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Abstract
We extend the FE-DMN method to fully coupled thermomechanical two-scale simulations of composite materials. In partic-
ular, every Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN). Such a
DMN serves as a high-fidelity surrogate model for full-field solutions on the microscopic scale of inelastic, non-isothermal
constituents. Building on the homogenization framework of Chatzigeorgiou et al. (Int J Plast 81:18–39, 2016), we extend
the framework of DMNs to thermomechanical composites by incorporating the two-way thermomechanical coupling, i.e.,
the coupling from the macroscopic onto the microscopic scale and vice versa, into the framework. We provide details on
the efficient implementation of our approach as a user-material subroutine (UMAT). We validate our approach on the micro-
scopic scale and show that DMNs predict the effective stress, the effective dissipation and the change of the macroscopic
absolute temperature with high accuracy. After validation, we demonstrate the capabilities of our approach on a concurrent
thermomechanical two-scale simulation on the macroscopic component scale.

Keywords Computational homogenization · Thermomechanical composites · Concurrent two-scale simulations · Deep
material networks · Hierarchical laminates · Short fiber reinforced polyamide

1 Introduction

Many common engineering materials are characterized by
a thermomechanically coupled mechanical behavior, i.e.,
involving a coupling between temperate and deformation. In
particular, variations in temperature may affect the mechan-
ical response of a structural material. In addition, deforma-
tions may lead to changes in temperature as well, e.g., via
changes in internal entropy or in the form of internal energy
dissipation. For instance, dissipation-induced self-heating is
commonly observed for thermoplastic polymers subjected
to cyclic loading. As such polymers are particularly sensi-
tive to temperature fluctuations, especially in the vicinity of
their glass transition temperature, deformation-induced self-
heating effects may significantly influence the mechanical
properties of such materials and even lead to premature fail-
ure [1].
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To complicate matters, many structural materials consist of
composite materials, i.e., they feature a (spatially varying)
complex microstructure. As the effective response of com-
posite materials depends both on the constituent materials
and the geometric composition of the microstructure, pre-
dicting the thermomechanical response of such materials is
a challenging task, even for rather simple geometries.
For instance, a monolithic finite element (FE) model of
a structural component, also resolving the microstructure
heterogeneities, is typically not feasible with today’s compu-
tational power. Alternatively and under a suitable separation
of scales, asymptotic homogenization methods [2–4] may
be used to derive so-called effective material models which
account for the geometric composition of the microstruc-
ture and the material behavior of the constituents on the
lower scale. Chatzigeorgiou et al. [5] applied first-order
asymptotic homogenization to composites of small-strain
non-isothermal generalized standard materials (GSM) [6]
and deduced the governing equations for the macroscopic
and microscopic scale. In particular, provided the force term
varies only slowly on the macroscopic scale, Chatzigeorgiou
et al. [5] deduced that the balance of linear momentum on
the microscopic scale, the thermomechanical cell problem,
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only depends on the macroscopic temperature, i.e., temper-
ature fluctuations on the microscopic scale constitute only
a lower-order contribution to the effective stress. By solving
the thermomechanical cell problem on a suitable microstruc-
ture, the effective, non-isothermal model of the composite
emerges naturally. For linear constituent materials, the effec-
tive material behavior can be pre-computed and cached for
later use. The outlined strategy does not, however, extend
to inelastic materials as the internal variables naturally live
on the microscopic scale and cannot be homogenized to
the macroscopic scale. For this reason, FE2 methods [7–11]
were developed. In a FE2 simulation, each Gauss point of
the macroscopic finite element simulation is furnished with
a finite element model of the microstructure on which the
cell problem is solved. Thus, the evolution of the internal
variables can be accounted for. The FE2 method for thermo-
mechanical composites was investigated, for instance, in the
context of thermo-elastoplasticity [12,13], phase transform-
ing polycrystals under dynamic loading [14] or single-crystal
thermo-elastoviscoplasticity [15]. Recently, Tikarrouchine et
al. [16] investigated a short-fiber reinforced composite in a
concurrent two-scale setting accounting for heat conduction
and convection but temperature-independent material prop-
erties.
As an alternative to FEmodels on the microscale, FFT-based
computationalmicromechanics [17–19]may be used to solve
the thermomechanical cell problem more efficiently giv-
ing rise to the so-called FE-FFT method [20–22]. Recently,
Wicht et al. [23] proposed an efficient, fully implicit FFT-
based solution scheme for thermomechanical composites.
To reduce the computational burdenon themicroscopic scale,
model order reduction techniques (MOR) exploit that the
cell problem is solved repeatedly, but with slightly differ-
ent input parameters, in order to derive a reduced order
model. MOR techniques include the transformation field
analysis (TFA) [24–27], the self-consistent clustering analy-
sis (SCA) [28–32] and the non-uniform transformation field
analysis (NTFA) [33–40]. These approaches can be incorpo-
rated into a concurrent two-scale framework giving rise to
the FE2R (R for reduced) method [41]. Furthermore, these
approaches allow to incorporate thermomechanical loading,
thermal eigenstrains and temperature-dependent material
parameters.However, they typically donot consider the back-
coupling of themechanical deformation onto the temperature
evolution.
In contrast to approximating the solution of the cell prob-
lem, alternative strategies seek to approximate the effective
properties directly. Data driven approaches, e.g., artificial
neural networks (ANN), are predestined for such tasks as
they effortless operate on a high-dimensional domain of
interest. For instance, the regularity of the effective stress
allows to approximate the stress–strain relationship directly.
Being by no means exhaustive, we refer to the works of

Jadid [42], Penumadu-Zhao [43] or Srinivasu et al. [44]
for different approaches. By considering the temperature
as an additional degree of freedom of the feature space,
ANNs can be extended to thermomechanical problems, see
for example the works of Ji at al. [45] or Li et al. [46].
Machine learning approaches were applied in a concurrent
two-scale setting both for isothermal and non-isothermal
problems, see, e.g., Acuna et al. [47] or Fritzen et al. [48].
Using ANNs comes with two significant drawbacks, how-
ever. For a start, the capabilities to extrapolate beyond the
training domain is limited for ANNs, in general. Secondly,
the underlying physical principles, e.g., thermodynamic con-
sistency or preservation of stress–strain monotonicity, may
be violated unless specifically accounted for by the model.
Recently, Masi and co-workers [49,50] proposed so-called
thermodynamics-based artificial neural networks (TANN)
which ensure thermodynamic consistency a priori. Their
findings indicate that the predictive capabilities of TANNs
outperform those of standard ANNs. Please note that the
mentioned approaches only consider a one-way thermome-
chanical coupling, i.e., from the temperature on the effective
properties, and not vice versa.
Applying the concepts underlying deep learning in a more
micromechanics-aware context, Liu and co-workers [51,52]
proposed so-called deep material networks (DMN) as a
surrogate model for micromechanical computations. To be
more precise, for a N -phase microstructure, they consider
a N -ary tree structure of N -phase laminates with intermit-
tent rotations associated with the edges of the tree as their
primary modeling approach. Instead of approximating the
stress–strain relationship directly, DMNs approximate the
effective stiffness of a fixed microstructure and variable con-
stituents. For identifying the free parameters of the DMN,
the so-called training process, Liu et al. [51,52] rely upon
stochastic gradient descent and automatic differentiation.
Once the training process is complete, DMNs can be applied
to inelastic problems at finite and infinitesimal strains with
impressive accuracy. Subsequently, direct DMNswere intro-
duced by Gajek et al. [53,54] which allow for an efficient
solution scheme in the inelastic setting as they do not involve
additional rotations. Furthermore, Gajek et al. [53]motivated
the approximation capabilities of (direct) DMNs by show-
ing that, to first-order in the strain rate, the effective inelastic
behavior of composite materials is determined by linear elas-
tic localization. In addition, Gajek et al. [53] clarified that
DMNs inherit thermodynamic consistency and stress–strain
monotonicity from their phases. The former is crucial for
stable and fast simulations, especially in a two-scale con-
text, as it ensures that the effective model inherits stabilizing
numerical properties, e.g., strong convexity, from its phases.
Recently, DMNs were augmented by cohesive zone mod-
els to account for interface damage [55] or multiscale strain
localization modeling [56]. Liu et al. [57] and Gajek et al.
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[54] extended DMNs to accelerate two-scale concurrent sim-
ulation giving rise to the FE-DMN method.
In this work, we extend the framework of direct DMNs
[53,54] to composites with full thermomechanical coupling,
effectively enabling thermomechanical two-scale simula-
tions of industrial problems. As point of departure, we
recapitulate the results of Chatzigeorgiou et al. [5] in Sect. 2,
who introduced a framework for the first-order asymptotic
homogenization of thermomechanical composites. Subse-
quently, we extend the framework of direct DMNs to
thermomechanical composites, see Sect. 3. We take special
care in incorporating the coupling of microscopic mechani-
cal deformation onto the macroscopic temperature and vice
versa into our approach. For this purpose, we exploit the
homogeneity of the absolute temperature on the microscopic
scale to arrive at an efficient solution scheme for solving the
balance of linear momentum of a direct DMN. To acceler-
ate a component-scale simulation of industrial complexity,
we discuss the efficient implementation of our approach as
a user-material subroutine (UMAT) only relying on the pro-
vided interfaces.
To demonstrate the capabilities of the proposed approach, we
consider a short-fiber reinforced polyamide featuring a pro-
nounced thermomechanical coupling, see Sect. 4. In Sect. 5,
we elaborate on the training and the validation of the iden-
tified DMN surrogate model separately. We show that the
DMN is able to predict the effective stress, the effective
dissipation as well as the deformation-induced change in
temperature of the composite with sufficient accuracy for all
investigated loading conditions and strain rates. Later on, we
demonstrate the power of our approach in Sect. 6, where we
conduct a fully coupled thermomechanical two-scale simu-
lation of a asymmetric notched specimen subjected to cyclic
loading also considering heat conduction and convection on
the macroscopic scale.

2 First-order asymptotic homogenization of
thermomechanical composites

In their work, Chatzigeorgiou et al. [5] introduced a frame-
work for the (first-order) asymptotic homogenization of
thermomechanical composites at small strains. More pre-
cisely, they considered quasi-static, non-isothermal gener-
alized standard materials (GSM) [6] and derived governing
equations for the microscopic and macroscopic scale.
Let Sym(d) denote the set of symmetric d × d matrices.
Then, in d ∈ {2, 3} spatial dimensions, we consider a small-
strain, quasi-static, non-isothermal GSM to be a quadruple
(Z , ψ, φ, z0) comprising

D1 a (sufficiently large) Banach vector space Z of internal
variables,

D2 a Helmholtz free energy density ψ : Sym(d) × R>0 ×
Z → R, which we assume to be differentiable w.r.t. all
arguments,

D3 an extended-real-valued dissipation potential φ : R>0 ×
Z → R ∪ {+∞}, which we assume to be proper, con-
vex, lower semicontinuous in its second argument, and
to satisfy φ(·, 0) = 0 as well as 0 ∈ ∂żφ(·, 0), where ∂żφ

denotes the subdifferential of the convex function φ w.r.t.
the second argument,

D4 and an element z0 ∈ Z serving as initial condition for the
dynamics.

For every strain path ε : [0, T ] → Sym(d), temperature path
θ : [0, T ] → R>0 and internal variables z : [0, T ] → Z
with final time T ∈ (0,∞], the Cauchy stress σ : [0, T ] →
Sym(d) is expressed in terms of the potential relation

σ (t) = ∂ψ

∂ε
(ε(t), θ(t), z(t)), (2.1)

and the evolution of the internal variables satisfies the initial
value problem described by Biot’s equation

∂ψ

∂ z
(ε(t), θ(t), z(t)) + ∂φ

∂ ż
(θ(t), ż(t)) = 0

with z(0) = z0. (2.2)

With these definitions at hand, we turn our attention to
the first-order homogenization of non-isothermal GSMs. We
refer to Chatzigeorgiou et al. [5] for more details.
We consider a macroscopic body � ⊆ R

d with macroscopic
point x̄ ∈ �. To every macroscopic point x̄, we associate a
(rectangular) two-phase periodic microstructure Y ⊆ R

d .
The microscopic cell problem The microstructure Y com-
prises two non-isothermal GSMs, i.e.,

(
Z1, ψ1, φ1, z1,0

)
and(

Z2, ψ2, φ2, z2,0
)
, with measurable characteristic functions

χ1/2 : Y → {0, 1} whose associated sets are mutually dis-
joint and cover all of Y , i.e., the conditions

χ1χ2 = 0 and χ1 + χ2 = 1 (2.3)

hold. Then, on the microscopic level, the so-called thermo-
mechanical cell problem of first-order homogenization, i.e.,
the (quasi-static) microscopic balance of linear momentum,
reads

divx

(
2∑

i=1

χi
∂ψi

∂ε
(ε̄ + ∇s

x u, θ̄ , zi )

)

= 0, (2.4)

where divx and ∇s
x refer to the divergence and the sym-

metrized gradient operator w.r.t. the microscopic point x ∈
Y , respectively. Furthermore, ε̄ : � × [0, T ] → Sym(d)

denotes the macrostrain, u : � × Y × [0, T ] → R
d symbol-

izes the periodic displacement fluctuation with anti-periodic
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normal derivative and z1/2 : � × Y × [0, T ] → Z1/2 stands
for the fields of internal variables. Chatzigeorgiou et al. [5]
established that, for first-order homogenization, the absolute
temperature is amacroscopic quantity, i.e., there is no temper-
ature fluctuation on the microscopic level. Most importantly,
there is no need to solve for the temperature on the micro-
scopic level. Thus, the macroscopic absolute temperature
θ̄ : � × [0, T ] → R>0 as well as the macrostrain ε̄ enter
Equation (2.4) as inputs and constitute the one-way coupling
between the macroscopic and the microscopic scale.
The macroscopic balance of linear momentum and the
macroscopic heat equation On the macroscopic level, two
governing equations emerge. First, the quasi-static balance of
linearmomentum, governing the evolution of themacrostrain
ε̄, reads

divx̄

〈
2∑

i=1

χi
∂ψi

∂ε
(ε̄ + ∇s

x u, θ̄ , zi )

〉

Y

+ b = 0, (2.5)

where 〈·〉Y denotes the volume average over Y

〈·〉Y = 1

|Y |
∫

Y
(·) dV . (2.6)

Furthermore, b : �×[0, T ] → R
d denotes the vector of vol-

ume forces and divx̄ designates the divergence operator w.r.t.
the macroscopic point x̄ ∈ �. Secondly, the macroscopic
heat equation reads

c̄ε
˙̄θ = w̄ − divx̄ (q̄) + D̄, (2.7)

which governs the evolution of the macroscopic absolute
temperature θ̄ . Here, w̄ : �×[0, T ] → R denotes themacro-
scopic heat source and q̄ : � × [0, T ] → R

d stands for the
macroscopic heat flux. The effective heat capacity at constant
strain c̄ε is given explicitly by

c̄ε = −θ̄

〈
2∑

i=1

χi
∂2ψ

∂θ2
(ε̄ + ∇s

x u, θ̄ , zi )

〉

Y

. (2.8)

To keep the notation reasonable, we introduced the thermo-
mechanical coupling term

D̄ = θ̄

〈
2∑

i=1

χi
∂2ψi

∂θ∂ε
(ε̄ + ∇s

x u, θ̄ , zi ) : ( ˙̄ε + ∇s
x u̇)

〉

Y

+ θ̄

〈
2∑

i=1

χi
∂2ψi

∂θ∂ z
(ε̄ + ∇s

x u, θ̄ , zi ) · żi

〉

Y

−
〈

2∑

i=1

χi
∂ψi

∂ z
(ε̄ + ∇s

x u, θ̄ , zi ) · żi

〉

Y

(2.9)

as an additional source term of the macroscopic heat equa-
tion. The former constitutes the back-coupling between the
microscopic scale and the evolution of the macroscopic
temperature. Please note that the coupling term D̄ may be
decomposed further. The first two terms are linked to changes
in entropy, whereas the last summand is commonly referred
to as the dissipation

D̄ = −
〈

2∑

i=1

χi
∂ψi

∂ z
(ε̄ + ∇s

x u, θ̄ , zi ) · żi

〉

Y

. (2.10)

The dissipation measures the dissipated energy of the com-
posite due to the evolution of the internal variables, e.g., the
dissipated energy due to plastic flow, and is the primary cause
for the self-heating of the material due to irreversible pro-
cesses.
Typically, in a concurrent two-scale setting, the macroscopic
balance of linear momentum (2.5) and the macroscopic heat
equation (2.7) are solved on the macroscopic scale while, in
every Gauss point of the macroscopic model, the thermo-
mechanical cell problem (2.4) is solved as well. Here, the
above-mentioned two-way thermomechanical coupling pre-
vails. On the one hand, the macrostrain and the macroscopic
absolute temperature influence the mechanical behavior at
the microscopic scale. On the other hand, the evolution of
the macroscopic absolute temperature is driven by the cou-
pling term D̄, which comprises deformation induced changes
of entropy and dissipated energy on the microscopic level.
In the article at hand, we consider speeding up such a thermo-
mechanical two-scale simulation by means of direct DMNs.
In this context, a DMN might be regarded as a surrogate for
the underlying microstructure for which the thermomechan-
ical cell problem (2.4) can be solved efficiently. However,
to use a DMN to speed up such a fully coupled thermome-
chanical two-scale simulation, the aforementioned two-way
thermomechanical coupling needs to be taken into account.
This will be the topic of the following section.

3 Direct deepmaterial networks for
thermomechanical composites

3.1 The framework of direct deepmaterial networks

We start with the formal definition of a direct DMN. For
more detailed information, we refer to Gajek et al. [53,54].
We consider a two-phase directDMN to be a perfect, ordered,
rooted binary tree of depth K , see Fig. 1 for an illustration.
Each node of the binary tree is given by a two-phase laminate
Bi

k with unknown direction of lamination ni
k and unknown

volume fractions ci
k,1 and ci

k,2. Here, we denote the depth
of a node by the letter k = 1, . . . , K and consistently index
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the horizontal position by the letter i = 1, . . . , 2k−1. Then,
the DMN’s free parameters are given by the directions of
lamination, which we collect in the form of a (large) vector


n =
[
n1K , . . . , n2

K−1

K , n1K−1, . . . , n
2K−2

K−1 , . . . , n11
]

∈
(
R

d
)2K −1

, (3.1)

and the volume fractions of all laminates ci
k,1 and ci

k,2. For
reasons of numerical stability during the parameter identifi-
cation, Liu et al. [51,52] proposed a change of coordinates
when parameterizing the volume fractions. For this reason,
the laminates’ volume fractions are expressed in terms of
the (input) weights wi

K+1. These weights are assigned to the
laminates at the bottom layer of the binary tree in pairs. By
traversing the binary tree from the leaves to the root, the
weights on level k are inductively computed by a pairwise
summation of the weights of the previous level, i.e.,

wi
k = w2i−1

k+1 + w2i
k+1 (3.2)

holds, see Fig. 1a for a schematic. Then, for every laminate,
the volume fractions ci

k,1 and ci
k,2 are computed by normal-

ization

ci
k,1 = w2i−1

k+1

w2i−1
k+1 + w2i

k+1

and ci
k,2 = 1 − ci

k,1. (3.3)

For consistency, the weights wi
K+1 need to be non-negative

and sum to unity, i.e., the conditions

wi
K+1 ≥ 0 and

2K∑

i=1

wi
K+1 = 1 (3.4)

hold. In the following, we collect the input weights wi
K+1

into the vector


w =
[
w1

K+1, . . . , w
2K

K+1

]
∈ R

2K

≥0. (3.5)

Thus, the network topology of a two-phase direct DMN of
depth K is uniquely determined by the vector 
n, containing
2K − 1 independent directions of lamination, and the vector

w of weights comprising 2K scalar parameters, for which
2K − 1 parameters are independent. We call the process of
identifying these free parameters the offline training. During
the offline training, the DMN is fitted to the effective elastic
response of a fixed microstructure Y but varying stiffness
parameters of the constituting phases. Afterwards, during the
online evaluation, the free parameters 
n and 
w are fixed.
Then, the DMN acts as a high-fidelity surrogate model for
inelastic computations on the microscopic scale.

3.2 Offline training

For isothermal problems, DMNs are trained on linear elastic
data alone, see Liu et al [51,52]. As we wish to predict the
effective stress response of the composite for nonlinear and
non-isothermal constituents, we assume that the linear elastic
training still suffices. Thus, the following section serves as a
brief summary of Gajek et al. [53,54].
In the following, we treat the linear elastic training data as
given, see Sect. 5.1 for more information on the sampling
of the training data. The training data is represented by a

sequence of triples of stiffnesses
{(
C̄

s,Cs
1,C

s
2

)}Ns

s=1 where s
enumerates the sample index and Ns the number of samples.
For a fixed microstructure Y , the training data is generated
by sampling Ns tuples of input stiffnesses

(
C

s
1,C

s
2

)
and

computing the associated effective stiffness C̄s by means of
computational homogenization.
The offline training, i.e., the parameter identification, is
expressed by solving the optimization problem

J (
n, 
w) −→ min

n, 
w

s.t. wi
K+1 ≥ 0. (3.6)

Please note that there is some freedom in selecting a suitable
objective function J , see, e.g., Liu et al. [51,52] or Gajek et
al. [53,54]. In this work, we follow Gajek et al. [53,54] and
prescribe the following objective function

J (
n, 
w) = 1

Nb

q

√√
√
√

Nb∑

s=1

(∥∥ C̄s − DMNL (
C

s
1,C

s
2, 
n, 
w) ∥∥p∥

∥ C̄s
∥
∥

p

)q

+λ

⎛

⎝
2K∑

i=1

wi
K+1 − 1

⎞

⎠

2

. (3.7)

Here, the ‖·‖p-norm on the stiffness tensors is defined via the

p-norm of the components in (normalized) Voigt-Mandel
notation and p, q ≥ 1 and λ  0 hold. Furthermore,
DMNL denotes the DMN’s linear elastic homogenization
function

DMNL : C × C ×
(
R

d
)2K −1

×R
2K → C, (C1,C2, 
n, 
w) �→ C̄, (3.8)

which maps two input stiffnesses C1, C2 and the parameter
vectors 
n, 
w to the DMN’s predicted effective stiffness. Effi-
ciently evaluating the linear elastic homogenization function
DMNL is paramount and involves computing a sequence of
effective stiffnesses of two-phase laminates which are prop-
agated from the bottom to the top of the binary tree. More
formally, the effective stiffness

C
i
k = Bi

k(C
2i−1
k+1 ,C2i

k+1) (3.9)
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Fig. 1 Weight and stiffness
propagation (from the bottom to
the top) in a two-phase direct
DMN [54] of depth K = 3

(a) (b)

of a single laminate at level k and position i with direction of
lamination ni

k and volume fractions ci
k,1 and ci

k,2 is computed
by solving the equation

(
P(ni

k) + λ
[
C

i
k − λIs

]−1
)−1

= ci
k,1

(
P(ni

k) + λ
[
C
2i−1
k+1 − λIs

]−1
)−1

+ci
k,2

(
P(ni

k) + λ
[
C
2i
k+1 − λIs

]−1
)−1

(3.10)

for the effective stiffnessCi
k , see Section 9.5 inMilton’s book

[58].With Is : Sym(d) → Sym(d), we denote the identity on
Sym(d) and P : Sym(d) → Sym(d) stands for a projection
operator which reads

(P(n))mnop = 1

2
(nmδnon p + nnδmon p

+nmδnpno + nnδmpno) − nmnnnon p (3.11)

in Cartesian coordinates. Here, δ denotes theKronecker sym-
bol and λ is a parameter which needs to be chosen either
sufficiently large or suitably small, see Appendix in Kabel et
al. [59]. Starting at level K + 1, the input stiffnesses C1, C2

are assigned pairwise to laminates at the K -th level and the
respective effective stiffnesses are computed. These homog-
enized stiffnesses serve as the input for the next higher level,
i.e., the level K − 1, until the effective stiffness of the DMN
C
1
1 = C̄ emerges on the highest level. We refer to Fig. 1b for

a schematic of the stiffness propagation.
The objective function J penalizes the difference of the
DMN’s predicted effective stiffness to the actual effective
stiffness C̄s of microstructure Y for all sampled input stiff-
nesses

{(
C

s
1,C

s
2

)}Ns

s=1. Additionally, the mixing constraint

on the weights

2K∑

i=1

wi
K+1 = 1 (3.12)

is encoded by the quadratic penalty term of Equation (3.7).
To ensure that the non-negativity constraint on the weights
wi

K+1 ≥ 0 holds, we express the constrained weights


w ∈ R
2K

≥0 in terms of the unconstrained weights 
v =
[
v1, . . . , v2K

] ∈ R
2K

by projecting each element of 
v onto
the positive real number line, i.e.,


w = 〈
v〉+ with 〈·〉+ : R2K → R
2K

≥0,


v �→ [
max(0, v1), . . . ,max(0, v2K )

]
, (3.13)

holds. In thisway, the regressionproblem (3.6)maybe rewrit-
ten as

J (
n, 〈
v〉+) −→ min

n,
v

, (3.14)

which we solve by means of accelerated stochastic gradient
descent using mini batches of size Nb. A training epoch j
consists of the following steps: First, the loss function (3.7)
is evaluated for all stiffness samples in a batch. Then, the
gradients ∂ J/∂ 
n (
n j , 〈
v j 〉+

)
, ∂ J/∂ 
v (
n j , 〈
v j 〉+

)
are com-

puted by means of automatic differentiation. Subsequently,
the fitting parameters are updated by


n j+1 = 
n j − α
n
∂ J

∂ 
n
(
n j , 〈
v j 〉+

)
,


v j+1 = 
v j − α
v
∂ J

∂ 
v
(
n j , 〈
v j 〉+

)
and 
w j = 〈
v j 〉+ (3.15)

whereα
n, α
v ∈ R>0 strictly larger than zero denote the learn-
ing rates. This procedure is repeated for all batches in the
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training set and for a pre-defined number of epochs. Upon
convergence, the unknown fitting parameters of the DMN,
i.e., 
n and 
w, are given.

3.3 Online evaluation

For fixed fitting parameters 
n and 
w, the goal of the online
evaluation is to efficiently integrate a deep material networks
implicitly at a singleGauss point of amacroscopicFE simula-
tion. Indeed, directDMNs are defined as a hierarchy of nested
laminates. For this reason, they inherit thermodynamic con-
sistency and stress–strain monotonicity from their phases,
see Section 3.1 and Appendix C in Gajek et al. [53] for a
discussion. Thus, extending DMNs to non-isothermal prob-
lems does not infer any challenges from the point of view of
thermodynamics. The governing equation, i.e., the DMN’s
balance of linear momentum, emerges naturally by incor-
porating the homogeneity of the absolute temperature into
the framework. Furthermore, considering the back-coupling
from the microscopic onto the macroscopic scale is straight-
forward as well. Both will be explained in the following.
We consider a two-phase DMN of depth K comprising
two non-isothermal GSMs G1 = (Z1, ψ1, φ1, z0,1) and
G2 = (Z2, ψ2, φ2, z0,2) as phases. We consider the former
as a single laminate with a complex kinematics, compris-
ing 2K independent phases in total, see Gajek et al. [53] for a
schematic.We index these phases by the letter i = 1, . . . , 2K

and assign to each phase the non-isothermal GSM Gi which
alternates between G1 and G2, i.e.,

Gi =
{
G1 = (Z1, ψ1, φ1, z0,1), i odd,
G2 = (Z2, ψ2, φ2, z0,2), i even.

(3.16)

Let the superscript n refer to the n-th time step at time
tn and let �t = tn+1 − tn denote the time incre-
ment. Then, for each phase i = 1, . . . , 2K , discretiz-
ing Biot’s equation (2.2) in time with an implicit Euler
method gives rise to the condensed free energy potential
i : Sym(d) × R>0 × Zi → R,

i

(
εn+1

i , θn+1
i , zn

i

)
= inf

zn+1
i ∈Zi

(
ψi

(
εn+1

i , θn+1
i , zn+1

i

)

+�t φi

(

θn+1
i ,

zn+1
i − zn

i

�t

))

,

(3.17)

solely depending on the strain εn+1
i ∈ Sym(d), the temper-

ature θn+1
i ∈ R>0 and the internal variables zn

i ∈ Zi of the
last converged time step. Then, for a fixed temperature, the
stress of phase i

σ n+1
i = ∂i

∂ε

(
εn+1

i , θn+1
i , zn

i

)
(3.18)

is given by a nonlinear elastic law, see Lahellec-Suquet [60]
for more information. For the sake of exposition, we omit
explicit reference to time step n + 1 from here on.
First, we consider the kinematics of the DMN by collect-
ing the phase strains into the vector 
ε = [

ε1, . . . , ε2K

] ∈
(Sym(d))2

K
, introducing the vector of macrostrains 
̄ε =

[ε̄, . . . , ε̄] ∈ (Sym(d))2
K
and the vector of the unknown

displacement jumps 
a ∈ (Rd)2
K −1. The latter inherits its

ordering from the vector of lamination directions 
n. Then,
the DMN’s kinematics admits the representation


ε = 
̄ε + A
a, (3.19)

where A : (Rd)2
K −1 → (Sym(d))2

K
is a gradient-type oper-

ator comprising the DMN’s topology, i.e., the tree structure,
lamination directions and volume fractions, into a single lin-
ear mapping, see Gajek et al. [53] for the derivation of the
special structure of A. Secondly, the homogeneity of the
absolute temperature on the microscopic scale, see Sect. 2,
infers that only the macroscopic absolute temperature θ̄

needs to be considered, i.e., θi ≡ θ̄ holds for all phases
i = 1, . . . , 2K . Here, the macroscopic absolute temperature
θ̄ and the macrostrain ε̄ act as inputs to the DMN. Both
are provided by the macroscopic finite element simulation
for every Gauss point and for every increment of the global
(Newton) solver. As outputs, the effective stress σ̄ , the ther-
momechanical coupling term D̄ and algorithmic tangents,
i.e., the partial derivatives of the effective stress and ther-
momechanical coupling term w.r.t. the effective strain and
macroscopic temperature, need to be returned.
We start with deriving the governing equation of a thermome-
chanically coupled direct DMN. Let ̄ : (Sym(d))2

K×Z →
R denote the averaged condensed free energy of the DMN

̄(
ε, θ̄ , 
z n) =
2K∑

i=1

wi
K+1i (εi , θ̄ , zn

i ) (3.20)

where 
z n =
[
zn
1, . . . , z

n
2K

]
∈ Z := Z1⊕ Z2⊕· · ·⊕ Z1⊕ Z2

denotes the vector of internal variables of the last time step.
Then, critical points of the optimization problem

̄(
̄ε + A
a, θ̄ , 
z n) −→ min

a∈(Rd )2

K −1
(3.21)

encode the DMN’s (microscopic) balance of linear momen-
tum

ATW 
σ (
̄ε + A
a, θ̄ , 
z n) = 0. (3.22)

Here, 
σ = [
σ 1, . . . , σ 2K

] ∈ (Sym(d))2
K

represents the
vector of phase stresses for which Relation (3.18) holds. Fur-
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thermore, the mass matrix W : Sym(d)2
K → Sym(d)2

K

W = diag
(
w1

K+1, . . . , w
2K

K+1

)
(3.23)

associates the weights wi
K+1 to the corresponding phase

stresses σ i and may be represented by a diagonal matrix.
Indeed, ATW : (Sym(d))2

K → (Rd)2
K −1 may be regarded

as a divergence-type operator, such that the similarity ofRela-
tion (3.22) to the thermomechanical cell problem in general
form (2.4) is immediately revealed.
For solving the DMN’s balance of linear momentum (3.22)
for the unknown displacement jumps 
a, we rely upon New-
ton’s method. Let j denote the j-th Newton increment. Then,
for an initial guess 
a0 ∈ (Rd)N−1, the unknowndisplacement
jump vector is iteratively updated,


a j+1 = 
a j + s j �
a j , (3.24)

for which the increment �
a j ∈ (
R

d
)2K −1

solves the linear
system

[
ATW

∂ 
σ
∂
ε (
̄ε + A 
a j , θ̄ , 
z n)A

]
�
a j

= −ATW 
σ (
̄ε + A 
a j , θ̄ , 
z n). (3.25)

To ensure convergence, a step size s j ∈ (0, 1] less than unity
may arise from backtracking, and the Jacobian ∂ 
σ/∂
ε may
be represented by a block-diagonal matrix comprising the
(stress–strain related) algorithmic tangents of the phasemate-
rials ∂σ i/∂ε (εi , θ̄ , zn

i ), i.e.,

∂ 
σ
∂
ε (
ε, θ̄ , 
z n) = block-diag
(

∂σ 1

∂ε
(ε1, θ̄ , zn

1), . . . ,
∂σ 2K

∂ε
(ε2K , θ̄ , zn

2K )

)
(3.26)

holds. Upon convergence, the DMN’s effective stress σ̄ is
computed by averaging the phase stresses by

σ̄ = [Is, Is, . . . , Is]
TW 
σ (
̄ε + A
a, θ̄ , 
z n), (3.27)

where [Is, . . . , Is] ∈ Sym(d)2
K
stand for a vector of the

identity operators on Sym(d) and W constitutes the weight
matrix (3.23).
In Sect. 2, we learned that the evolution of the macroscopic
temperature θ̄ is coupled to the microscopic scale by the
thermomechanical coupling term D̄. For computing D̄ effi-
ciently, we introduce the phase-wise coupling terms

Di (εi , θ̄ , zn
i ) = θ̄

∂2i

∂θ∂ε
(εi , θ̄ , zn

i ) : εi − εn
i

�t

+
[
θ̄

∂2i

∂θ∂ z
(εi , θ̄ , zn

i ) − ∂i

∂ z
(εi , θ̄ , zn

i )

]
· zi − zn

i

�t
(3.28)

for every phase i = 1, . . . , 2K , individually. With the vector
of coupling terms 
D = [

D1, . . . , D2K

] ∈ R
2K

and the vector

of ones, [1, . . . , 1] ∈ R
2K

, we compute D̄ by averaging, i.e.,

D̄ = [1, . . . , 1]TW 
D(
̄ε + A
a, θ̄ , 
z n) (3.29)

holds.
To employ a DMN in a two-scale setting, four algorithmic
tangents need to be computed and provided to the macro-
scopic solver. We start with the algorithmic tangents related
to the effective stress. Derivation of the effective stress
σ̄ (3.27) w.r.t. the effective strain ε̄ and the absolute temper-
ature θ̄ gives rise to the DMN’s (stress-related) algorithmic
tangents

C
algo
ε̄ := ∂ σ̄

∂ ε̄
= [Is, . . . , Is]

TW
[
∂ 
σ
∂ ε̄

(
̄ε + A
a, θ̄ , 
z n)

+∂ 
σ
∂
ε (
̄ε + A
a, θ̄ , 
z n)A

∂ 
a
∂ ε̄

]
(3.30)

and

C
algo
θ̄

:= ∂ σ̄

∂θ̄
= [Is, . . . , Is]

TW
[
∂ 
σ
∂θ̄

(
̄ε + A
a, θ̄ , 
z n)

+∂ 
σ
∂
ε (
̄ε + A
a, θ̄ , 
z n)A

∂ 
a
∂θ̄

]
. (3.31)

To get compact expressions, we introduced the vectors of
algorithmic tangents

∂ 
σ
∂ ε̄

(
ε, θ̄ , 
z n)=
[
∂σ 1

∂ε
(ε1, θ̄ , zn

1), . . . ,
∂σ 2K

∂ε
(ε2K , θ̄ , zn

2K )

]

(3.32)

and

∂ 
σ
∂θ̄

(
ε, θ̄ , 
z n)=
[
∂σ 1

∂θ
(ε1, θ̄ , zn

1), . . . ,
∂σ 2K

∂θ
(ε2K , θ̄ , zn

2K )

]

(3.33)

which arise by inserting ∂σ i/∂ε (εi , θ̄ , zn
i ) and ∂σ i/∂θ

(εi , θ̄ , zn
i ), i = 1, . . . , 2K , into column vectors. To evaluate

Expression (3.30) and (3.31), the partial derivatives of the
strain jumps with respect to the macrostrain ∂
a/∂ ε̄ and the
absolute temperature ∂ 
a/∂θ̄ need to be computedfirst. To this
end, differentiating the balance of linear momentum (3.22)
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with respect to the macrostrain ε̄ and the absolute tempera-
ture θ̄ yields the linear systems

[
ATW

∂ 
σ
∂
ε (
̄ε + A
a, θ̄ , 
z n)A

]
∂ 
a
∂ ε̄

= −ATW
∂ 
σ
∂ ε̄

(
̄ε + A
a, θ̄ , 
z n) (3.34)

and
[
ATW

∂ 
σ
∂
ε (
̄ε + A
a, θ̄ , 
z n)A

]
∂ 
a
∂θ̄

= −ATW
∂ 
σ
∂θ̄

(
̄ε + A
a, θ̄ , 
z n) (3.35)

which need to be solved for ∂ 
a/∂ ε̄ and ∂ 
a/∂θ̄ . By comparing
Equations (3.34) and (3.35) to (3.25), we observe that all
three problems share the same linear operator, i.e., only the
right hand sides differ. Using a direct solver, e.g., a Cholesky
decomposition, the matrix decomposition can be reused to
minimize the computational overhead.
Derivation of the effective coupling term D̄ w.r.t. themacros-
train ε̄ and absolute temperature θ̄ gives rise to the DMN’s
(energy-related) algorithmic tangents

D
algo
ε̄ := ∂ D̄

∂ ε̄
= [1, . . . , 1]T W

[
∂ 
D
∂ ε̄

(
̄ε + A
a, θ̄ , 
z n)

+∂ 
D
∂
ε (
̄ε + A
a, θ̄ , 
z n)A

∂ 
a
∂ ε̄

]

(3.36)

and

D
algo
θ̄

:= ∂ D̄

∂θ̄
= [1, . . . , 1]T W

[
∂ 
D
∂θ̄

(
̄ε + A
a, θ̄ , 
z n)

+∂ 
D
∂
ε (
̄ε + A
a, θ̄ , 
z n)A

∂ 
a
∂θ̄

]

. (3.37)

As before, ∂ 
D/∂
ε (
ε, θ̄ , 
z n) denotes the block-diagonal
matrix of phase-wise algorithmic tangents

∂ 
D
∂
ε (
ε, θ̄ , 
z n) = block-diag

(
∂ D1

∂ε
(ε1, θ̄ , zn

1), . . . ,
∂ D2K

∂ε

(ε2K , θ̄ , zn
2K )

)
.

(3.38)

Furthermore, for brevity, the vectors of the (energy-related)
algorithmic tangents

∂ 
D
∂ ε̄

(
ε, θ̄ , 
z n) =
[

∂ D1

∂ε
(ε1, θ̄ , zn

1), . . . ,
∂ D2K

∂ε
(ε2K , θ̄ , zn

2K )

]

(3.39)

and

∂ 
D
∂θ̄

(
ε, θ̄ , 
z n) =
[

∂ D1

∂θ
(ε1, θ̄ , zn

1), . . . ,
∂ D2K

∂θ
(ε2K , θ̄ , zn

2K )

]

(3.40)

were introduced. Indeed, to efficiently compute Relations
(3.36) and (3.37), the already computed partial derivatives
∂ 
a/∂ ε̄ and ∂ 
a/∂θ̄ are reused.
Later on in Sect. 5.4, we take a closer look at the effective
dissipation D̄ to assess the self-heating of the DMN under
cyclic and non-cyclic loading. For this reason, we compute
the phase-wise dissipation by

Di (εi , θ̄ , zn
i ) = −∂i

∂ z
(εi , θ̄ , zn

i ) · zi − zn
i

�t
with


D = [
D1, . . . ,D2K

] ∈ R
2K

. (3.41)

Then, the effective dissipation is computed by averaging

D̄ = [1, . . . , 1]TW 
D(
̄ε + A
a, θ̄ , 
z n). (3.42)

The pseudo-code summarizing the relevant steps of the algo-
rithm can be found in Algorithm 1. Please note that the
effective stress σ̄ , the effective thermomechanical coupling
term D̄, the effective dissipation D̄ and the algorithmic tan-
gents C

algo
ε̄ , Calgo

θ̄
, Dalgo

ε̄ and D
algo
θ̄

are computed after the
convergence of Newton’s method for reasons of numerical
efficiency.

4 Short fiber reinforced polyamide

In general, thermoplastic polymers feature a pronounced
thermomechanical coupling. For this reason, we study a short
fiber reinforced polyamide 6.6 (PA66) as our benchmark
composite.As reinforcement,we consider E-glass fiberswith
a (uniform) fiber length of L f = 200 μm and a fiber diam-
eter of Df = 10 μm. We choose a fiber volume fraction
of cf = 16%, which correspond to a fiber mass fraction of
approximately 30%. The fiber orientation is described by a
transversely isotropic fiber orientation tensor of second order
[61] which reads

A =
∧
diag (0.8, 0.1, 0.1) (4.1)

in Cartesian coordinates, i.e., 80% of the fibers point in the e1
direction,whereas 20%of the fibers are uniformly distributed

123



1096 Computational Mechanics (2022) 69:1087–1113

Algorithm 1 Pseudo-code for the offline phase: Fixed parameters: tol, maxit, maxbacktrack, γ Input: ε̄n+1, θ̄n+1, 
z n , 
a n .
Output: σ̄ n+1, D̄n+1, Calgo

ε̄ , Calgo
θ̄

, Dalgo
ε̄ , Dalgo

θ̄

1: 
a n+1 ← 
a n � Reuse old displacement jumps with 
a 0 ← 0.

2: res ← Residual(ε̄n+1, θ̄n+1, 
a n+1, 
z n) � Compute residual
3: for i = 1 to maxit do

4:
[
ATW ∂ 
σ

∂
ε A
]
�
a n+1 = −ATW 
σ � Solve linear system

5: res ← Backtracking(ε̄n+1, θ̄n+1, 
a n+1,�
a n+1, 
z n, res) � Update displacement jumps
6: if res < tol then
7: break � Break if residual is smaller than tolerance
8: end if
9: end for
10: Update state variables 
z n to 
z n+1 and compute σ̄ n+1, D̄n+1, D̄n+1, Calgo

ε̄ , Calgo
θ̄

, Dalgo
ε̄ , Dalgo

θ̄

11:
12: function Residual(ε̄n+1, θ̄n+1, 
a n+1, 
z n)

13: 
ε n+1 ← 
̄ε n+1 + A
a n+1 � Compute phase strains

14: for i = 1 to 2K do

15: σ n+1
i ← ∂i

∂ε

(
εn+1

i , θ̄n+1, zn
i

)
� Evaluate material laws

16: end for

17: res ←
∥∥∥ ATW 
σ n+1

∥∥∥
F

(2K −1)
∥∥ σ̄ n+1

∥∥
F

with σ̄ n+1 ← ∑2K

i=1 wi
K+1σ

n+1
i � Compute residual

18: return res
19: end function
20:
21: function Backtracking(ε̄n+1, θ̄n+1, 
a n+1, �
a n+1, 
z n , resold)

22: 
a n+1 ← 
a n+1 + �
a n+1 � Update displacement jumps

23: res ← Residual(ε̄n+1, θ̄n+1, 
a n+1, 
z n) � Update residual
24: for i ← 0 to maxbacktrack − 1 do
25: if res < resold then
26: break � Break if residual decreases
27: end if

28: 
a n+1 ← 
a n+1 − γ i (1 − γ )�
a n+1 � Backtracking: update displacement jumps
29: res ← Residual(ε̄n+1, θ̄n+1, 
a n+1, 
z n) � Backtraking: update residual
30: end for
31: return res
32: end function

in the e2-e3 plane. Figure 2 illustrates an example of such a
microstructure comprising 577 straight, cylindrical fibers.
E-glass fibers

We model the E-glass fibers as isotropic, linear thermoe-
lastic. We rely upon the commonly used additive splitting of
the volume-specific Helmholtz free energy density into two
parts

ψ(ε, θ) = ψmech(ε, θ) + ψheat(θ). (4.2)

The first part ψmech(ε, θ) represents the storage of mechan-
ical energy whereas the second part ψheat(θ) represent the
heat-storage alone. We assume the heat capacity at constant
strain to be independent of the deformation ε. Thus, the
mechanical part of the Helmholtz free energy ψmech(ε, θ)

may at most be linear in the temperature and

cε(θ) = −θ
∂2ψheat

∂θ2
(θ) (4.3)

holds. For a constant heat capacity at constant strain cε(θ) =
c0, the heat storage part of the Helmholtz free energy reads

ψheat(θ) = c0

[
(θ − θ0) − θ ln

(
θ

θ0

)]
, (4.4)

where θ0 stands for the reference temperature. The mechani-
cal part of theHelmholtz free energy is given by the following
quadratic form

ψmech(ε, θ) = 1

2
ε : C [ε] − ε : C[α(θ − θ0)], (4.5)
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Fig. 2 Generated microstructure realization comprising 577 fibers

such that the stress response of the material computes to

σ = C [ε − α(θ − θ0)] . (4.6)

Both the stiffnessC and the coefficient of thermal expansion
α are assumed to be isotropic, i.e., the following relations

C = 3KP1 + 2GP2 and α = α01 (4.7)

hold, with the projection operators P1 : Sym(d) → Sph(d)

and P2 : Sym(d) → Dev(d) on the spherical and deviatoric
subspaces of Sym(d) which read

(P1)mnop = 1

3
δmnδop and (P2)mnop

= 1

2
(δmoδpn + δmpδon) − 1

3
δmnδop (4.8)

in Cartesian coordinates and 1 : Rd → R
d denotes the iden-

tity on R
d . The bulk modulus K and the shear modulus G

may be expressed in terms of the Young’s modulus E and
the Poisson’s ratio ν, i.e.,

K = E

3(1 − 2ν)
and G = E

2(1 + ν)
. (4.9)

As the material is purely elastic, the dissipation potential
vanishes identically φ(θ) ≡ 0. Thus, the thermomechanical
coupling term

D(ε, θ) = θ
∂2ψ

∂θ∂ε
(ε, θ) : ε̇ = −θ ε̇ : C [α] (4.10)

Table 1 Material parameters of the E-glass fibers [16]

Young’s modulus E = 72.0 GPa
Poisson’s ratio ν = 0.26

Heat capacity c0 = 2.1 × 106 J m−3 K−1

Thermal expansion α0 = 9 × 10−6 K−1

Thermal conductivity κ0 = 0.93 W m−1 K−1

is solely dependent on the strain rate ε̇ due to the vanish-
ing dissipation, i.e., D ≡ 0 holds. In fact, a non-vanishing
strain rate causes self-cooling under hydrostatic extension
and self-heating under hydrostatic compression. This effect
is commonly referred to asGough-Joule effect, see, e.g., Sec-
tion 96 in Truesdell-Noll [62]. The material parameters for
the E-glass fibers are taken from Tikarrouchine et al. [16]
and summarized in Table 1.
Polyamide 6.6 matrix For modeling the material behav-
ior of the PA66 matrix, we adapt the model proposed by
Krairi and co-workers [63], which was specifically derived
for thermoplastic polymers under non-isothermal conditions.
The model couples linear viscoelasticity, viscoplasticty and
thermal effects such as thermal softening and dissipative self-
heating. More precisely, the linear viscoelastic part of the
model is given by a generalized Maxwell model comprising
N Maxwell elements, and the viscoplastic part is governed
by J2-viscoplasticity. We refer to Krairi et al. [63] for all
underlying modeling assumptions and the experimental cal-
ibration of the model.
For the PA66matrix, we prescribe the following heat-storage
related free energy

ψheat(θ) = c0

[
(θ − θ0) − θ ln

(
θ

θ0

)]
. (4.11)

Furthermore, the mechanical part of the Helmholtz free
energy reads

ψmech(ε, θ, z) = 1

2
(ε − εvp) : C∞[ε − εvp]

− (ε − εvp) : C∞[α(θ − θ0)]
+
∫ εp

0
H(θ, ε̄p) dε̄p

+ 1

2

N∑

i=1

(ε − εvp − εv,i ) : Ci [ε − εvp − εv,i ]

−
N∑

i=1

(ε − εvp − εv,i ) : Ci [α(θ − θ0)].

(4.12)

For readability, we collect the state variables, i.e., the
accumulated plastic strain εp, the viscoplastic strain εvp

and the viscoelastic strains
{
εv,i

}N
i=1 into the state vector
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z = [
εp, εvp, εv,1, . . . , εv,N

] ∈ Z := R≥0 × Dev(d) ×
Sym(d)×N

.
With the Helmholtz free energy (4.12) at hand, the material’s
stress response computes to

σ = C∞[ε − εvp − α(θ − θ0)]

+
N∑

i=1

Ci [ε − εvp − εv,i − α(θ − θ0)]. (4.13)

For a fixed viscoplastic strain εvp, we assume the material
to be linear and isotropic, both in its long-term elastic and
its purely viscoelastic response, and to feature an isotropic
thermal expansion. More precisely, the stiffness governing
infinitely slow processes C∞, the stiffness Ci associated to
the i-th dashpot and the coefficient of thermal expansion α

admit the representations

C∞ = 3K∞P1 + 2G∞P2, Ci = 3KiP1 + 2GiP2 and

α = α01. (4.14)

The bulk K∞, Ki and shear moduli G∞, Gi are expressed in
terms of the Young’s moduli E∞, Ei and the Poisson’s ratio
ν, i.e., the following relations

K∞ = E∞
3(1 − 2ν)

, Ki = Ei

3(1 − 2ν)
,

G∞ = E∞
2(1 + ν)

and Gi = Ei

2(1 + ν)
(4.15)

hold. Indeed, for themodel at hand, the bulk and shearmoduli
Ki and Gi are coupled due to an assumed constant Pois-
son’s ratio ν, see Krairi et al. [63]. Such an assumption is not
unusual if only experimental data from uniaxial experiments
are available.
Concerning the thermo-viscoelastic behavior, we assume the
PA66 to be thermorheologically simple, i.e., the viscosity
tensor Vi associated to the i-th dashpot of the generalized
Maxwell model should have the form

Vi = aθ (θ)
(
3Ki τK,i P1 + 2GiτG,i P2

)
, (4.16)

where aθ : R>0 → R>0 denotes a temperature-dependent
shift function. The volumetric and deviatoric relaxation times

τK,i = τi Ei

Ki
and τG,i = τi Ei

Gi
(4.17)

are expressed in terms of the Young’s modulus Ei , the bulk
and shear moduli Ki and Gi and the relaxation time τi . The
fluidity tensor Fi is given by the pseudoinverse of the viscos-
ity tensor Fi = V

†
i , giving rise to the evolution equation for

the viscous strain

ε̇v,i = Fi
[
σ v,i

]
, (4.18)

where σ v,i denotes the (viscous) partial stress

σ v,i = Ci [ε − εvp − εv,i − α(θ − θ0)] (4.19)

of the i-th dashpot. As we consider temperatures above the
glass transition, the temperature-dependent shift function
is assumed to obey the Williams-Landel-Ferry (WLF) [64]
equation

log10(aθ (θ)) = − C1(θ − θref)

C2 + (θ − θref)
. (4.20)

To capture thermal softening of the material, the yield stress

σY : R>0 → R>0, θ �→ �(θ, β1) σY0, (4.21)

and the power-law hardening

H : R>0 × R≥0 → R≥0, (θ, εp) �→ �(θ, β1) k εn
p ,

(4.22)

feature an explicit temperature-dependence.The temperature-
degradation function

� : R>0 × R≥0 → R>0, (θ, β) �→ exp(−β(θ − θref)),

(4.23)

takes the temperature and the material parameter β1 ∈
R≥0 as input and degrades both the yield stress and the
isotropic hardening w.r.t. the temperature. As for classical
J2-viscoplasticity, the evolution of the plastic strain

ε̇vp =
√
3

2
ε̇p

σ ′

‖σ ′‖ (4.24)

is driven by the deviatoric part of the stress tensor σ ′. The
accumulated plastic strain rate ε̇p is given by the following
evolution equation

ε̇p = σY(θ)

η(θ)

〈√ 3
2‖σ ′‖ − σY(θ) − H(θ, εp)

σY(θ)

〉m

+
, (4.25)

see Krairi et al. [63], where the reference viscosity

η : R>0 → R>0, θ �→ �(θ, β2) η0, (4.26)

involves a temperature-dependence as well.
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In addition to the Helmholtz free energy, the material’s
(extended-valued) dissipation potential takes the following
form

φ(θ, ż) =
{

σY(θ) ε̇p +∑N
i=1 σ v,i : ε̇v,i , ε̇p =

√
2
3‖ε̇vp‖,

+∞, otherwise.

(4.27)

For thematerial at hand, the thermomechanical coupling term
D computes to

D(ε, θ, z) = θ
∂2ψ

∂θ∂ε
(ε, θ, z) : ε̇

+ θ
∂2ψ

∂θ∂ z
(ε, θ, z) · ż − ∂ψ

∂ z
(ε, θ, z) · ż

= − θ (ε̇ − ε̇vp) : C∞ [α]

− θ

N∑

i=1

(ε̇ − ε̇vp − ε̇v,i ) : Ci [α]

+ θ
∂ H

∂θ
(θ, εp) ε̇p

+ σY(θ) ε̇p +
N∑

i=1

σ v,i : ε̇v,i ,

(4.28)

which is composed of three independent parts. The first two
terms are responsible for the Joule-Gough effect. The third
term is related to the thermal softening and the last two terms,
i.e., the dissipation

D(ε, θ, z) = σY(θ) ε̇p +
N∑

i=1

σ v,i : ε̇v,i , (4.29)

comprises the dissipated energy due to viscoplastic and vis-
coelastic flow. The latter is responsible for the self-heating of
the material due to viscoelastic or viscoplastic deformations.
The full set of material parameters for the PA66, involving
N = 12 Maxwell elements, are summarized in Table 2.

5 Identifying a DMN surrogatemodel using
FFT-based computational homogenization

This section is dedicated to the identification of the DMN
surrogate model. First, we consider the sampling of the lin-
ear elastic training data. To this end, we start by identifying
both the necessary resolution and the size of the representa-
tive volume element (RVE). Secondly, we present the offline
training of theDMNand the validation of the surrogatemodel
for thermomechanically coupled inelastic computations on
the microscopic scale. For all numerical computations, we Ta
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rely on a workstation equipped with two AMD EPYC 7642
with 48 physical cores each and 1 024 GB of DRAM.

5.1 Material sampling

We start with the sampling of tuples of linear elastic input
stiffnesses

(
C

s
1,C

s
2

)
. Indeed, there is some freedom in select-

ing appropriate sampling strategies. For example, Liu and
coworkers [51,52] and Gajek et al. [53] sampled orthotropic
stiffnesses. In the work at hand, we follow Gajek et al. [54]
who proposed to draw the samples from the space of possible
algorithmic tangents occurring during the online evaluation.
More precisely, the input stiffnessesCs

1, corresponding to the
isotropic, purely thermoelastic glass fibers, are sampled from
the set of isotropic stiffnesses, i.e., we use a parameterization

C
s
1 = 3K s

1 P1 + 2Gs
1 P2. (5.1)

As the polyamide matrix features a thermo-viscoelastic, vis-
coplastic material behavior, the samples Cs

2 are assumed to
be isotropic minus a rank-one perturbation, see Chapter 3 in
Simo-Hughes [65]. Thus, the stiffnessCs

2 is assumed to have
the form

C
s
2 = 3K s

2 P1 + 2Gs
2

(
P2 − as N ′

s ⊗ N ′
s

)
, (5.2)

whereN ′
s ∈ N := {N ∈ Sym(d) | tr (N) = 0, ‖ N ‖F = 1}

is normalized and deviatoric. In other words, the set of all
considered positive definite stiffness tuples

(
C

s
1,C

s
2

)
may be

parameterized via

(
K s
1, Gs

1, K s
2, Gs

2, as, N ′
s

) ∈ R>0 × R>0

×R>0 × R>0 × [0, 1) × N . (5.3)

The former set is given in terms of an eight-dimensional con-

tinuum. For more details on sampling
(

K s
1, Gs

1, K s
2, Gs

2, as,

N ′
s

)
from this eight-dimensional space and assembling the

stiffnesses
(
C

s
1,C

s
2

)
, we refer to Section 4.4 in Gajek et al.

[54].
In the following, we assume that Ns = 1000 tuples of input
stiffnesses

{(
C

s
1,C

s
2

)}Ns

s=1 were generated. With these sam-
ples at hand, we turn our attention to the computation of
the associated effective stiffnesses. For this purpose, a rep-
resentative volume element (RVE) with a suitable resolution
and size needs to be generated first. To this end, we take a
closer look at the sampled input stiffnesses. More precisely,
we consider the distribution of the material contrast μ which
is defined, for the sample s, as

μs = max

(
λs
1,max

λs
2,min

,
λs
2,max

λs
1,min

)

. (5.4)

Here, λs
1/2,max and λs

1/2,min denote the largest and smallest
eigenvalues of stiffnessesCs

1 and C
s
2, respectively. Figure 3a

illustrates the sorted material contrast vs. the 1 000 samples.
We observe that the material contrast starts at around two
and goes up to around 23 000. To get a better understanding
of how the material contrast is distributed on the sample set,
Fig. 3b shows the respective histogram with 50 evenly log-
spaced bins.We observe that the median of the distribution is
well below a material contrast of 100 and that only 3% of the
samples exceed a material contrast of 1 000. In the following
section, we consider finding a suitable resolution and size of
the volume element, taking into account the findings of this
section.

5.2 On the necessary resolution and the size of the
RVE

Finding a suitable resolution and RVE size is necessary to
obtain accurate effective properties. However, performing a
resolution and RVE size study for any tuple of input stiff-
nesses

(
C

s
1,C

s
2

)
is computationally expensive. The former

is especially relevant for samples with a high material con-
trast, i.e., greater than 1000, which only occur with a small
frequency in the sample set. For this reason, we conduct a
resolution and RVE size study for selected samples alone. To
be more precise, we choose samples from the sampling set{(
C

s
1,C

s
2

)}Ns
s=1 corresponding to the 70th, 80th, 90th and95th

percentile i.e., samples with a material contrast of μ = 160,
μ = 274, μ = 470 and μ = 764, respectively, see Fig. 3a
for an illustration and color coding.
For a start, we consider generated cubic microstructures
with a variable resolution and with a fixed edge length
of L = 384 μm, i.e., roughly twice the fiber length of
L f = 200 μm. We vary the resolution from 3.3 to 13.3
voxels per fiber diameter in equidistant steps. The former
corresponds to volume element discretizations with 1283 to
5123 voxels. We choose a resolution of 20 voxels per fiber
diameter, i.e., discretized by 7683 voxels, as reference.
For generating the volume elements, we rely upon the
Sequential Addition and Migration (SAM) [66] method,
using the exact closure approximation [67]. The SAM
method takes the fiber length L f, the fiber diameter Df,
the fiber volume fraction cf and the (axis-aligned) fiber
orientation tensor A as inputs and generates short fiber rein-
forced microstructure realizations. The effective stiffnesses
are computed with the help of an FFT-based computational
micromechanics code [17,18] using a conjugate gradient
solver [68,69] and the staggered grid discretization [70,71].
Figure 4a shows the relative error of the effective stiffness
computed by the Frobenius norm of the corresponding Voigt
matrices. For the crudest resolution of 3.33 voxels per fiber
diameter, the relative error exceeds 10%. Increasing the res-
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Fig. 3 Distribution of the
material contrast in the sample
set

(a) (b)

Fig. 4 Study to determine
necessary resolution and size of
the RVE. Shown is the relative
error of the computed effective
stiffness vs. the resolution and
volume element size

(b)(a)

olution decreases the relative error for the four considered
material contrasts. At a resolution of ten voxels per fiber
diameter, the relative error of the sample corresponding to
the 95th percentile falls below 3%. For the samples corre-
sponding the 90th, 80th/70th percentile, the relative error
is below 2% and 1%, respectively. As material contrasts of
μ = 764 and above only occur with frequency of less than
5%, we consider the resolution of 10 voxels per fiber diam-
eter as sufficient. We fix this resolution and focus on finding
a suitable size of the RVE.

We investigate volume elements with edge length L
ranging from 0.96 up to 3.84 fiber lengths. The former cor-
responds to volume element discretizations with 1923 up to
7683 voxels. To obtain the reference, we generate a volume
elementwith edge length of 5.76 fiber lengths and discretized
by 11523 voxels. As before, we consider the relative error in
the effective stiffness as error measure. For all considered
edge lengths, the relative error is well below 1%, see Fig. 4b.
Indeed, even the smallest volume element, i.e., an edge length
smaller than the fiber length, the relative error is below 0.5%.
Increasing the volume element edge length from 0.96 to 3.84

further decreased the error. In the work at hand, we consider
a volume elements length of 1.92 fiber lengths, i.e., a edge
lengths of L = 384 μm, as sufficient to keep the computa-
tional costs for the sampling of the training data reasonable.
With the optimal resolution and RVE size at hand, i.e., a res-
olution of 10 voxels per fiber diameter and a volume element
discretization with 3843 voxels, we compute the effective
stiffnesses of all generated Ns = 1000 stiffness samples and
turn our attention to the training of the DMN.

5.3 Offline training

As explained in Sect. 3.2, we implement the offline training
in PyTorch [72] exploiting the frameworks automatic dif-
ferentiation capabilities, see Gajek et al. [53,54] for more
details. From previous works [51–54], we know that at least
eight layers are necessary to achieve a sufficient approxima-
tion quality for inelastic computations, i.e., during the online
evaluation. For this reason, we restrict to a two-phase DMN
with K = 8 layers, i.e., 255 individual directions of lamina-
tion and 256 weights as free parameters.
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(b)(a)

Fig. 5 Loss function (a) and mean training and validation error (b) for the 3000 training epochs

We randomly split the training data
{(
C̄

s,Cs
1,C

s
2

)}Ns

s=1 into a
training and a validation set, comprising 90% and 10% sam-
ples, respectively. The DMN is trained with mini batches
with a batch size of Nb = 32 samples, which are drawn
randomly from the training set. Batches with less than 32
samples are discarded. Prior to the offline training, we sam-
ple the unknown directions of lamination ni

k from a uniform
distribution on the unit sphere and the initial weights wi

K+1
are sampled from a uniform distribution on [0, 1] and subse-
quently rescaled to sum to unity.
For training the DMN, we rely on the AMSGrad method
[73,74] anddetermine appropriate learning ratesα
n andα
v by
a learning rate sweep as suggested by Smith-Topin [75]. The
learning rate sweep yields almost identical learning rates, i.e.,
α
n = α
v = 1.5·10−2. To aid finding a suitable minimizer for
J (3.7), we employ the warm restart technique as suggested
by Loshchilov-Hutter [76]. The warm restarts are realized by
a harmonic learning rate modulation

α : N → R, m �→ γ m
(

αmin + 1

2
(αmax − αmin)

(
1 + cos

(
π

m

M

)))
(5.5)

of the learning rates α
n and α
v in combination with a geo-
metric decay to enforce convergence. Here, αmin and αmax

denote the minimum and maximum learning rate, 2M cor-
responds to the period of the modulation, and γ represents
the geometric decay rate. The maximum learning rate, both
for α
n and α
v , is set to αmax = 1.5 · 10−2, i.e., the result of
the learning rate sweep. The minimum learning rate is set to
αmin = 1.5 · 10−3, i.e., one magnitude smaller. In addition,
we choose M = 50 as well as γ = 0.999 for the learning
rate modulation (5.5) and set p = 1, q = 10 and λ = 103

for the loss function (3.7).

We measure the accuracy of the fit by the mean error

emean = 1

Ns

Ns∑

s=1

∥∥∥DMNL (
C

s
1,C

s
2, 
n, 
w)− C̄

s
∥∥∥
1∥

∥ C̄s
∥
∥
1

, (5.6)

where ‖ · ‖1 denotes the 
1-norm of the components in (nor-
malized) Voigt-Mandel notation, and Ns denotes the number
of elements in the training or validation set, depending on
the considered scenario.
In Fig. 5, the training progress in terms of the loss J and
the mean error emean is illustrated. Overall, the effect of the
learning rate modulation becomes apparent. The loss as well
as the mean training and validation error fluctuate heavily,
especially for the first 500 epochs. The fluctuation decreases
due to the learning rate decay such that in the last 500 epochs,
convergence is ensured. During the training, no significant
model over-fitting can be observed as the validation error
does not increase noticeably during training.

5.4 Online validation

This section is concerned with validating the identified DMN
surrogatemodel for the inelastic regime. To this end,we com-
pare the DMN’s predicted effective stress σ̄ , the associated
effective dissipation D̄ as well as the change of the abso-
lute temperature �θ̄ = θ̄ − θ̄0 to a high-fidelity full-field
solution on the microscopic scale. To compute the reference
solution, we use the implicit staggered solution scheme of
Wicht et al. [23], an inexact Newton-CG [77] solver and the
discretization by trigonometric polynomials as introduced by
Moulinec-Suquet [17,18].
First, to obtain accurate inelastic results, a suitable resolution
and size of the RVE needs to be determined first. In Sect. 5.2,
we learned that the RVE size has a minor influence on the
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effective elastic response of the composite. For this reason,
we fix the volume element’s edge length of L = 384 μm
and only vary the RVE’s resolutions from 5 to 10 voxels per
fiber diameter in equidistant steps. The former corresponds
to volume element discretizations with 1923 to 3843 voxels,
respectively. As loading, we consider a uniaxial extension in
the principal fiber direction, i.e.,

ε̄ = ε̄ e1⊗ e1, (5.7)

and use mixed boundary conditions [78], i.e., stress free
loading perpendicular to the loading direction. The strain
loading is applied in 40 equidistant load steps with a strain
rate of ˙̄ε = 5 · 10−4 s−1. The reference temperature is set to
θ̄0 = 293.15K. For simplicity, we assume adiabatic condi-
tions, as we consider a single macroscopic point without any
additional macroscopic heat sources.

In Fig. 6, the computed effective stress σ̄ , the change
of the absolute temperature �θ̄ and the effective dissipa-
tion D̄ are shown for all four considered resolutions. For a
macrostrain of ε̄ = 1.0% and below, the Joule-Gough effect,
i.e., an almost linear temperature decrease due to the hydro-
static extension, becomes apparent. This regime is captured
well, even for the coarsest resolution. At around ε̄ = 1.0%
macrostrain, thematrix starts to deformplastically.Due to the
increasing dissipation, self-heating of the composite occurs
and the four solutions start to deviate noticeably. Thus, to
accurately capture self-heating effects, a resolution of at least
8.33 fibers per fiber diameter is necessary. Such a resolution
suffices to accurately compute the effective stress and the
effective dissipation as well. For this reason, we consider a
resolution of 8.33 voxels per fiber diameter, i.e., a volume
element discretization with 3203 voxels, as sufficient for the
inelastic computations.
With the identified resolution at hand, we turn back to the
validation of the DMN surrogate model. For this purpose,
we implemented the procedure introduced in Sect. 3.3 as
an implicit user-material subroutine. A computationally effi-
cient implementation of theUMAT is critical. For this reason,
we use the binary tree compression as explained in Gajek et
al. [54] and exploit the sparsity pattern of the gradient opera-
tor A and the Jacobians ∂ 
σ/∂
ε and ∂ 
D/∂
ε. For this reason,
we rely upon the Eigen3 [79] library for all linear algebra
operations. We set the tolerance for the convergence crite-
rion to tol = 10−12 and solve the linear system with the help
of a sparse Cholesky decomposition. The former allows to
reuse the decomposition for computing the algorithmic tan-
gents Calgo

ε̄ , Calgo
θ̄

, Dalgo
ε̄ , Dalgo

θ̄
with minimal computational

overhead, see Sect. 3.3.
Strain-controlled monotonic and non-monotonic vir-
tual experiments We first consider strain-controlled virtual
experiments. Using the material parameters of Sect. 4, we

investigate six monotonic uniaxial strain loadings

ε̄ = ε̄

2

(
ei ⊗ e j + e j ⊗ ei

)
with

(i, j) ∈ L1 := {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} .

(5.8)

For every uniaxial strain loading direction in the index set L1,
a monotonic strain loading amplitude of ε̄ = 4.0% is applied
in 40 equidistant load steps. To capture the rate dependence
of the polyamidematrix, we investigate four individual strain
rates which are logarithmically spaced from ˙̄ε = 5 ·10−4 s−1

to ˙̄ε = 5 · 10−1 s−1.
To evaluate the approximation errors of the DMN in a quan-
titative way, we introduce the following error measures. For
a load in direction (i, j), we define the relative error in the
effective stress component σ̄i j , the change in absolute tem-
perature �θ̄ and the effective dissipation D̄ as

ησ̄
i j (t) =

∣∣∣σ̄ DMN
i j (t) − σ̄ FFT

i j (t)
∣∣∣

max
t∈T

∣∣∣σ̄ FFT
i j (t)

∣∣∣
,

η
�θ̄
i j (t) =

∣∣�θ̄ DMN(t) − �θ̄ FFT(t)
∣∣

max
t∈T

∣∣�θ̄ FFT(t)
∣∣ ,

ηD̄i j (t) =
∣∣D̄DMN(t) − D̄ FFT(t)

∣∣

max
t∈T

∣∣D̄ FFT(t)
∣∣ , (5.9)

where T = [0, T ] denotes the considered time interval of the
simulation. Furthermore, the mean and the maximum error
are defined by

η(·)
mean = max

i, j∈{1,2,3}
1

T

∫ T

0
η

(·)
i j (t) dt and

η(·)
max = max

i, j∈{1,2,3}max
t∈T

η
(·)
i j (t). (5.10)

In Fig. 7, the results for themonotonic loading in the principal
fiber direction, i.e., (i, j) ≡ (1, 1), are shown. We observe
that, up to the maximum load of ε̄ = 4.0%, the effective
stresses predicted by the DMN and the full-field solution are
almost indistinguishable.

The relative stress error for all four considered strain rates
is well below 2.0%. The same holds for the temperature
change �θ̄ and the effective dissipation D̄ for a strain load-
ings up to 2.0%. Only from 2.0% macroscopic strain and
above, deviations in the effective dissipation, and, thus, also
the temperature change, become noticeable. The former is a
result of the power-law hardening of the polyamide matrix.
Indeed, due to the power-law hardening, local clusters of
significant plastic deformation form in the microstructure.
Figure 8 visualizes this effect by showing the evolution of
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Fig. 6 Effective stress, temperature change and effective dissipation for the four considered resolutions and a uniaxial extension in the principal
fiber direction

Fig. 7 Strain-controlled monotonic loading: uniaxial extension in principal fiber direction

the accumulated plastic strain εp, for the strain rate ˙̄ε =
5 · 10−4 s−1, on a e1-e2 slice of the 3D microstructure.

Figure 8 illustrates that for the chosen loading, clusters
with more than 30% accumulated plastic strain form in the
vicinity of fiber ends. This strong plastification leads to a
pronounced energy dissipation, which is slightly underesti-
mated by the DMN, see Fig. 7. For this reason, the DMN
underestimates the self-heating of the composite as it does
not fully capture such localization phenomena.
To account for more complex loading conditions, i.e., load
reversal or biaxial loadings, we investigate six independent
non-monotonic loadings and six independent biaxial load-
ings in “Appendix A”. The relative errors in the effective
stress, the temperature change and the effective dissipation
for all four considered strain rates and all considered load
cases are summarized in Table 3.
Stress-controlled cyclic loading In the previous section,
we investigated the identified DMN surrogate model for
monotonic and non-monotonic, uniaxial and biaxial load-
ings. Indeed, for such loadings, self-heating effects played
a minor role. However, polymers, in general, show a signif-
icant self-heating under cyclic loading, see, e.g., Benaarbia
et al [80]. For this reason, we conclude this section with the
validation of the DMN surrogate model for cyclic loading

and conduct stress-controlled virtual experiments

σ̄ (t) = σ̄ (t)

2

(
ei ⊗ e j + e j ⊗ ei

)
with

σ̄ (t) = σ̄ ampl sin

(
2π

t

Tc

)
,

(i, j) ∈ L4 := {(1, 1), (2, 2)} . (5.11)

More precisely, for both loading directions in the index set
L4, we apply a uniaxial, sinusoidal stress load. Here, σ̄ ampl

denotes the stress amplitude and Tc represent the period of
the harmonic loading. As self-heating effects depend on the
loading amplitude, we consider four linearly spaced stress
amplitudes, ranging from σ̄ ampl = 20MPa to σ̄ ampl =
80MPa. We simulate 100 cycles, where every cycle is dis-
cretized with 20 equidistant load steps, i.e., 2 000 load steps
in total. The stress load is applied with a frequency of
f = 10Hz, i.e., the period is Tc = 0.1 s, and adiabatic con-
ditions are assumed due to the short simulation time of 10 s.
Please note that we consider small stress amplitudes up to
σ̄ ampl = 80MPa resulting in strain amplitudes well below
2.5%. For this loading, resolutions of the volume element
smaller than 8.33 voxels per fiber diameter are admissible,
seeFig. 6. For this purpose,weuse a volumeelement resolved
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(a) (b) (c) (d)

Fig. 8 Accumulated plastic strain εp for a 4.0% uniaxial extension in principal fiber direction with a strain rate of ˙̄ε = 5 · 10−4 s−1

Table 3 Mean and maximum
relative errors for the
investigated strain-controlled
uniaxial and biaxial loadings

ησ̄
mean / η

σ̄
max η

�θ̄
mean / η

�θ̄
max ηD̄

mean / η
D̄
max

6 Monotonic loadings 1.35% / 3.17% 1.11% / 4.23% 2.33% / 4.57%

6 Non-monotonic loadings 0.77% / 1.42% 0.56% / 1.23% 0.98% / 4.68%

6 Biaxial loadings 1.00% / 2.02% 1.10% / 1.82% 1.24% / 3.63%

with 2563 voxels, corresponding to 6.67 voxels per diameter,
to keep computational costs reasonable.
In Fig. 9, the results for the cyclic loading perpendicular to
the principal fiber direction, i.e., (i, j) ≡ (2, 2), are shown.
The strain amplitude ε̄

ampl
22 , which is computed by

ε̄
ampl
22 (n) = 1

2

(
max

t∈Tc(n)
(ε̄(t) · e2 ⊗ e2)

− min
t∈Tc(n)

(ε̄(t) · e2 ⊗ e2)
)

with Tc(n) := [(n − 1)Tc, nTc] (5.12)

for a cycle n, is shown vs. the cycles for all four consid-
ered amplitudes. We observe that for stress amplitudes of
σ̄ ampl = 60MPa and above, the composite exhibits vis-
coplastic flow, resulting in a decrease of the strain amplitude
in the first few cycles due to hardening. Subsequently, for
the two largest amplitudes, the strain amplitude increases
again due to the self-heating induced thermal softening of
the composite. Beside the strain amplitude, the temperature
change and the dissipated energy are illustrated as well in
Fig. 9. Here, for cycle n, �θ̄ cycle denotes the mean tempera-
ture change and D̄ cycle expresses the total dissipated energy,
i.e.,

�θ̄ cycle(n) = 1

Tc

∫

Tc(n)

�θ̄ (t) dt and

D̄ cycle(n) =
∫

Tc(n)

D̄(t) dt (5.13)

hold. We observe an almost linear self-heating of the com-
posite for all considered amplitudes. In the first few cycles,

Table 4 Mean and maximum relative errors for the investigated stress-
controlled uniaxial cyclic loadings

ηε̄ ampl

mean / ηε̄ ampl

max η
�θ̄ cycle

mean / η�θ̄ cycle

max ηD̄ cycle

mean / ηD̄ cycle

max

0.37% / 0.43% 1.11% / 2.32% 2.17% / 2.41%

the total dissipated energy is dominated by viscoplastic
flow which decreases for an increasing number of cycles
due to hardening. Furthermore, we observe a noticeable
temperature-dependence of the dissipated energy, i.e., a
noticeable oscillation of the dissipation starting at around 10
cycles. Both is especially visible for the two highest ampli-
tudes. The former can be attributed to the Maxwell elements
which are, due to the employed WLF shift function, acti-
vated and deactivated depending on the temperature.With an
increasing number of cycles, the dissipated energy increases
again as the material starts to soften resulting in higher strain
amplitudes and thus a higher dissipation.

Comparing the DMN and the full-field solution, we
observe an excellent agreement. The strain amplitude, tem-
perature change and dissipated energy of theDMNcompared
to the full-field solution are almost indistinguishable. To
quantify the approximation errors, we evaluate the mean
η

(·)
mean and maximum η

(·)
max error (5.10), for the strain ampli-

tude ε̄ ampl, the mean temperature change �θ̄ cycle and the
total dissipation D̄ cycle, respectively. These results are sum-
marized in Table 4 for the cyclic loading parallel and
perpendicular to the principal fiber direction.

Summing up, we investigated monotonic, non-monotonic
uniaxial, biaxial and cyclic loading scenarios to validate the
identified DMN surrogate model for thermomechanically
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Fig. 9 Stress-controlled cyclic loading: uniaxial extension perpendicular to the principal fiber direction

coupled simulations on the microscopic scale. Indeed, the
DMN is able to provide a digital twin for the investigated
short fiber reinforced plastic microstructure of thermome-
chanically coupled constituents. The approximation errors
for the effective stress in the inelastic setting were well below
3.5%, for every investigated loading condition. Even the
effective dissipation and the predicted temperature change
only range up to 5%, depending on the considered scenario.

6 A computational example

With the identified DMN at hand, we turn our attention to
conducting a DMN-accelerated two-scale concurrent ther-
momechanical simulation. More precisely, we study the
macroscopic response of a non-symmetric, notched plate
subjected to cyclic loading using the FE software ABAQUS.
The effective material response of the short-fiber reinforced
polyamide is provided by the identified DMN surrogate
model. The local orientation of the material, i.e., the prin-
cipal fiber direction, aligns with the loading direction. The
geometry of the structure is similar to Tikarrouchine et al.
[16] and is illustrated in Fig. 10.

The structure is clamped on the left hand side and is sub-
jected to a cyclic stress load

σ̄ (t) = σ̄ ampl sin

(
2π

t

Tc

)
(6.1)

with σ̄ ampl = 50MPa on the right hand side of the plate.
We simulate 3 000 cycles, and every cycle is discretized by
20 equidistant load steps, i.e., 60 000 load steps in total. The
stress load is applied with a frequency of f = 10Hz, i.e., the
period is Tc = 0.1 s. Due to the long simulation time of 200 s,
the assumption of adiabatic conditions is not appropriate. For
this reason, we prescribe a convective boundary condition
on the free surfaces of the plate, i.e., the heat flux across the

Fig. 10 Non-symmetric, notched plate subjected to a cyclic loading
[16]

surface of the plate

q̄s = −h(θ̄s − θ̄0) (6.2)

is a function of the film coefficient h and the difference of
the surface temperature θ̄s and the ambient temperature θ̄0 =
293.15MPa. We assume a free convection. Thus, the film
coefficient for air is set to

h = 10
W

m2 K
, (6.3)

see Kosky et al. [81]. To account for heat conduction on the
macroscopic level, we assume Fourier’s law

q̄ = −κ̄ ∇̄x θ̄ (6.4)

to hold, where ∇̄x denotes the gradient operator w.r.t. the
macroscopic point x̄ ∈ �. We use the thermal conductivities
of the glass fibers and the polyamide matrix from Tables 1
and 2 and compute the effective thermal conductivity tensor
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Evolution of the absolute temperature on the surface of the notched plate subjected to a cyclic loading

Fig. 12 The strain amplitude, the absolute temperature and the dissipated energy versus the number of cycles for the five locations shown in Fig. 11a

κ̄ by means of an FFT-based computational homogenization
code [17,18,82]. Indeed, the effective thermal conductivity
is almost isotropic and reads

κ̄ =
∧
diag (0.361, 0.33, 0.33)

W

mK
(6.5)

in Cartesian coordinates. The notched plate is discretized by
1 099 thermally coupled quadratic hexahedron elements. In
every Gauss point, a DMN is integrated implicitly. For solv-
ing the global system, we rely on the direct Newton solver in
ABAQUS, which solves for the displacements and absolute
temperature simultaneously.
In Fig. 11, the evolution of the mean temperature change
�θ̄ cycle is shown. For the first 250 cycles, a slight self-heating
of the plate is observed in the vicinity of the two notches
where the viscoelastic and viscoplastic deformation local-
izes. For an increasing number of cycles, the inner part of the
plate starts to heat up as well both due to energy dissipation
as well as heat conduction.
In addition to the contour plots, Fig. 12 shows the temporal
evolution of the strain amplitude ε̄ ampl, mean temperature

change �θ̄ cycle and the dissipated energy D̄ cycle for five dis-
tinct points A to E , see Fig. 11a. Here, in the macroscopic
setting, we compute the strain amplitude ε̄ ampl of cycle n by

ε̄ ampl(n) = 1

2

(
max

t∈Tc(n)
(λmax

ε̄ (t)) − min
t∈Tc(n)

(λmin
ε̄ (t))

)
, (6.6)

where λmin
ε̄ and λmax

ε̄ denote the smallest and the largest
eigenvalue of the macroscopic strain tensor ε̄.

A closer look at the evolution of the strain amplitude
shows that, as in the microscopic setting, the hardening of
the viscoplastic matrix results into a decrease of the strain
amplitude in the first few cycles for all five investigated
points. Afterwards, the strain amplitude increases again until
a steady-state is reached. The reason for the renewed increase
of the strain amplitude and subsequent saturation becomes
clear by inspecting the evolution of the absolute tempera-
ture. In the first few cycles, the temperature increases rapidly
in all considered points as a result of the dissipated energy
due to the viscoelastic and viscoplastic flow. This increase
is more pronounced in the vicinity of the two notches and
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Table 5 Wall-clock times for sampling, training and number of fitting
parameters

Wall-clock time (h) #Fitting parameters

Sampling 74 −
Training 1.5 765

decreases towards the inside of the plate. The temperature
increase results in the thermal softening of the material, and,
in turn, the the strain amplitude increases. After about 1 000
cycles, the temperature increase saturates and a steady-state
is reached. This steady-state is the result of two effects. One
one hand, the dissipated energy in a cycle decreases with
increasing temperature due to thermal softening.On the other
hand, the heat conduction due to the free convection increases
with an increasing surface temperature.

These results, i.e., the saturating temperature increase and
the temperature-dependent mechanical behavior, can only be
reproduced in a macroscopic setting, since heat conduction
and convection have to be considered. Therefore, only relying
on microscopic simulations for characterizing thermome-
chanically coupled composites by simulative means does not
suffice. For this reason, DMNs are a promising technique
to enable thermomechanically coupled concurrent two-scale
simulations with reasonable computational resources. Last
but not least, we consider the computational costs of our
approach, accounting for the offline training and the online
validation in the following section.

7 Computational costs

The material sampling was performed in parallel, i.e., six
independent load steps for computing the effective stiffnesses
using 16 threads each. The training of the DMN was carried
out on four threads. The wall-clock times of the sampling
and the offline training are summarized in Table 5. Indeed,
sampling of the training data took 74 h whereas the training
finished in under 2 h. As we only considered DMNs with a
depth of K = 8, 765 independent fitting parameters were
determined during the offline training.

Turning our attention to the online evaluation, we focus
on the computational costs of the DMN evaluated at a single
Gauss point. Solving the thermomechanical cell problem for
a microstructure discretized by 3203 voxels for a prescribed
macrostrain and absolute temperature takes about 2737 s on
average on a single thread (Table 6). In contrast, integrating
a DMN at a single Gauss point takes less than 6ms. Thus,
we achieve a speed-up of about half a million times com-
pared to solving the cell problem by means of an FFT-based
micromechanics solver. For applications which admit using

Table 6 Wall-clock times and speed-up (compared to anFFT-base com-
putational micromechanics solver) for a single time step of the inelastic
micro simulation

FFT (1 thread) DMN (1 thread)

Wall-clock time 45.62 min 5.64 ms

Speed-up − 485, 284

Table 7 Wall-clock time, memory consumption and total Newton iter-
ations of the concurrent two-scale simulation

ABAQUS (96 threads)

Elements 1099

#DOF 9706

Increments 60, 000

Wall-clock time 117 h

Memory consumption 1.8GB

Total Newton iterations 161, 240

DMNs with less than eight layers, speed-ups in the range of
several millions may be possible.

Wall-clock time and memory consumption for the com-
ponent scale simulation are summarized in Table 7. Indeed,
themacroscopic FEmodel was discretized by 1 099 elements
resulting in 9 706 degrees of freedom. Computing all 60 000
time steps involved 161 240 total Newton iterations and took
about 117 h on96 threads and required about 2 GBofDRAM.
Indeed, ABAQUS only required about 2.7 Newton iterations
(on average) per load increment, indicating a robust quadratic
convergence.

These results indicate that DMNs are a promising tech-
nique for accelerating thermomechanical two-scale simu-
lations. This holds for structures of moderate complexity
resolved by 10 000 time steps (and more), as in the previous
examples. Alternatively, DMNs can be used in large-scale
concurrent multiscale simulations consisting of millions of
elements and a smaller number of time steps, see Gajek et al.
[54].

8 Conclusion

In the work at hand, we extended the framework of direct
DMNs to fully coupled thermomechanical two-scale simula-
tions. More precisely, we incorporated the intrinsic two-way
thermomechanical coupling between the microscopic and
macroscopic scale into the framework. Considering the for-
mer is essential to accurately capture themechanical response
of common engineeringmaterials, e.g., short-fiber reinforced
thermoplastics, in structural simulations.
For this purpose, we built upon the first-order homogeniza-
tion framework of thermomechanical composites established
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by Chatzigeorgiou et al. [5], who showed that there is no
fluctuation of the absolute temperature on the microscopic
scale. For this reason, both the absolute temperature and the
macrostrain are regarded as inputs to the DMN’s (micro-
scopic) balance of linear momentum. This way, the one-way
thermomechanical coupling from the macroscopic onto the
microscopic scale is accounted for. Furthermore, we incor-
porated the back-coupling from the microscopic scale onto
the evolution of the macroscopic temperature into the frame-
work. To this end, changes of entropy and dissipated energy
are computed and propagated to themacroscopic scale where
both combined, act as an additional source term to the
macroscopic heat equation. This way, the two-way thermo-
mechanical coupling was incorporated into the framework of
direct DMNs. To accelerate a thermomechanically coupled
two-scale simulation, we explained how our approach was
implemented as an implicit user-material subroutine.
Choosing a short-fiber reinforced polyamide 6.6 with indus-
trial aspect ratio and filler fraction, we demonstrated that the
trained DMN was able to predict, for a macroscopic point,
the effective stress, the effective dissipation and the ensuing
temperature change of the composite with high accuracy for
a set of different strain rates and loading conditions. Indeed,
DMNs are trained on linear elastic data alone. Predicting
the dissipated energy at a macroscopic point, which in turn is
intrinsically associated to nonlinear effects on the underlying
microstructure, e.g., plasticity, is a remarkable result which
can be attributed to the DMNs internal structure. As DMNs
rely on laminates as building blocks which are combined in a
hierarchicalmanner, it is ensured thatDMNsnaturally inherit
thermodynamic consistency and stress strain monotonicity
from their phases. The former constitutes a key feature both
in terms of physics as well as numerical implementation and
represents one reason for the DMNs approximation capabil-
ities, even for thermomechanically coupled problems.
To evaluate the performance of our approach in a concurrent
two-scale setting, we conducted a thermomechanically cou-
pled simulation of an asymmetric notched plate. The notched
plate was subjected to a cyclic stress load also considering
heat conduction and convection. Indeed, our results indicate
that the FE-DMN method is a powerful piece of technol-
ogy for accelerating two-scale concurrent simulations. With
the possibility of providing speed-ups of five to six orders
of magnitude, DMNs promise to become a standard tool
for industrial applications. This way, the FE-DMN method
finally realizes the promise of fully coupled thermomechan-
ical two-scale simulations of large-scale industrial problems
as envisioned by Chatzigeorgiou et al. [5].
In terms of future works, it would of interest to formulate
the underlying material models directly in cycle space in the
fashion of Köbler et al. [83]. The former alleviates the need
to resolve every load cycle with multiple load steps enabling
the stimulative characterization of thermomechanical com-

posites in the regime of high-cycle fatigue. Furthermore, the
combination of our approach with the fiber-orientation inter-
polation scheme [54,84] in order to arrive at aDMNsurrogate
model applicable to short-fiber reinforced polymers with a
locally varying fiber orientation would further increase the
applicability. Also, extensions to problems involving damage
[85,86] and fracture [87–89] are of interest.
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A Additional strain-controlled virtual
experiments

In this section, we further validate the identified DMN sur-
rogate model for more complex loading conditions, see
Sect. 5.4. For this reason, we additionally consider non-
monotonic and biaxial loadings.
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Fig. 13 Strain-controlled non-monotonic loading: uniaxial extension in principal fiber direction

Fig. 14 Strain-controlled
biaxial loading: extension in
principal fiber direction
followed by an extension
perpendicular to the principal
fiber direction

Strain-controlled non-monotonic loading To account for
load reversal, we investigate six non-monotonic loadings

ε̄ = ε̄

2

(
ei ⊗ e j + e j ⊗ ei

)
with (i, j)

∈ L2 := {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} . (A.1)

For every direction in the index set L2, a full hysteresis with
a strain amplitude of ε̄ = 2.0% in 80 equidistant load steps is
computed. Additionally, we use mixed boundary conditions
[78] to ensure a stress-free loading perpendicular to the load-
ing direction. As in Sect. 5.4, we investigate four individual
strain rates to capture the rate dependence of the compos-
ite. In Fig. 13, the results for the non-monotonic loading in

the principal fiber direction, i.e., (i, j) ≡ (1, 1), are shown
for all four considered strain rates. We observe that for the
full hysteresis, theDMNand the full-field solution are almost
indistinguishable in terms of the effective stress and tempera-
ture change. The corresponding relative errors are around 1%
for all considered strain rates. Only for the effective dissipa-
tion we observe slight disagreements between the DMN and
the full-field predictions. Still, these deviations are around
4%, i.e., in the range of engineering requirements. The rel-
ative errors w.r.t. to the effective stress, temperature change
and effective dissipation are summarized in Table 3 for all
six considered loading directions.
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Strain-controlled biaxial loading In addition to the mono-
tonic and non-monotonic loadings, we investigate six inde-
pendent biaxial strain loadings

ε̄ = ε̄1 ei ⊗ ei + ε̄2 e j ⊗ e j ,

(i, j) ∈ L3 := {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} .

(A.2)

For every loading direction in the index set L3, a strain load-
ing of ε̄1 = 2.0% is applied while the strain in the second
direction is held constant ε̄2 = 0%. Afterwards, a strain
load of ε̄2 = 2.0% is applied in the second direction, as
well. Meanwhile, the strain in the first direction is held con-
stant ε̄1 = 2.0%. The biaxial loadings are computed in 40
equidistant load steps, and mixed boundary conditions [78]
are applied.

In Fig. 14, the results for the biaxial loading in the e1-e2
direction, i.e., (i, j) ≡ (1, 2), are illustrated. As we consider
a biaxial loading, the effective stress components in the e1 and
e2 are shown in addition to the temperature change and the
effective dissipation. Please note that the error measure η

σ̄mn
i j

denotes the relative error of the (m, n) stress component for a
load in the (i, j) direction. As before, the DMNmatches the
full-field solutions remarkably well. Relative errors lie below
2% for the effective stress and temperature change and do not
exceed 3.5% for the effective dissipation. The relative errors
for all considered load cases are summarized in Table 3.
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