generally well advised to check whether the 
data are consistent with the assumptions of the model. We 
will revisit this issue several times throughout the article.

Mathematical Derivation
The EZ-diffusion model determines drift rate v, boundary 

separation a, and nondecision time Ter from just MRT, VRT, 
and Pc. This is possible because we have three unknowns 
(v, a, and Ter) and also three diffusion model equations (for 
MRT, VRT, and Pc). As will be apparent later, VRT and Pc 
uniquely determine the values for v and a, so that MRT is 
necessary only to determine Ter. This result contrasts sharply 
with the popular analysis of RTs, which focuses on MRT and 
ignores VRT (but see, e.g., Slifkin & Newell, 1998).

The first equation refers to the probability of a correct 
response—that is, the probability that the stochastic process 
first arrives at the correct response boundary. Using the fact 
that z  a/2 in the EZ model, Equation 2 simplifies to

 

P
av s

c

1

1 2exp
,

 

(4)

which can be rewritten as

 
a

s P

v

2 log
,

it
c

 
(5)

where

 

log log .it
c

c

c

P
P

P1
 

The second equation refers to the variance of a sym-
metrical diffusion process (Wagenmakers, Grasman, & 
Molenaar, 2005). The variance is given by
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where y  va/s2 and v  0. If v  0,
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Palmer, Huk, and Shadlen (2005) independently derived 
the same equation in terms of hyperbolic functions. Their 
equation contains a typographical error, and the correct 
equation is

 
VRT z z v z v z v v

* * * * * * * *
tanh sec ,h

2 3

 
where v*  v/s and z*  z/s.

Substituting Equation 5 for a in Equation 6 and solving 
for v yields Equation 7, at the bottom of this page. The sign 
function returns 1 for all negative numbers and 1 for all 
positive numbers. Inclusion of the sign(Pc  1/2) term en-
sures that v will take on positive values when Pc  1/2 and 
negative values when Pc  1/2. Using the variance equa-
tion derived by Palmer et al. (2005), Equation 7 can also 
be written as shown at the top of the next page, where L  
logit(Pc). Equation 7 shows that for fixed accuracy, drift 
rate v in the EZ-diffusion model is inversely proportional to 
VRT1/4, which is the square root of the standard deviation 
of the RT distribution. When 2 participants respond at the 
same level of accuracy, their difference in drift rate comes 
about solely through their difference in VRT.

After v has been determined by Equation 7, this allows 
a to be determined from Equation 5. At this point, the two 
key parameters v and a have been determined without any 
recourse to MRT. It turns out that MRT is useful only to 
determine the final parameter of the EZ-diffusion model, 
Ter. Recall that in the EZ-diffusion model, as in the Ratcliff 
diffusion model, MRT contains not just the time to classify 
the stimulus (i.e., decision time), but also the time to visu-
ally encode the stimulus and the time to produce a motor 
response (i.e., nondecision time Ter). That is,

 
MRT MDT T

er
,
 

(8)

where MDT denotes mean decision time.
Given both v and a, MDT can be determined from a 

third equation, which refers to the mean time until arrival 
at a response threshold:4

 

MDT
a

v

y

y2

1

1

exp

exp
,

 

(9)

where, again, y  va/s2. Given MDT, we can now use 
Equation 8 to obtain Ter. Thus, the foregoing discussion 

 

v P s

P P P P
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it it
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P P
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shows how the EZ-diffusion model transforms MRT, 
VRT, and Pc to v, a, and Ter without any parameter fit-
ting; all that is needed to determine the parameters is 
a straightforward computation. The Appendix contains 
R code (R Development Core Team, 2004) that imple-
ments the EZ-diffusion model.

Conceptual Similarity to Signal Detection 
Analysis

The EZ-diffusion model is very similar to classical signal 
detection theory (see, e.g., Green & Swets, 1966) in its aim, 
scope, and method. Figure 5 highlights these similarities. In 
fact, the EZ-diffusion model can arguably be considered the 
response time analogue of signal detection theory.5

As can be seen from Figure 5, signal detection theory 
takes hit rate and false alarm rate as input. As output, it 
produces unique values for discriminability (d ) and bias 
( ). The statistic d  is a fixed property of the condition or 
the participant, but  is under the control of the participant. 
Conclusions regarding participant ability or task difficulty 
that are based solely on hit rates are suspect, since the par-
ticipant may change the response threshold  to increase 
hit rates at the expense of increasing false alarm rates.

The EZ-diffusion model takes MRT, VRT, and Pc as 
input. As output, it produces unique values for drift rate 
(v), boundary separation (a), and nondecision time (Ter). 
The drift rate v is a fixed property of the condition or the 
participant, but a is under the control of the participant. 
Conclusions regarding participant ability or task difficulty 
that are based solely on MRT or VRT are suspect, since the 
participant may here change the response threshold a to 
decrease MRT and VRT at the expense of decreasing Pc.

PARAMETER RECOVERY 
FOR THE EZ-DIFFUSION MODEL

This section evaluates performance of the EZ-diffusion 
model in terms of the accuracy with which the model re-
covers parameter values used to generate simulated data. 
The Monte Carlo simulations show that the parameters 
recovered by the model are relatively close to their true 
values. The variability of the recovered parameter values 
is acceptable, and decreases with sample size. Bias (i.e., 
systematic deviation from the true value) is virtually non-
existent. One of the main reasons why the EZ model is 
able to recover parameters accurately with only few data 

RT Variance

Accuracy

EZ-Diffusion

Drift Rate
Boundary
Separation

Nondecision
Time

RT MeanHit Rate

Discriminability

False Alarm
Rate

Signal Detection
Theory

Bias

Figure 5. Schematic representation of the similarity between a signal detection analysis and 
an EZ-diffusion model analysis. The circles at the bottom denote unobserved variables, and 
the squares at the top denote observed variables. RT, response time.
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is that the observed quantities of interest (i.e., MRT, VRT, 
and Pc) are estimated relatively efficiently.

In the Monte Carlo simulations reported here, we simu-
lated an experiment with only one condition and a single 
participant. The experiment had either 50, 250, or 1,000 
observations.6 Also, drift rate v and boundary separation a 
could each take on one of three values (i.e., v  {0.1, 0.2, 
0.3}, a  {0.08, 0.11, 0.14}). These values were combined 
to yield 3  3  9 separate sets of parameters that were 
used to generate simulated data. These parameter values 
were chosen so as to span a wide range of plausible values 
(see Wagenmakers et al., 2005). In the simulations, Ter was 
fixed at 0.300. This Ter value is arbitrary in the sense that 
it is an additive constant, the value of which is determined 
by subtracting the mean decision time from MRT. Thus, if 
Ter had been fixed at 0.250, the parameter recovery results 
would remain the same, save for a constant 50-msec shift. 
The scaling parameter s was fixed at 0.1, a convention that 
we adhere to throughout the article.

Next, each of the nine separate parameter combina-
tions was used to generate 1,000 different data sets. For 
each data set, MRT, VRT, and Pc were calculated, and the 
EZ-diffusion model transformations were then applied 

to yield estimates for v, a, and Ter. Note that MRT and 
VRT were exclusively based on response times for correct 
decisions.7

When the true values for drift rate v and boundary sepa-
ration a are relatively large (e.g., v  0.3 and a  0.14), 
this may result in error-free performance. When Pc  1, 
Equations 5 and 7 include the undefined term logit(1). 
The problem is similar to that of applying signal detection 
theory to a participant who has either a perfect hit rate or a 
zero false alarm rate—this yields an estimate for d  that is 
infinite. Several solutions have been proposed to address 
this issue (see, e.g., Macmillan & Creelman, 2004). Here 
we chose to apply one of the standard edge-correction 
methods, replacing Pc  1 with a value that corresponds 
to one half of an error—that is,

 
P

nc
1

1

2
.
 

For example, when n  50 and Pc  1, the replacement 
value for Pc is .99, but when n  250, the replacement 
value is .998.

Figure 6 shows the results for the parameter recovery 
simulations with respect to drift rate v. Each panel plots 
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Figure 6. Drift rate parameter recovery for the EZ-diffusion model. Each panel corresponds to a 
different combination of data-generating parameter values for v and a. The data-generating values 
for drift rate are indicated by horizontal lines. Each box-plot is based on 1,000 replications.
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three box-and-whisker plots, one for each value of N  
{50, 250, 1,000}. A box-and-whisker plot (Tukey, 1977, 
pp. 39–43) provides an efficient way to summarize an en-
tire distribution, in this case a distribution of recovered pa-
rameter values. The box extends from the .25 quantile to the 
.75 quantile, and the dot in the middle of the box is the .50 
quantile (i.e., the median). The whiskers extend to the far-
thest points that are within 3/2 times the height of the box.

As can be seen from Figure 6, for all panels the me-
dian of the recovered parameter values (i.e., the dots in the 
boxes) tends to coincide with the horizontal line that in-
dicates the generative parameter value. Hence, parameter 
recovery for v is unbiased. Also note that the whiskers gen-
erally extend as far upward as they extend downward, and 
the dots are in the middle of the boxes. This means that the 
distributions of recovered parameter values are symmet-
ric. As is to be expected, Figure 6 also clearly shows that 
the spread of the distributions decreases as N increases. 
Upon close examination, it appears that recovery of v is 
subject to more variability when boundary separation a 
is decreased or drift rate v is increased. Thus, in Figure 6, 
variability is highest when v  0.3 and a  0.08 (i.e., the 
leftmost bottom panel), and variability is lowest when v  
0.1 and a  0.14 (i.e., the rightmost upper panel).

Figure 7 shows parameter recovery for the boundary 
separation parameter a. Again, the distributions are sym-
metric, there is little indication of any bias, and the vari-
ability decreases with N. The variability of the distribution 
of recovered parameter values increases as the true value 
of a increases—that is, variability increases as we move 
from the leftward panels to the rightward panels.

Finally, Figure 8 displays the Monte Carlo results for non-
decision time Ter. Again, there is little evidence of any bias, 
the distributions appear to be symmetric, and variability 
decreases markedly with N. The variability for Ter increases 
rather dramatically as boundary separation is increased and 
drift rate is decreased. Hence, variability in recovery for Ter 
is lowest for the v  0.3, a  0.08 leftmost bottom panel, 
whereas it is highest for the v  0.1, a  0.14 rightmost 
top panel. In other words, variability in Ter  MRT  MDT 
increases as MDT (i.e., mean decision time) lengthens.

In sum, the Monte Carlo simulations show that the EZ-
 diffusion model is able to recover the parameter values for 
v, a, and Ter with virtually no bias. For N  50, the vari-
ability in the parameter estimates is considerable. How-
ever, it is important to note that this variability is based 
on a single participant contributing 50 observations. In an 
experiment with multiple participants, the mean of the in-
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Figure 7. Boundary separation parameter recovery for the EZ-diffusion model. Each panel cor-
responds to a different combination of data-generating parameter values for v and a. The data-
 generating values for boundary separation are indicated by horizontal lines. Each box-plot is based 
on 1,000 replications.
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dividual parameters will obviously be much less variable 
than any individual parameter. In practical applications, 
the variability of the obtained parameter values can always 
be assessed by sampling the observed data with replace-
ment (i.e., the nonparametric bootstrap; see, e.g., Efron & 
Tibshirani, 1993). For N  250 and N  1,000, the vari-
ability is low, even for a single participant.

ROBUSTNESS TO MISSPECIFICATION

The previous section demonstrated that the EZ-diffusion 
method adequately recovers its parameter values. It is an 
open question, however, how well the model performs 
when the data-generating mechanism is different from the 
one that the EZ-diffusion model assumes. For instance, 
the EZ-diffusion model assumes that there is no variabil-
ity across trials in any of the diffusion model parameters. 
That is, the EZ-diffusion model assumes no across-trials 
variability in nondecision time (i.e., st  0), starting point 
(i.e., sz  0), and drift rate (i.e.,   0).

In this section, we focus on three situations in which 
the EZ-diffusion model is “misspecified.” First, we con-
sider a data-generating mechanism that has a considerable 

amount of across-trials variability in nondecision time. 
Next, we evaluate parameter recovery performance of the 
EZ-diffusion model in the case in which across-trials vari-
ability in drift rate is very high and across-trials variability 
in starting point is relatively low. Finally, we consider the 
reverse situation, in which across-trials variability in drift 
rate is relatively low and across-trials variability in starting 
point is relatively high. The latter two situations closely re-
semble those examined by Ratcliff and Tuerlinckx (2002).

In each of the three misspecification analyses reported 
here, data were generated using three values of drift rate: 
v  {0.1, 0.2, 0.3}. Boundary separation a was fixed at a 
medium value of 0.11, and nondecision time Ter was fixed 
at 0.300. This yielded three different sets of parameter 
values. Next, each set of parameter values was used to 
generate 3,000 data sets: 1,000 data sets with 50 observa-
tions each, 1,000 data sets with 250 observations each, 
and 1,000 data sets with 1,000 observations each. EZ-
 diffusion parameters were calculated for each data set.

Across-Trials Variability in Nondecision Time
In the first Monte Carlo simulation, the misspecification 

refers to the presence of across-trials variability in nondeci-
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Figure 8. Nondecision time parameter recovery for the EZ-diffusion model. Each panel cor-
responds to a different combination of data-generating parameter values for v and a. The data-
 generating value for boundary separation was fixed at Ter  0.300 and is indicated by horizontal 
lines. Each box-plot is based on 1,000 replications.
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sion time. The range of the uniform distribution on Ter was 
set at 0.2 sec, which is at the high end of what is found in 
empirical research (see, e.g., Ratcliff, Gomez, & McKoon, 
2004; Ratcliff & Tuerlinckx, 2002, p. 467; see Figure 2 
above, bottom right panel). Figure 9 shows the results of the 
parameter recovery analysis using box-and-whisker plots. 
Panels in the top, middle, and bottom rows were generated 
using v  0.1, v  0.2, and v  0.3, respectively. The hori-
zontal lines indicate the true parameter values.

The panels in the first column of Figure 9 show that 
the estimation of drift rate remains relatively unaffected 
by across-trials variability in Ter: The values are recovered 
with little bias, and the variability is not much increased 
relative to the situation in which st  0 (see Figure 6). The 
panels in the second column show that boundary separa-
tion is somewhat overestimated, especially for high values 
of drift rate. Finally, panels in the third column reveal that 
nondecision time is somewhat underestimated, and this 

bias increases with drift rate. Overall, the parameter val-
ues are relatively robust against across-trials variability in 
nondecision time.

Across-Trials Variability in Drift Rate
In the second misspecification analysis, we examined 

the case of large across-trials variability in drift rate (i.e., 
normal standard deviation   0.16) and much smaller 
across-trials variability in starting point (i.e., range of a 
uniform distribution sz  0.02). Note that the extent of 
across-trials variability in  is rather extreme; in empirical 
work,  is usually smaller (Ratcliff & Tuerlinckx, 2002; 
see Figure 2 above, bottom left panel).

Figure 10 shows the results. As in the previous figure, 
panels in the top, middle, and bottom rows were generated 
using v  0.1, v  0.2, and v  0.3, respectively. It is evi-
dent from Figure 10 that the inclusion of a large amount of 
across-trials variability in drift rate leads to a systematic 
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Figure 9. Parameter recovery for the EZ-diffusion model under misspecification, with the data-
generating process affected by across-trials variability in nondecision time. The uniform distribu-
tion of nondecision time has a range of 0.200 sec, which is at the extreme end of what is observed in 
practice (Ratcliff & Tuerlinckx, 2002). Boundary separation a was fixed at an intermediate value 
of 0.11, and the mean of the nondecision time Ter was fixed at 0.300. Panels in the top, middle, and 
bottom rows were generated using drift rate values of 0.1, 0.2, and 0.3, respectively. Data-generating 
parameter values are indicated by horizontal lines. Each box-plot is based on 1,000 replications.
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underestimation of all three parameters. This bias is not 
very pronounced for boundary separation (middle column) 
and nondecision time (right column), but it is quite sub-
stantial for drift rate (left column). This drift rate bias is not 
affected by the number of observations. Although the bias 
is tolerable for v  0.1, it increases with the estimand, and 
when v  0.3 the bias is a sizable 0.7. In sum, a substantial 
amount of across-trials variability in drift rate leads to un-
derestimation of all EZ parameters. This underestimation 
is particularly pronounced for high values of drift rate.

Across-Trials Variability in Starting Point
A third misspecification analysis was done for the case 

in which across-trials variability in drift rate is relatively 
low (i.e.,   0.08) whereas across-trials variability in 
starting point is relatively high (i.e., sz  0.07; see Fig-
ure 2, bottom middle panel). Figure 11 shows that the re-
sults are remarkably similar to those of Figure 10: Adding 

the across-trials variabilities leads to an underestimation 
of all parameters, and this effect is particularly pronounced 
for high values of the drift rate parameter (i.e., the leftmost 
bottom panel). When v  0.3, the bias is a sizeable 0.55.

Overall, the misspecification analyses have shown that 
for the parameter values under consideration, the EZ-
 diffusion method is fairly robust to across-trials variability 
in nondecision time. With large across-trials variabilities 
in drift rate and starting point, however, all parameters 
are systematically underestimated. This underestimation 
is particularly pronounced for high values of drift rate.

These results mean that when the EZ-diffusion model 
is applied to experimental data, its estimates for drift rate 
may turn out to be somewhat lower than those of the Rat-
cliff diffusion model. The empirical data presented later 
support this assertion: Although the correlations between 
the EZ parameters and the parameters of the Ratcliff dif-
fusion model are generally quite high, the values for drift 
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Figure 10. Parameter recovery for the EZ-diffusion model under misspecification with the data-
generating process affected by high across-trials variability in drift rate (i.e.,   0.16), and low 
across-trials variability in starting point (i.e., sz  0.02). The value for  is at the extreme end of 
what is observed in practice (Ratcliff & Tuerlinckx, 2002). Boundary separation a was fixed at an 
intermediate value of 0.11, and the mean of the nondecision time Ter was fixed at 0.300. Panels in the 
top, middle, and bottom rows were generated using drift rate values of 0.1, 0.2, and 0.3, respectively. 
Data-generating parameter values are indicated by horizontal lines. Each box-plot is based on 1,000 
replications.
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rate are systematically lower for the EZ-diffusion model. 
This effect is magnified for high values of drift rate, as our 
simulations anticipate.

Three EZ Checks for Misspecification
In practical applications, the assumptions of the EZ-

 diffusion model may be violated. Depending on the nature 
and the seriousness of the violation, the results from the 
EZ-diffusion model should be interpreted with caution 
or the model should not be applied at all. In order to test 
whether the EZ-diffusion model is misspecified, we sug-
gest carrying out the following three simple checks. Each 
check tests a prediction of the model that follows from one 
of its implicit assumptions.

Check the shape of the RT distributions. The EZ model 
should be applied only to RT data that show at least some 
amount of right skew. In addition, the skew should become 
more pronounced as task difficulty increases. Fortunately, 

these regularities are present in the wide majority of data 
sets (see Ratcliff, 2002). If the data are not skewed to the 
right, or if the skew does not increase with task difficulty, 
application of the EZ-diffusion model is inappropriate. A 
statistical test for skewness was proposed by D’Agostino 
(1970).8

Check the relative speed of error responses. As mentioned 
above, the EZ-diffusion model predicts that the RT distri-
butions of correct and error responses are identical. When 
the starting point is equidistant from the response boundar-
ies, fast error responses come about through across-trials 
variability in starting point, and slow error responses come 
about through across-trials variability in drift rate. Fast or 
slow errors therefore indicate the presence of across-tri-
als variability in starting point or drift rate, respectively. As 
shown above, the EZ-diffusion model ignores the across-
trials variabilities and this leads to an underestimation of all 
parameters, in particular drift rate. Standard parametric and 

Figure 11. Parameter recovery for the EZ-diffusion model under misspecification, with the data-
generating process affected by low across-trials variability in drift rate (i.e.,   0.08), and high 
across-trials variability in starting point (i.e., sz  0.07). The value for sz is at the extreme end of 
what is observed in practice (Ratcliff & Tuerlinckx, 2002). Boundary separation a was fixed at an 
intermediate value of 0.11, and the mean of the nondecision time Ter was fixed at 0.300. Panels in the 
top, middle, and bottom rows were generated using drift rate values of 0.1, 0.2, and 0.3, respectively. 
Data-generating parameter values are indicated by horizontal lines. Each box-plot is based on 1,000 
replications.
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nonparametric tests may be used to check whether errors 
are systematically faster or slower than correct responses.

Check whether the starting point is unbiased. The pres-
ent version of the EZ-diffusion model assumes that the two 
stimulus categories in a two-alternative response time task 
are a priori equally attractive. This means that the starting 
point z is equidistant from the two response boundaries—
that is, z  a/2. In many situations, this simplification may 
be acceptable (see Figure 3). In other situations (e.g., when 
experimental manipulations include differential payoffs or 
different presentation rates), the EZ assumption that z  
a/2 is almost surely violated, and the model should then 
be applied only with extreme caution. In order to check 
whether or not the data show evidence of a bias in start-
ing point, one can compare the relative speed of correct 
and error responses for the different stimulus categories. 
When participants have an a priori bias that favors Catego-
ry A over Category B, correct responses should be faster 
than error responses for Category A stimuli, whereas cor-
rect responses should be slower than error responses for 
Category B stimuli. As a statistical test, one can first de-
termine whether or not stimulus category interacts with re-
sponse correctness, and then plot the mean RTs to visually 
judge whether the interaction crosses over in such a way 
that errors are fast for one stimulus category and slow for 
the other.

APPLICATION TO AN EXPERIMENT ON 
PERCEPTUAL DISCRIMINATION

One of the most convincing ways to show that the EZ-
 diffusion model presents a reasonable alternative to the 
Ratcliff diffusion model is to compare the parameter es-
timates for both models on a set of empirical data. Here 
we consider data from a perceptual discrimination experi-
ment (Meevis, Luth, vom Kothen, Koomen, & Verouden, 
2005), to which we fit both the EZ model and the Ratcliff 
model on a participant-by-participant basis.

The task of each participant was to indicate, as quickly as 
possible without making errors, which of two vertical line 
segments was longer. The line segments were presented 
side by side and were joined by a horizontal line, either 
at the top or at the bottom. The 100-msec presentation of 
the line segments was terminated by the presentation of a 
mask. Task difficulty was manipulated on three levels (i.e., 
easy, medium, and difficult) by varying the difference in 
length between the vertical line segments: In the easy, me-
dium, and difficult conditions, the length difference was 2, 
4, and 6 mm, respectively.

Eighty-eight university students completed an 18-trial 
practice block, followed by a total of 1,992 experimen-
tal trials in two blocks (i.e., 1,992/3  664 trials for each 
level of difficulty). Twelve participants had an excessive 
number of fast guesses (i.e., over 100 trials with response 
times below 250 msec), and these participants were ex-
cluded from the analysis. Their exclusion did not affect 
the qualitative pattern of results. Thus, the EZ-diffusion 
model and the Ratcliff diffusion model were applied to the 
data from N  76 participants.9 The EZ-diffusion model 
was then used to determine v, a, and Ter for each partici-

pant and each difficulty level separately, yielding 76  
3  228 sets of parameter values. The Ratcliff diffusion 
model was likewise used to determine v, a, and Ter.10 The 
EZ-diffusion model parameters were used as starting val-
ues for the Ratcliff diffusion model fitting routine.

Figure 12 shows that the EZ parameters correlate quite 
highly with parameter estimates obtained using the Ratcliff 
diffusion model. Averaged across all nine panels, the corre-
lation is .867. In the panels that correspond to drift rate and 
boundary separation, the slope of the best-fitting line is de-
cidedly smaller than 1. This indicates that the EZ-diffusion 
estimates are lower than those of the Ratcliff diffusion 
model. For drift rate, this effect is most pronounced for high 
drift rates, as is evident from the flattening that occurs in the 
panels corresponding to the easy and medium conditions. 
As mentioned earlier, this effect may well be due to the fact 
that the Ratcliff diffusion model has three variability param-
eters that soak up some of the variance that the EZ-diffusion 
model attributes to drift rate and boundary separation.

To verify that the implicit assumptions of the EZ-
 diffusion model had been met, the EZ checks were carried 
out for all 76 participants and all 3 difficulty levels, result-
ing in 228 statistical comparisons for each check. The first 
check used the D’Agostino test for skewness (D’Agostino, 
1970) and confirmed that the RT distributions were clearly 
right-skewed. The results from the second and third checks 
were more ambiguous. The second check used the ANOVA 
procedure to test whether correct responses were as fast as 
error responses. Without any correction for multiple test-
ing and an alpha level of .05, 14 out of 76 participants 
failed this test for all three levels of difficulty. The majority 
of the participants failed this test for at least one level of 
difficulty. For some of the participants, errors were sys-
tematically faster than correct responses, and for others 
errors were systematically slower than correct responses. 
After the Bonferroni correction was applied and the alpha 
level consequently reduced to .05/228  .0002, 6 partici-
pants still failed the test for all three levels of difficulty, 
and 19 failed the test for at least one level of difficulty. 
These results suggest that there might have been substan-
tial across-trials variability in starting point and drift rate, 
at least for some of the participants.

The third check used the ANOVA procedure to test 
whether errors were fast for one stimulus category and 
slow for the other, since this pattern is indicative of a bias 
in starting point (i.e., z  a/2). If the starting point is bi-
ased, one would expect the interaction between stimulus 
category and response correctness to be present for all 
three difficulty levels. Without any correction for multiple 
testing and an alpha level of .05, 6 out of 76 participants 
showed a significant crossover interaction for at least two 
of the levels of difficulty. Twenty-two participants showed 
at least one significant crossover interaction. After applying 
the Bonferroni correction, none of the participants showed 
the crossover interaction for at least two levels of difficulty, 
and only 2 out of 76 showed at least one significant cross-
over interaction. These results suggest that some partici-
pants might have had a bias in starting point. Exclusion of 
the participants that failed the second or third EZ checks 
did not greatly influence the pattern of correlations.
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In sum, the parameter values as determined by the EZ-
 diffusion model correlate highly with those estimated by 
the diffusion model. Despite this high correlation, the EZ-
 diffusion model systematically yields estimates of drift 
rate and boundary separation that are lower than those of 
the Ratcliff diffusion model. For the drift rate parameter, 
this effect is most pronounced when drift rate is high.

DISCUSSION

In the context of psychometric testing, Dennis and 
Evans state that “it is important to recognize that there 
is no ‘magic formula’ which will solve the problem of 

different individuals adopting different speed–accuracy 
compromises by collapsing the two measures into a sin-
gle number representing ability” (Dennis & Evans, 1996, 
p. 123). The aim of the present article was to present just 
such a formula for the kinds of speeded two-choice tasks 
that have been popular in experimental psychology for 
decades. The EZ-diffusion model does not just compute a 
measure of ability or information uptake (i.e., drift rate), 
it also yields measures for response conservativeness 
(i.e., boundary separation) and nondecision time (for ap-
proaches with a similar focus, see Balakrishnan, Buse-
meyer, MacDonald, & Lin, 2002; Palmer et al., 2005; 
Reeves, Santhi, & Decaro, 2005).

Thus, the EZ-diffusion model transforms the observed 
variables to three unobserved variables, so that statistical 
inference can be performed on the latent rather than on 
the observed variables. The advantages of operating on 
the level of latent variables is that each variable has a clear 
psychological interpretation—in contrast, the traditional 
method of analysis considers both response speed and re-
sponse accuracy but is at a loss as to how to combine these 
measures. The conceptual advantages of the EZ-diffusion 
model are illustrated by Table 2, which shows the latent 
variables for the data from Table 1 presented at the start 
of this article.

Table 2 
Performance of the 4 Participants From Table 1 in Terms 

of EZ-Diffusion Model Parameters

  
Participant

 Drift 
Rate

 Boundary 
Separation

 Nondecision 
Time

 

George 0.25 0.12 0.300
Rich 0.25 0.12 0.250
Amy 0.25 0.08 0.300
Mark 0.25 0.08 0.250

Note—Participants differed in terms of response conservativeness and 
nondecision time, but not in terms of efficiency of stimulus processing. 
See the text for details.
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Figure 12. Parameter estimates of the Ratcliff diffusion model and the EZ-diffusion model for a 
two-choice perceptual discrimination experiment (N  76) featuring three difficulty levels.
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From the EZ parameters in Table 2, it is immediately clear 
that information uptake (i.e., drift rate) is the same for all par-
ticipants. The reason that George responds relatively slowly 
is because he is cautious not to make errors (i.e., boundary 
separation a  0.12) and has a relatively long nondecision 
time (i.e., Ter  0.300). Mark, the fastest responder, is the op-
posite of George, in that Mark is a risky decision maker (i.e., 
a  0.08) who has relatively short nondecision time. Amy 
and Rich differ from each other in that Amy is less cautious 
than Rich, but Rich has a shorter nondecision time. These 
kinds of psychologically meaningful conclusions can never 
be derived by the standard analysis of two-choice tasks.

A Cautionary Note on Transformations 
and Falsifiability

A considerable practical advantage of the EZ-diffusion 
model is that it does not require any fitting: The EZ equa-
tions simply transform the observed quantities of MRT, 
VRT, and Pc to the unobserved quantities of drift rate, 
boundary separation, and nondecision time. This practi-
cal advantage, however, does come at a theoretical cost. 
That is, the EZ equations will do their job, regardless of 
whether or not the EZ model is appropriate to the situa-
tion at hand. For instance, the data under consideration 
could be uniformly distributed, left-skewed, or even multi-
modal. In these cases, it is almost certain that the data 
do not originate from a diffusion process with absorbing 
boundaries, as shown in Figure 4.

Despite the fact that the EZ model is not appropriate for, 
say, multimodal distributions, the EZ transformation will 
nevertheless return estimated values of drift rate, bound-
ary separation, and nondecision time. Consequently, these 
estimated values may very well lead to conclusions that 
are unwarranted. It should always be kept in mind that the 
EZ-diffusion transformation is only appropriate when the 
implicit assumptions of the EZ-diffusion model are met. 
In sum, the EZ-diffusion model cannot be falsified on the 
basis of a poor fit to the data: It will always produce a 
perfect fit to the data, since it simply transforms the ob-
served variables to unobserved variables without any loss 
of information (see Figure 5).

What this means is that some attention should be paid 
to the underlying assumptions of the EZ-diffusion model 
when applying it to data. For instance, both the EZ- and 
Ratcliff diffusion models are currently limited to tasks that 
require only a single process for their completion. That is, 
the present model should not be applied to tasks such as the 
Eriksen flanker task (Eriksen & Eriksen, 1974), in which 
one process may correspond to information accumulation 
from the target arrow, and another process may correspond 
to information accumulation from the distractor arrows. 
We strongly recommend that the three EZ checks for mis-
specification mentioned earlier (i.e., check the shape of 
the RT distributions, check the relative speed of error re-
sponses, and check whether the starting point is unbiased) 
be carried out when the model is applied to data.

Future Directions and Extensions
The EZ-diffusion model described here can be extended 

in several ways. First and foremost, the current “vanilla” 

version of the EZ-diffusion model assumes that both 
stimulus alternatives are equally preferable a priori—that 
is, that z  a/2. However, it is possible to extend the EZ-
 diffusion model to handle biased starting points—that is, 
cases for which z  a/2. Consider again the lexical deci-
sion task, and assume that we need to estimate a number of 
variables: drift rate for word stimuli vw, drift rate for non-
word stimuli vnw, boundary separation a, starting point z, 
nondecision time for word stimuli Ter,w, and nondecision 
time for nonword stimuli Ter,nw. These six parameters can 
be obtained by transformation from the six observed vari-
ables MRTw, MRTnw, VRTw, VRTnw, Pc,w, and Pc,nw.

Second, the present version of the EZ-diffusion model 
does not allow parameters to be constrained across condi-
tions. This may be desirable for several reasons. Consider, 
for instance, an experiment designed to compare task per-
formance of young adults with that of older adults. The hy-
pothesis that the locus of the aging effect is in the efficiency 
of information processing corresponds to an EZ-diffusion 
model in which only drift rate is free to vary between the age 
groups. A rival hypothesis may entail that the locus of the 
aging effect is in response conservativeness, and this cor-
responds to an EZ-diffusion model in which only boundary 
separation is free to vary between the age groups.

When parameters are constrained across experimen-
tal conditions or groups of participants, the number of 
observed variables becomes larger than the number of 
unobserved parameters, and this necessitates the use of 
model fitting. This fitting procedure requires that the 
lack of fit for MRT, VRT, and Pc be weighted, for in-
stance by the precision with which these quantities are 
estimated (i.e., weighted least squares; Seber & Lee, 
2003). Once parameters have been constrained and their 
optimal values determined by the weighted least-squares 
model-fitting procedure, the model selection issue be-
comes prominent again: Which model is better, the one 
in which the effect of age is attributed to differences in 
information uptake, or the one in which the age effect 
is due to differences in response conservativeness? For 
the EZ-diffusion model, an attractive model selection 
procedure would be to use split-half cross-validation 
(see, e.g., Browne, 2000): That is, the parameters of the 
model could be determined by fitting one half of the data 
set. These particular parameter estimates could then be 
used to assess the prediction error for the second half of 
the data set. The model with the lowest prediction error 
would be preferred.

EZ Diffusion or Ratcliff Diffusion?
The EZ-diffusion model is a considerable simplifica-

tion of the Ratcliff diffusion model. This is both good and 
bad. One of the advantages of using a simple model is that 
the results are more readily interpretable—hence, more 
easily communicated to other researchers. Another advan-
tage is that simple models are easily implemented. Fur-
thermore, simple models such as the EZ-diffusion model 
can be applied to very large data sets in a matter of sec-
onds. Finally, simple models are less prone to overfitting 
(i.e., modeling noise), and may therefore yield relatively 
low prediction errors to unseen data from the same source 
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ematical Psychology, Memphis, Tennessee (August 2005). We thank 
Andrew Heathcote and Francis Tuerlinckx for making their diffusion 
model fitting routines available to us. Correspondence concerning this 
article may be addressed to E.-J. Wagenmakers, Department of Psychol-
ogy, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, 
The Netherlands (e-mail: ewagenmakers@fmg.uva.nl).
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A disadvantage of a simple model such as the EZ model 
is that it may not capture all aspects of reality that one 
might consider important. For instance, with the starting 
point equidistant from the response boundaries and no 
across-trials variability in drift rate, the diffusion model 
predicts that the RT distribution for correct responses is 
identical to the one for error responses. Empirical work 
has shown that this is not always the case; errors can be 
systematically faster or systematically slower than correct 
responses (see, e.g., Ratcliff & Rouder, 1998). In contrast 
to the EZ-diffusion model, the Ratcliff diffusion model 
provides an elegant account of the relative speed of errors 
versus correct responses.

In this context, it is important to realize that the Rat-
cliff diffusion model is also a simplification of a dif-
fusion process with even more variables. For instance, 
the current mainstream version of the model (see, e.g., 
Ratcliff & Tuerlinckx, 2002) falsely assumes the absence 
of sequential effects (i.e., repetitions vs. alternations of 
stimuli; see Luce, 1986, pp. 253–271) and serial corre-
lations (see, e.g., Gilden, 2001; but see Wagenmakers, 
Farrell, & Ratcliff, 2004). Furthermore, the Ratcliff dif-
fusion model does not assume any across-trials variabil-
ity in boundary separation, despite the fact that it is very 
unlikely that participants are equally cautious on every 
trial of an experiment. Finally, the diffusion model does 
not have a control structure that is able to set, keep track 
of, and adjust the boundary separation parameter (see 
Botvinick, Braver, Barch, Carter, & Cohen, 2001; Jones, 
Cho, Nystrom, Cohen, & Braver, 2002; Vickers & Lee, 
1998).

At this point, it is useful to recall George Box’s famous 
adage “All models are wrong, but some are useful” (Box, 
1979, p. 202). The EZ-diffusion model is certainly useful 
in that it estimates the three most important unobserved 
variables of the Ratcliff diffusion model with minimal 
demands regarding the amount of data and the level of 
mathematical sophistication of the researcher.

In sum, the EZ-diffusion model cannot and should not 
replace the Ratcliff diffusion model, in the same way that 
the U.S. “EZ” tax forms cannot and should not replace the 
more elaborate tax forms. The choice of whether to apply 
the EZ-diffusion model or the Ratcliff diffusion model 
may therefore be determined to a large extent by the spe-
cific aim of the researcher. When the aim is to precisely 
describe the RT distributions or to study the relation be-
tween correct and error response times, the Ratcliff dif-
fusion model is obviously the right choice. When the aim 
is to address the speed–accuracy trade-off and estimate 
unobserved variables such as nondecision time, drift rate, 
and boundary separation, the EZ-diffusion model presents 
an attractive alternative.
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NOTES

1. Recently, Ratcliff and Tuerlinckx (2002) proposed parameter num-
ber eight, which is the probability of an RT “contaminant.” The inclusion 
of this parameter can improve the fit of the model, but in many applica-
tions the estimated percentage of contaminants is relatively low. The 
data, reported later, that are simulated by the Ratcliff diffusion model 
will not include any contaminants.

2. A complete description of the parameter values is available at the 
first author’s home page.

3. As a matter of fact, the equation is daunting, in the sense that the 
infinite series does not have an analytical solution, so one must resort to 
numerical solutions.

4. Equations 6 and 9 hold for both correct and error responses (see, 
e.g., Laming, 1973, p. 192, footnote 7; Link & Heath, 1975).

5. The close conceptual link between sequential sampling models 
(e.g., the diffusion model) and signal detection theory has also been a 
motivating factor in the work of Pew (1969), Emerson (1970), Balakrish-
nan et al. (2002), and Palmer et al. (2005).
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APPENDIX 
R Code for the EZ-Diffusion Model

This appendix lists the R function (R Development Core Team, 2004) that implements the EZ-diffusion 
model. As mentioned by Rouder and Lu (2005, p. 603), “R is a freely available, easy-to-install, open-source 
statistical package based on SPlus. It runs on Windows, Macintosh, and UNIX platforms and can be downloaded 
from www.R-project.org.”

The R function, get.vaTer, takes Pc, VRT, and MRT as input arguments and returns v, a, and Ter:

get.vaTer  function(Pc, VRT, MRT, s 0.1)
{

s2  s^2
# The default value for the scaling parameter s equals 0.1
if (Pc  0)
 cat(“Oops, Pc  0!\n”)
if (Pc  0.5)
 cat(“Oops, Pc  .5!\n”)
if (Pc  1)
 cat(“Oops, Pc  1!\n”)
# If Pc equals 0, .5, or 1, the method will not work, and
# an edge correction is required.
L  qlogis(Pc)
# The function “qlogis” calculates the logit.
x  L*(L*Pc^2 - L*Pc  Pc - .5)/VRT
v  sign(Pc-.5)*s*x^(1/4)
# This gives drift rate.
a  s2*qlogis(Pc)/v
# This gives boundary separation.
y  -v*a/s2
MDT  (a/(2*v)) * (1-exp(y))/(1 exp(y))
Ter  MRT - MDT
# This gives nondecision time.
return(list(v, a, Ter))

}

Now consider an EZ-diffusion process for which drift rate v  0.1, boundary separation a  0.14, Ter  
0.300, and s is set at its arbitrary default value of 0.1. With very many observations, this process will result in 
MRT  0.723, VRT  0.112, and Pc  .802 (these values are rounded). To illustrate and check the above code, 
the following command may be executed at the R prompt:

pars  get.vaTer(.802, .112, .723)

 Typing “pars” at the R prompt will then display the following:

[[1]]
[1] 0.09993853
[[2]]
[1] 0.1399702
[[3]]
[1] 0.30003

These values correspond to v, a, and Ter, respectively. The code above can of course also be easily implemented 
in programs such as SPSS or Excel. A JavaScript program that implements the EZ-diffusion model can be found 
at users.fmg.uva.nl/ewagenmakers/EZ.html.

(Manuscript received October 31, 2005; 
revision accepted for publication June 12, 2006.)

6. Ratcliff and Tuerlinckx (2002) studied model recovery of the Rat-
cliff diffusion model using 250 and 1,000 observations.

7. When the data are generated by the EZ-diffusion model, it is more 
efficient to include the error RTs in the calculation of MRT and VRT. 
However, this may not be the case when the model is misspecified. In 
addition, the focus on correct RTs is consistent with current practice in 
experimental psychology. For these reasons, we choose not to include the 
error RTs in the computations of MRT and VRT.

8. This test is available in R (R Development Core Team, 2004) as the 
function agostino.test() in the moments package.

9. This experiment was originally designed to study IQ differences in 
response speed using the diffusion model. Since the effects of IQ were not 
statistically reliable, the present analysis collapses over participants with 
relatively low IQ (n  32) and those with relatively high IQ (n  44).

10. We thank Andrew Heathcote for sending us his R routines for fit-
ting the Ratcliff diffusion model.


