
Received March 19, 2020, accepted April 24, 2020, date of publication April 29, 2020, date of current version May 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991299

An FPGA-Based Architecture for the Versatile
Video Coding Multiple Transform Selection Core

MATÍAS J. GARRIDO , FERNANDO PESCADOR , (Senior Member, IEEE),
MIGUEL CHAVARRÍAS , PEDRO J. LOBO , CÉSAR SANZ , (Senior Member, IEEE),
AND PEDRO PAZ
Software Technologies and Multimedia Systems for Sustainability (CITSEM) Research Center, Universidad Politécnica de Madrid, 28031 Madrid, Spain

Corresponding author: Matías J. Garrido (matias.garrido@upm.es)

This work was supported by the Spanish Ministerio de Economía y Competitividad under Grant TEC2016–75981–C2–2–R.

ABSTRACT Versatile video coding (VVC) will be released by 2020, and it is expected to be the next-

generation video coding standard. One of its enhancements is multiple transform selection (MTS) for core

transform. MTS uses three different types of 2D discrete sine/cosine transforms (DCT–II, DCT–VIII and

DST–VII) and up to 64 × 64 transform unit sizes. With this schema, significant enhancements of the

compression ratio are obtained at the expense of more computational complexity on both encoders and

decoders. In this paper, a deeply pipelined high-performance architecture is proposed that implements the

three transforms for sizes from 4×4 to 64×64 according to working draft 4 of the standard. The design has

been described in very high-speed integrated circuit hardware description language (VHDL), and it has been

prototyped in a system on a programmable chip (SoPC). It is able to process up to 64 fps@3840× 2.160 for

4 × 4 transform sizes. To the best of our knowledge, this is the first implementation of an architecture for

VVC MTS supporting the 64 × 64 size.

INDEX TERMS FPGA, hardware architecture, multiple transform selection, pipeline, SoPC, versatile video

coding.

I. INTRODUCTION

The future versatile video coding (VVC) standard, currently

in committee draft (CD) status [1], will be released as a new

the international standard by 2020. It is expected that this

new standard will replace the current state-of-the-art high-

efficiency video coding (HEVC) [2] with bit rate reductions

of more than 30% at the expense of substantial increments in

complexity [3].

The new codec will be based on the same hybrid coding

scheme used in the previous ITU–T and ISO/IEC standard-

ized codecs (e.g., HEVC). With this scheme, the prediction

error is transformed, quantized and encoded into a bit stream.

In VVC, a newmultiple transform selection (MTS) algorithm

has been proposed. In addition to the bi–dimensional (2D)

type II discrete cosine transform (DCT–II) [4] used in HEVC,

two additional 2D transforms, based on DCT–VIII and

DST–VII [4], may be used during the encoding/decoding

process. According to WD 4∗ [5], the DCT–II transforms

may have sizes of up to 64 × 64, while the other two types

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

may have sizes of up to 32 × 32. In all cases, the transform

sizes may be square or rectangular (i.e., with different widths

and heights). Additionally, 2D transforms are implemented

by concatenating two 1D transforms of the same or different

types.

The implementation of the MTS scheme described above

incurs higher computational costs and requires more flexibil-

ity than the implementation of the transform cores included

in the previous standards. Compared with the current state-

of-the-art HEVC standard, the VVC maximum block size

increases from 32 to 64, which multiplies the complexity

by 4.† Additionally, the aforementioned rectangular trans-

form sizes and mixed types, which are not present in

HEVC or in other previous standards, demand more flexible

architectures.

In this context, it is useful to consider the design of a

dedicated processor to perform the function of the MTS core

∗ The architecture proposed in this paper has been implemented and tested
in accordance with WD 4.

†The number of multiplications required by a direct implementation of a

2D N×N point DCT/DST is N2.

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 81887

https://orcid.org/0000-0003-1466-6041
https://orcid.org/0000-0002-3610-4296
https://orcid.org/0000-0003-0280-3440
https://orcid.org/0000-0003-4416-5985
https://orcid.org/0000-0002-2411-9132


M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

as part of a VVC full implementation. Thus, such a full imple-

mentation could be composed of a multicore general purpose

processor (GPP) and one or more dedicated processors that

execute parts of the algorithm and act as accelerators [6].

In recent years, several hardware architectures have been

proposed for the transform cores of HEVC [7]–[14]; only a

few of these are related to VVC [15]–[19]. Moreover, none

of these architectures describes a complete processor that is

ready to be connected to a GPP.

In this paper, a high-performance architecture for the VVC

MTS core implementation is presented. It has been designed

to compute 2D transforms of up to 64×64 size in accordance

with theWD 4 of VVC. It has been prototyped and tested into

a development board based on a Cyclone V Intel–Altera chip

and supports HD resolution in real time. To the best of our

knowledge, this is the first implementation of a VVC MTS

core processor in a system on a programmable chip (SoPC).

The remainder of this paper is organized as follows.

Section II summarizes the proposals published in recent years

and explains the rationale for this proposal. Section III, intro-

duces some background to enhance the understanding of the

next sections. Section IV proposes the architecture, which is

shown in detail. Section V, explains the test and prototyping

details, and the results are compared with those obtained

using related implementations. Finally, section VI concludes

the paper.

II. STATE OF THE ART AND RATIONALE

In recent years, much work has been invested in developing

hardware architectures that accelerate the computation of

transforms in the state-of-the-art HEVC standard [7]–[14].

Additionally, as the standardization process of the future

VVC progresses, the first proposals related to this standard

are arising [15]–[19].

A. PROPOSALS RELATED TO THE HEVC STANDARD

In HEVC, four transform unit (TU) sizes (4 × 4, 8 × 8,

16 × 16 and 32 × 32) are defined to encode the prediction

errors. A DCT–II type transform is used in all cases with the

exception of the intra-coded 4 × 4 luminance blocks, which

use a DST–VII type transform. Tables 1 and 2 summarize

several of the most interesting proposals regarding hardware

architectures that can be used to implement the HEVC trans-

forms. The proposals shown in Table 1 useASICs as the target

technology, while the proposals listed in Table 2 use FPGA

technology. It is worth noting that although video codecs are

consumer electronic products, FPGA–based implementations

are useful for validating the architectures and establishing

comparisons among them in the scientific literature. In fact,

it is common practice to conduct the implementations using

both ASIC and FPGA technologies, as in [8]–[10]. Moreover,

although the throughput of the ASIC–based proposals may

be roughly one order of magnitude greater than that of the

FPGA–based proposals, most of the latter are still able to

operate in real time for both HD and UHD formats.

TABLE 1. Comparison of different ASIC–based DCT–II implementations
for HEVC.

TABLE 2. Comparison of different FPGA–based DCT–II implementations
for HEVC.

The challenge addressed in the mentioned proposals is

the hardware implementation of the HEVC DCT–II trans-

forms for the full set of TU sizes at real–time speed for

high-resolution video sequences. In [7] and [9], the imple-

mentations support only 8× 8 and 16× 16 TU sizes, respec-

tively. Although it is claimed that implementations could be

designed to support all TU sizes using the proposed archi-

tectures, this would occur at the expense of a significant

reduction in the throughput and/or a significant increase in the

logic resources invested in those implementations. The other

proposals in Tables 1 and 2 can work with sizes from 4×4 to

32× 32 with good throughputs. In addition, the architectures

presented in [11] and [12] support DST–VII transforms for

4×4 blocks, but this feature is unlikely to have a great impact

on throughput or on logic resources utilization.

In all cases, the proposed architectures take advantage of

the DCT–II separability property to accomplish the transform

using two 1D transform processors interconnected through

a transposition memory. Additionally, all of the propos-

als exploit the DCT–II symmetry properties to save logic

resources by using different variants of fast DCT algo-

rithms [4]. Several proposals, including [10]–[12] and [14],

use multipliers in the 1D transform engines to implement the

product matrix. Other proposals attempt to save resources by

employing alternative strategies for the multiplication. In [8]

and [9], multiplications are implemented by add-and-shift

operations. In [7], distributed arithmetic techniques [20] are

81888 VOLUME 8, 2020



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

used to implement the multipliers with simple shift and accu-

mulator circuits. In [13], a n-dimensional Reduced Adder

Graph (RAG–n) algorithm [21] is used to minimize the num-

ber of adders in add–shift-based multiplication circuits.

One important block in all of the architectures is the trans-

position memory; proposals [7], [9] and [10] use an array

of registers and multiplexers, while [8] and [11]–[14] use

memories. Regarding the register–based implementations,

a 32 × 32 transposition buffer with 16–bit width would

consume 16384 registers, a large amount of logic resources.

Proposals [7] and [9] do not have this problem because their

implementations only support 8× 8 and 16× 16 transforms,

respectively. In [10], the blocks to be transformed are divided

into small blocks of fixed size, and the processing of indi-

vidual blocks is reordered in such a way that significant

reduction of the size of the transposition buffer is achieved.

In [8], [11] and [12], the transposition buffer is implemented

with a 32 × 32 buffer based on RAM memories. Compared

with the register–based buffer, thememory approach provides

a more area–efficient way to store large amounts of data,

although it is also less flexible. To parallelize the work of the

two 1D transform processors in [9] and [10], a ping–pong

buffer is implemented; with this mechanism, the first 1D pro-

cessor can write the first transform results in one block of the

transposition memory while the second 1D processor reads

the previous results from the other block. In [11], the results of

the first 1D transform are transposed before they are written

into the memory; thus, the 1D transform processors use the

transposition memory as a simple memory buffer. In [13], the

first 1D processor writes the first transform results row–wise

in the transposition buffer, and the second 1D processor reads

them column–wise; at the same time, the first 1D processor

writes the second transform results column–wise, and so on.

B. PROPOSALS RELATED TO VVC

In the VVC WD 4, three different transform types,

DCT–II, DCT–VIII and DST–VII, are used. For DCT–II

types, the transform size may be up to 64 × 64. In addi-

tion, rectangular transform sizes (e.g., 8 × 32) are allowed

for all combinations. A simplified algorithm is defined to

reduce the complexity of 64–size DCT–II transforms; with

this algorithm, the high-frequency coefficients of 64×N or

N×64 transforms arezeroed , although the final result is still a

64×N or N×64 block. A similar approach is used for 32×N

or N×32 transforms of the DCT–VIII and DST–VII types.

A more detailed description of these new features is given

in section III.

Regarding only the transforms and in comparison

with HEVC, VVC introduces more complexity in several

ways. First, computation complexity is increased due to

the 64 × 64 size transforms. Even with the aforementioned

simplified algorithm, the computational cost of the 64 × 64

transforms is double the cost of the 32 × 32 transforms.

Second, neither DCT–VIII nor DST–VII has the same sym-

metry properties exhibited by DCT–II. This implies that no

fast DCT algorithms may be used in their implementation,

TABLE 3. Comparison of different proposed hardware architectures for
the implementation of VVC transforms.

thus hindering the optimization of logic. Third, both the

simplified transforms and the rectangular transform sizes

increase the complexity of the control circuits. Thus, it will

be more difficult to reach the high clock frequencies obtained

with conceptually simpler proposals for HEVC. Fourth,

due to the rectangular sizes and the simplified transform

algorithms, the first and second 1D transforms of a given

block may have different computational costs. This may be

a problem when blocks of different sizes are transformed in

sequence because it is difficult to parallelize the operations

in an efficient way.

To date, only a reduced set of hardware implementa-

tions of the VVC transforms has been proposed [15]–[19].

These implementations are compared in Table 3. In all cases,

the proposed architectures are also based on two 1D proces-

sors connected through a transposition memory.

In [15], a high-performance 2D transform hardware archi-

tecture for future video coding, the previous informal name

for VVC, was proposed. The 1D processors are able to

implement 5 transform types (DCT–II, DCT–V, DCT–VIII,

DST–I and DST–VII) in accordance with the initial algorithm

proposal. Inside the 1D processors, each transform is imple-

mented with dedicated hardware; this is rather inefficient,

as only one transform is performed at a time. The proposed

architecture is implemented with both ASIC and FPGA tech-

nology and is able to process 7680× 4.320 sequences in real

time, but it supports only 4 × 4 and 8 × 8 sizes.

In [16], a similar approach is followed to implement the

5 transform types mentioned above; however, 4 × 4, 8 × 8,

16×16, and 32×32 sizes, as well as all the non–square com-

binations, are supported. The proposed architecture is carried

out with an FPGA. With this implementation, 1920 × 1.080

sequences can be processed in real time, but this is achieved

at the expense of a huge amount of logic resources. The

data from [16] shown in Table 3 confirm that, as mentioned

VOLUME 8, 2020 81889



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

before, the functional complexity of VVC (e.g., the variety of

transform sizes and rectangular blocks) has a negative impact

on both the clock frequency and the throughput.

In October 2018, in WD 2 [22], a multiple transform

selection (MTS) schema based on DCT–II, DST–VII and

DCT–VIII was established, and it has been maintained to

date. Based on that schema, in [17], an architecture that

supports sizes from 4 × 4 to 32 × 32 but only DST–VII

and DCT–VIII types has been proposed. To conserve logic

resources, transforms are implemented with add–shift algo-

rithms, and the number of adders is minimized using a

RAG–n algorithm [21]. Furthermore, the same logic is reused

to implement both DST–VII and DCT–VIII, as the transform

matrices actually have the same coefficients (with differ-

ent signs and positions). Very high throughput is obtained

because the logic used to implement the transforms is able

to generate a 32–pixel output result every clock cycle. This is

achieved at the expense of a large amount of logic resources

(Table 3). Additionally, the operation of the second 1D pro-

cessor is shadowed with the first one in a perfect pipeline,

using a 512 × 64 memory to implement a ping–pong buffer.

To make it possible to pipeline a mixture of different trans-

form sizes, a TU size of 32 × 32 is considered, and the input

data from every TU are read row–wise, while all transforms

in the TU are implemented in parallel. The architecture has

been implemented with 65 nm ASIC technology; the results

are summarized in Table 3. It is worth noting that this imple-

mentation does not include DCT–II type transforms, block

sizes greater than 32, or the simplified algorithm for block

sizes greater than 16.

In [18], an approximation-based approach is proposed to

compute both DCT–VIII and DST–VII transforms. It con-

sists of applying low-complexity adjustment stages to the

DCT–II to obtain an approximated computation of the other

transforms at the expense of a small reduction in the codec

performance (e.g., a bit-rate increment for the same quality).

The proposed implementation is able to perform both direct

and inverse transforms of square sizes up to 32×32. The pro-

posal has been implemented with an FPGA. As can be seen

from Table 3, the results are very good in terms of throughput

and logic resources. Despite its undoubted interest, this type

of approximation has not been included in the standard to

date.

Finally, in our previous work [19], a 2Dmultiple transform

processor architecture was proposed and implemented with

an FPGA. This architecture can process transforms of square

sizes up to 32×32 and achieves HD real–time operation with

a logic consumption significantly smaller than those of the

previous proposals.

C. RATIONALE FOR THE PROPOSAL

In this work, an efficient architecture to be used as a hardware

accelerator in the MTS core implementation for VVC is

proposed. The proposal is based on [19] but incorporates

the new features defined in the standard up to WD 4,

i.e., DCT–II, DST–VII and DCT–VIII types, rectangular

transform sizes up to 64×64, and simplified algorithms for

large size blocks.

The same structure used in all the aforementioned pro-

posals, a structure that is based on two 1D processors and

a transposition memory, has been chosen. To conserve logic

resources while implementing the three transform types, mul-

tipliers are used in the 1D processors; in this way, a generic

structure can be used to implement any transform type. To fur-

ther restrict the amount of logic, a single core based on

16 multipliers is recursively used to implement all transform

types and sizes. Although this approach limits the speed

performance, this is compensated for by a large system clock

frequency and an efficient pipeline between the first and

the second 1D processors.

Regarding the clock frequency, in the previously men-

tioned approach the transform computation core has a very

regular structure; this results in a more efficient pipelining

inside each 1D processor as well as a large maximum fre-

quency of operation. A different issue is the inter–processor

pipelining. As has been said, it is difficult to implement

because, due to the rectangular blocks and the simplified

transform algorithms defined in VVC, a different number of

clock cycles may be needed to compute the vertical and hor-

izontal transforms of the same block. One way to solve this

problem is to follow the approach mentioned in [17], but this

strategy introduces an important restriction to the software

that hopefully implements other parts of the encoder/decoder;

namely, the entire TU, together with the types and sizes of

all the blocks inside, must be available before starting the

transform of every TU. In our proposal, large input and output

buffers have been included to interface with the GPP. In addi-

tion, a large transposition memory working as a circular

buffer (instead of the ping–pong buffer implemented in other

proposals) has been used. The circular buffer allows several

blocks of the same or different sizes to be written while

a large block is read. With the aforementioned additional

resources, the writing of the input data, the reading of the

output data and the computation of transforms have been

decoupled. Thus, it is more feasible for the 1D processors to

work in a continuous pipeline mode, and, with a variety of

input block sizes, the computation time of a 1D processormay

be shadowed by the computation time of the other processor.

Finally, there is an issue that has not yet been mentioned.

The proposals summarized in this section [7]–[19] claim to

support high throughputs (see Table 1, Table 2 and Table 3),

but they do not discuss the mechanisms used to move the

input data and the output results between the 2D transform

processor and a GPP. However, this is a very relevant matter

for the implementation of a hardware accelerator. As an

example, in [17], a throughput of 7 680 × 4 320@160 fps

is claimed. To accomplish that, 32 16–bit pixels should be

input to the processor every clock cycle, and the same num-

ber of pixels should be output for the results. Thus, a GPP

with a 512–bit bus width should be able to transfer more

than 497.6 Mwords/s (more than 254.8 Gbps). Even with

a throughput of 1 920 × 1 080@30 fps, a 5.8 Mwords/s

81890 VOLUME 8, 2020



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

TABLE 4. Basis functions for DCT/DST types used in VVC for N–point
1D transforms.

(2.98 Gbps) transfer rate should be maintained. The architec-

ture presented in this paper is ready to be connected to a GPP

and, in fact, has been tested in an SoPC. In this architecture,

two Direct Memory Access (DMA) engines are used to move

data between a GPP and the 2D transform processor. To opti-

mize the transfer times, the processor has been provided with

a burst mechanism. In this architecture, a set of data blocks

of different sizes and types may be sent to the transform

processor, which begins processing the first one as soon as the

corresponding input block is available. This feature provides

flexibility to the GPP, allowing it to order either one or

several transforms at a time and, in the latter case, decreasing

DMA configuration time as well as shadowing part of the

DMA input data transfer with the computing of transforms

by the 1D processors.

III. BACKGROUND

A. VVC BLOCK PARTITIONING AND TRANSFORM TYPES

In VVC, pictures are divided into coding tree units (CTUs)

with a maximum size of 256 × 256 samples. The CTUs

are partitioned into 4 square coding units (CUs), and the

CUs may be further divided into square or rectangular CUs

with a minimum size of 4 in both dimensions. Leaf CUs are

divided into three coding blocks (CBs), one for luminance

samples and the other two for chrominance samples. In the

encoder, the residuals of these CBs are direct-transformed; in

the decoder, the inverse transform outputs are the residuals of

the CBs.

In VVC, an MTS scheme is proposed for residual coding

for both intra- and inter-CBs [23]. Three transform types are

used: DCT–II, DCT–VIII and DST–VII. The basis functions

for the 1D transforms of size N are shown in Table 4.

B. COMPUTING THE TRANSFORMS

For all transform types, the 1D direct transform may be

computed (using matrix notation) as:

Y = T · XT (1)

FIGURE 1. Example of the 2D transform of an H×W block: a) horizontal;
b) vertical.

In the expression above, X is a 1×N matrix with a row of

the input picture block, T is an N×Nmatrix with the N–point

transform coefficients, and Y is an N×1 column matrix with

the result of the 1–D transform. The transform coefficients,

one set for each transform type and size, are obtained from

the basis functions by an integer approximation and will be

part of the VVC standard. For convenience, in WD 4 and in

the reference software [24], an equivalent approach is used:

Y = XT · T T (2)

For an H×W CB (herein, H and W stand for height and

width, respectively), the 2D direct transform computation can

be performed by first computing W 1D H–point horizontal

transforms:

Yint = XT · T TH (3)

followed by H 1D W–point vertical transforms:

Y = Y Tint · T TW = (XT · T TH )
T

· T TW = TH · X · T TW (4)

In expressions (3) and (4),X and Y are H×Wmatrices with

the input and output blocks, and TH and TW are the H–point

and W–point transform coefficients matrices, respectively.

Yint is an intermediate W×H matrix that holds the results of

the first W 1D H–point transforms.

As an example, in Fig. 1–a, the W×H transposed input

matrix, XT , is 1D transformed into a W×H intermediate

matrix, Yint , and in Fig. 1–b, the transposed H×W intermedi-

ate matrix, Y Tint , is 1D transformed into the final H×Woutput

matrix, Y .

The 2D inverse transforms of H×WCBs can be computed

in an analogous manner:

Yint = XT · TH (5)

Y = Y Tint · TW = (XT · TH )
T

· TW = T TH · X · TW (6)

VOLUME 8, 2020 81891



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

FIGURE 2. Example of the simplified 2D transform of a 64 × 64 block:
a) horizontal; b) vertical.

It is worth noting that the operations involved in both

the direct and the inverse transforms are the same, the only

difference being the order in which the transform coefficients

are used to perform the multiplication operations.

To finish, in VVC, the horizontal and vertical types of the

transforms are selected by the encoder on a CU basis.

The transforms can be of any size from 4 × 4 to 64 × 64.

The latter size is only used for DCT–II type transforms.

C. HIGH-FREQUENCY ZEROING FOR LARGE BLOCK-SIZE

TRANSFORMS

To reduce the computational cost of large block–size trans-

forms, inWD 4 the effectiveH andW of the CBs are reduced

depending of the CB size and transform type [5]:

nonZeroW = min(W , (trTypeHor > 0)?16 : 32) (7)

nonZeroH = min(H , (trTypeVer > 0)?16 : 32) (8)

In expressions (7) and (8), nonZeroW and nonZeroH are

the effectiveW and H sizes, trTypeHor and trTypeVer are the

transform types (0: DCT–II, 1: DCT–VIII and 2: DST–VII),

and the min(a,b) function returns the minimum of a and b.

The sample values beyond the limits of the effective W and

H are considered to be zero, thus reducing the computational

cost of 64–size DCT–II and 32–size DCT–VIII and DST–VII

transforms.

Fig. 2 shows an example of a 64× 64.2D direct transform.

For the horizontal 1D transform (Fig. 2–a), the 32 high-

frequency samples of the first 32 rows, as well as the 32 lower

rows, are zeroed. As a consequence, the horizontal transform

may be computed with only 1/4 of the operations, the lower

half of the 64 × 64 transform matrix is not used, and the last

32 output rows are zero. The computation of the subsequent

vertical 1D transform (Fig. 2–b) has also been simplified,

as only the products involving the upper part of the 64 × 64

transform matrix will produce non–zero results. It is worth

noting that in this case the output is still a 64 × 64 matrix,

as it would be in a regular 64 × 64 transform.

IV. THE PROPOSED ARCHITECTURE

In this section, an architecture that can compute the

2D inverse transforms of the MTS core for VVC is pro-

posed. The core architecture, consisting of two N–point

1D transform blocks and a transpositionmemory, is explained

in subsections IV.A, IV.B and IV.C. Subsection IV.D explains

how a complete SoPC based on this core architecture has been

implemented.

A. THE 1D INVERSE TRANSFORM COMPUTATION

The core data path for the inverse transform computation

is shown in Fig. 3. It is composed of 4 24–bit multipliers,

an adder tree, a 30–bit accumulator, and rounding and satu-

ration logic. The circuit is able to multiply 4 16–bit inputs

by 4 8–bit transform coefficients, obtaining a 16–bit output.

It has been highly pipelined to allow high clock frequencies

and, after an initial latency, it can generate an output every

clock cycle. This data path is instantiated 4 times to imple-

ment a 1D–MTS processor, as shown in Fig. 4. In the figure,

data paths 0. . . 3 are identical except for their ROM content.

To compute a 4× 4 transform, the start input is asserted, and

the input data are entered (through din) on a column basis

in 4 clock cycles. After an initial latency, the 4 rows of

the output inverse transformed block are generated in dout,

starting with the top row, in 4 clock cycles.

For sizes other than 4 × 4, the procedure explained previ-

ously is iterated. As an example, the computation of an 8×16

size inverse transform is illustrated in Fig. 5. It is worth noting

that, unlike the examples shown in Fig. 1 and Fig. 2, the 8×16

input block has not been explicitly transposed because the

processor reads the input data on a column-by-column basis.

In Fig. 5, the 8 × 8 transform matrix has been divided

into 4 4 × 4 transform matrices (T1. . .T4) for convenience.

To compute the first output row, R11, the 1D inverse trans-

form circuit reads the first 4 points of the first column from

the input, C11, and stores in the accumulator a partial result

for R11 using T1. In the next clock cycle, it reads the other

4 points of the first input column, C12, and computes a result

using T2, which is accumulated, so that the accumulator now

stores the full R11 result. In the next two clock cycles, this

process is repeated to compute R12 using T3 and T4. In this

way, the entire output row is computed in 4 clock cycles.

The whole process is repeated for the 16 columns of the

input block to compute the 16 rows of the output transformed

block in 16 × 4 clock cycles. Generalizing this procedure,

the 1D inverse transform circuit is able to compute square or

rectangular transforms of different sizes ranging from 4 × 4

to 64 × 64.

The number of clock cycles needed to compute an H×W

1D inverse transform using the aforementioned algorithm can

81892 VOLUME 8, 2020



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

FIGURE 3. Core data path for the inverse transform computation.

FIGURE 4. Architecture of the 1D inverse transform circuit (1D–MTS
processor).

FIGURE 5. Example of computation of an 8 × 16.1D transform.

be obtained from the following expression:

Ncycles 1D transform =
1

a
·
1

b
·
H2

16
·W (9)

In the previous expression, variables a and b have been

included to take into account the impact of the simplifications

explained in subsection III.C. For DCT–II transforms, a = 2

if H = 64; otherwise, b = 1. Additionally, b = 2 if W = 64;

otherwise, b = 1. For the other transform types, a = 2

if H = 32; otherwise, a= 1, and b= 2 ifW = 32; otherwise,

b = 1.

The 1D–MTS processor design is based on the 1D–AMT

processor that can be found in [19]. It is worth noting

that, unlike 1D–AMT, the 1D–MTS processor proposed in

this paper can work with rectangular transforms with up to

64 × 64 sizes, as well as with the simplified transforms

mentioned in III.C.

B. PIPELINING

To increase the processor performance, the architecture has

been fully pipelined. Regarding the functionality, pipelin-

ing introduces extra initial latency cycles. This behavior is

shown in Fig. 6; in the timeline, five 4 × 4 transforms of

different types are launched at intervals of 4 clock cycles.

The results of the first transform can be read at dout after

13 clocks (initial latency L1 in the figure) along 4 clocks

(O1 in the figure). After the second transform is launched,

the two transforms run in parallel (L1 and L2 latencies in

the figure). This means that the first registers of the pipeline

are dealing with the second transform while the rest are still

with the first transform. In the worst case, when the fifth

transform is launched, all five transforms are in progress,

each occupying part of the processor pipeline. This behavior

allows the processor to maintain its maximum throughput

after an initial latency of 13 clocks. It is worth noting that the

controller must be able to work simultaneously with up to five

different transform requests in which the transforms have the

same or different sizes and/or types. This is the worst case; for

transform sizes other than 4× 4, the number of simultaneous

transforms is always lower.

C. 2D INVERSE TRANSFORM COMPUTATION

The 2D inverse transform computation is performed by a new

version of the 2D–VVC–MTS processor proposed in [19],

with the following enhancements:

VOLUME 8, 2020 81893



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

FIGURE 6. Timing chronogram for the fully–pipelined 1D–MTS processor. Five 4 × 4 transforms of different types are launched. Each transform is
started with a pulse in start, and the results are qualified by val_out. When the 5th transform is launched, the other 4 are still in progress.

FIGURE 7. Architecture of the 2D inverse transform processor.

� It can process both squared and rectangular blocks.

� It can process blocks up to 64 × 64 in size.

� It can manage zeroing for DCT–II, DCT–VIII and

DST–VII transform types.

This 2D–VVC–MTS processor uses two 1D–MTS proces-

sors to implement a 2D inverse transform with the archi-

tecture shown in Fig. 7. The blocks 1D–MTS–VT and

1D–MTS–HT are identical except in their rounding and sat-

uration circuits. The results from the 1D–MTS–VT proces-

sor (i.e., the 1D vertical inverse transforms) are stored in

a transposition memory, TX–MEM; then, the 1D–MTS–HT

processor reads the transposed values and implements the 1D

horizontal transform. The transposition memory works as a

circular buffer, and it has been designed to store up to 2048

4×4 (or 16 64×64) intermediate results. After 1D–MTS–VT

ends a 1D transform, it can proceed with the next transform,

while simultaneously, 1D–MTS–HT can start the horizontal

transform.

The number of clock cycles needed to compute an H×W

2D inverse transform is obtained by adding the number of

cycles needed to compute the corresponding vertical trans-

form (given in expression (9)) and the number of clock cycles

needed to compute the horizontal transform:

Ncycles 1D H transform =
1

b
·
W 2

16
· H (10)

In (10), b, H and W have the same meanings as in (9).

In Table 5, the numbers of cycles needed to compute the

inverse transforms of all of the supported sizes are summa-

rized. In both expression (10) and Table 5, H and W refer to

the size of the block to be inverse transformed, which is the

input block used in the first 1D (vertical) transform.

It is worth noting that if the 2D processor works in a

continuous way, the vertical and horizontal processors will

work in parallel, and the numbers stated in Table 5 may be

substantially reduced. As an example, one 32 × 32 DCT–II

transform will require 2048 + 2048 = 4096 clock cycles,

but 8 transforms of the same type and size will be completed

in 2048 + 7 × 2048 + 2048 = 18432 clock cycles, as both

processors will work in parallel during 7 1D transforms.

D. ARCHITECTURE OF THE SoPC

An SoPC with a 2D–VVC–MTS processor, a flexible

input/output interface and a GPP has been designed to test

the functionality and performance of the processor.

1) INPUT BUFFER

An input buffer has been provided with a FIFO–based inter-

face to enable it to temporarily store the input blocks and

commands corresponding to the inverse transforms to be

computed by the 2D–VVC–MTS processor. Actually, this

module implements a 64–bit memory mapped input data

interface with two addresses. The first address is for writing

data blocks (e.g., a 4×4 block) into an input data buffer, while

81894 VOLUME 8, 2020



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

TABLE 5. Number of clock cycles needed to compute the 1D inverse
transform (vertical and horizontal) for different transform sizes.

the second address is for writing commands (e.g., types and

sizes of V and H transforms) into a command buffer.

A simplified block diagram of the input buffer is shown

in Fig. 8. It is composed of seven modules:

� GPP–I/F is the input memory mapped interface. The

cmd/data input is the address (0 to write data and 1 to

write commands).

� IBUF–MEM is a circular buffer with the same architec-

ture as the transposition memory mentioned in III.C.

� WR–GEN generates addresses and control information

to write the data blocks into IBUF–MEM.

� RD–GEN generates addresses and control information

to read the data blocks from IBUF–MEM. It also gen-

erates the start order to the 2D–VVC–MTS processor.

� COMM–BUF1 is a FIFO buffer that is used to store

the commands containing the types and sizes of the

transforms to be computed.

� COMM–BUF2 is a FIFO buffer that is used to store

the commands containing the types and sizes of the

transforms to be sent to the 2D–VVC–MTS processor

along with the start orders. The types and sizes cor-

responding to individual 2D transforms are read from

COMM–BUF1 once the full data block corresponding

to these individual transforms has been written into

IBUF–MEM.

� WR–CB is a block that generates the wr_req write

signal to read commands (types & sizes) from

COMM–BUF1 and write them into COMM–BUF2.

As shown in Fig. 8, the input buffer has two clock domains.

The interface clock domain corresponds to the GPP–I/F,

FIGURE 8. Simplified block diagram of the input buffer.

WR–CB, WR–GEN and COMM–BUF1 modules. The sys-

tem clock domain corresponds to the RD–GEN module. The

IBUF–MEM and COMM–BUF2 modules work with the

interface clock domain in their inputs and with the system

clock domain in their outputs. This separation increases the

flexibility in the SoPC physical design phase.

To start a single 2D transform, a command with infor-

mation on both size and type must be written to address 1.

The command is written into COMM–BUF1. The input

data block must then be written to address 0 row-by-row

as 4 16–bit samples in every interface clock cycle. When the

entire input data block has been written into IBUF–MEM,

the command is moved into COMM–BUF2. Finally,

RD–GEN reads the command from COMM–BUF2, begins

reading the input data block from IBUF–MEM, and generates

a start for the 2D–VVC–MTS processor.

The input buffer has been designed to efficiently support

the pipelined work of the 2D–VVC–MTS processor. It has

been dimensioned to store up to 8 32 × 32 input blocks

(i.e., 512 4 × 4 blocks). This allows it to store enough data

to implement up to 8 64 × 64 DCT–II transforms because

the zeroed high-frequency points are not actually written

into the input buffer. To start a burst of #N transforms,

#N commands with information about the sizes and types

of the individual 2D transforms can be written to address 1

(in COMM–BUF1). Next, the input data blocks correspond-

ing to these transforms must be written to address 0 (into

IBUF–MEM) in sequence. After each single input data block

has been written, the corresponding command is moved

into COMM–BUF2. When the first command is available in

COMM–BUF2, the first transform is started by RD–GEN.

Thus, while the 2D–VVC–MTS processor is computing the

first transform, the other input data blocks are being writ-

ten into IBUF–MEM, and the corresponding commands are

being moved from COMM–BUF1 to COMM–BUF2. In this

way, when the 2D–VVC–MTS processor ends with a 1D ver-

tical transform, a new transform will be started automatically.

2) OUTPUT BUFFER

The output buffer is also a FIFO–based interface that is used

to store the output data blocks corresponding to the inverse

VOLUME 8, 2020 81895



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

FIGURE 9. Simplified block diagram of the output buffer.

2D transform results computed by the 2D–VVC–MTS pro-

cessor. The first address is used to read data blocks from a

buffer, while the second is used to read status information.

A simplified block diagram of the output buffer is shown

in Fig. 9. It is composed of five modules:

� GPP–I/F is the output memory mapped interface. The

sta/data input is the address (0 to read data and 1 to

read status).

� OBUF–MEM is a FIFO buffer. It stores the 64–bit

output data from the 2D–VVC–MTS processor until it

can be read through the GPP–I/F.

� SIZE–BUF1 is a FIFO that stores the sizes of every

individual transform started by the 2D–VVC–MTS

processor.

� SIZE–BUF2 is a FIFO that stores the sizes of

the individual transforms actually computed by the

2D–VVC–MTS processor.

� MUX is a module that allows reading of either the

output data blocks stored in OBUF–MEM or the status

information through the GPP–I/F.

As shown in Fig. 9, the SIZE–BUF1 module belongs to

the system clock domain. The GPP I/F belongs to the inter-

face clock domain. The other modules have the system clock

domain for their inputs and the interface clock domain for

their outputs.

The OBUF–MEM has been dimensioned to store up to 8

64 × 64 DCT–II output blocks (i.e., 2048 4 × 4 blocks).

The output transformed blocks stored into the OBUF–MEM

can be read in sequence. By reading the processor sta-

tus, information about the number of blocks stored in the

OBUF–MEM, the block size of the first block, and the empty

and full flags from the SIZE–BUF2 FIFO can be obtained.

3) ARCHITECTURE OF THE SOPC

The SoPC consists of a 2D–VVC–MTS processor that is

connected to the input and output buffers described in the

previous subsections. In addition, two DMA engines are used

to move data from the GPP to the INPUT BUFFER and from

the OUTPUT BUFFER to the GPP. The system architecture

is shown in Fig. 10.

In the SoPC, the GPP writes one or more input data

blocks to be inverse-transformed into an internal On Chip

FIGURE 10. Architecture of the SoPC.

FIGURE 11. Simplified block diagram of the VHDL testbench.

RAM (OCR). After that, it writes one or more commands

to the COMM–BUF1 FIFO (inside INPUT BUFFER), each

with the types and sizes of the individual transforms. It then

configures DMA1 to transfer the data blocks from the OCR

into the IBUF–MEM (also inside INPUT BUFFER). The

GPP has time to perform other tasks while the input blocks

are transferred to the INPUT BUFFER and the transforms are

computed and stored in the OUTPUTBUFFER; alternatively,

it can continuously poll the status in the OUTPUT BUFFER

interface to determine how many transforms have been com-

pleted. Finally, the GPP may configure the DMA2 to transfer

the results from the OUTPUT BUFFER into the OCR.

V. TESTS AND RESULTS

A. VHDL TESTBENCH

A VHDL testbench has been designed and used to fully

test the 2D–VVC–MTS processor and the input and out-

put buffers using ModelSim simulator [25]. The testbench

(see Fig. 11) may be configured to run tests in 4 modes.

In mode 1, the testbench uses pseudorandom input data

blocks and commands with all the supported types and sizes.

A uniform distribution was selected for the random generator.

For each block, the 2D inverse transform is performed by the

81896 VOLUME 8, 2020



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

2D–VVC–MTS processor and computed in software at the

same time, and the results are automatically compared for

equality.

In mode 2, the testbench reads the input data blocks and

commands from a file. The 2D–VVC–MTS processor per-

forms the inverse transforms, and the results are automatically

compared with the transforms computed by the software.

Mode 3 works in the same way as mode 2, but the results are

compared with those stored in a file instead of with results

computed by the software.

Finally, mode 4 works in the same way as mode 1 except

that the input data, types and sizes arewritten and transformed

in bursts of fixed size.

In all cases, a 150-MHz clock was used for the inter-

face clock domain, and a 200-MHz clock was used for the

system clock domain. These values are directly related to

the logic synthesis results summarized in subsection V.C.

With this testbench, the processor has been verified using

mode 1 and mode 4 tests. In each case, a set of 106 2D

inverse transforms of random sizes and types was tested and

verified. Additionally, mode 2 and mode 3 were used to

conduct tests with Cactus, BasketballDrive and BQTerrace

sequences with Random Access 8–bit decoding configuration

and quantization parameter (QP) 32; these are 1920 × 1.080

sequences defined according to common test conditions [26].

In this case, the input data files (needed for both mode 2 and

mode 3 tests) and the output data files (needed only for

mode 3 tests) were obtained by instrumenting the decoder in

the VVC reference software [24]. Version 4.2 was used for

this purpose.

B. 2D–VVC–MTS PERFORMANCE RESULTS

A first set of performance results was obtained with the

VHDL testbench working in mode 3. The results are shown

in Table 6 for the aforementioned Cactus (CA), Basket-

ballDrive (BD) and BQTerrace (BQ) sequences. For each

sequence, the total decoding time and the average decod-

ing time per picture were obtained (see Full seq. column

in Table 6). Additionally, for both I–type and P–type pictures,

the decoding time of the slowest and fastest picture and the

average decoding time per picture are shown. The obtained

full sequence average decoding times per picture lead to

performances ranging from 282 to 1052 fps depending on

the sequence. With these numbers, real–time is supported for

both HD (1920×1.080) and UHD (3840×2.160) resolutions.

These quite good results benefit from the fact that most B

pictures contain many skipped blocks. Thus, the average time

required to decode I pictures ranges from 5 to 23 times the

average time required to decode B pictures depending on

the sequence. If only I–type pictures are taken into account,

performance ranges from 28 to 48 fps.

Although the results given previously are close to those that

could be obtained in a real scenario, they depend greatly on

the type of video sequences used in the tests. To obtain objec-

tive results that can be compared with those obtained using

other implementations, it is usual to compute the performance

TABLE 6. Performance results obtained in mode 3 tests for the
Cactus (CA), BasketBallDrive (BD) and BQTerrace (BQ) sequences.

TABLE 7. Theoretical number of frames per second obtained with the
VVC-MTS-PROC implementation for HD (1920 × 1.080) and UHD
(3840 × 2.160) resolutions. 4:2:0 sampling was considered for all cases.

in number of fps when all picture blocks are transformed

(i.e., with no skipped pictures). Table 7 shows the theoretical

number of frames per second that can be processed by the

VVC–MTS–PROC for both HD and UHD resolutions in

a number of scenarios. In all cases, it has been assumed

that the processor works with a 200 MHz system clock

(subsection V.C) in a fully pipelined mode, i.e., that it is

always computing transforms one after another. In this way,

the 1D vertical and horizontal transforms of different blocks

can run in parallel, and the time needed to complete a trans-

form can be computed as the time needed to complete the

horizontal 1D transform. It has also been assumed that the

data motion to and from the processor runs in parallel with

the transforms processing. The last 6 columns of Table 7 cor-

respond to simple scenarios in which all blocks are square

and of a fixed size. In the last column, Mix, the frames are

supposed to contain blocks with a uniform distribution of

random sizes and types.

With these numbers, real time is supported for HD reso-

lution. It is worth noting that the processor performance is

closely related to the system clock frequency. The FPGA used

to prototype the SoPC is a low–end 28-nm chip [27]. The use

of medium–end [31], [32] or high–end [32], [33] FPGAs or of

an ASIC would greatly increase the maximum system clock

and hence the performance in terms of number of frames

per second.

C. IMPLEMENTATION AND LOGIC SYNTHESIS RESULTS

The SoPC has been implemented in a Cyclone V

5CSXFC6D6F31C6 FPGA [27] and prototyped with a

VOLUME 8, 2020 81897



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

TABLE 8. Physical design results for the SoPC design.

SoCkit development board [28]. It has been built using

Platform Designer [29]. Fig. 12 shows the Platform Designer

view of the SoPC. The VVC–MTS–PROC block groups the

2D–VVC–MTS processor and the input and output buffers.

The other blocks are Intel–Altera IPs: a CLKIN module to

input a 50-MHz clock, two PLLs to generate the clocks of

the two domains from the 50-MHz clock, the GPP (an ARM

Cortex–A9 MPCore), and two DMA controller engines to

move data between the VVC–MTS–PROC and the GPP.

The GPP has two 64–bit AXI interfaces, a master and

a slave. The master interface (h2f_axi_master in Fig. 12)

is used to write the commands to the input buffer, read

the status from the output buffer, and configure the DMA

controllers. The slave interface (f2h_axi_slave) is used by

the DMA1 controller to move data from the GPP OCR to

the VVC–MTS–PROC input buffer. It is also used by the

DMA2 controller to move data from the VVC–MTS–PROC

output buffer to the GPP OCR. It is worth noting that the

VVC–MTS–PROC input and output buffers have Avalon

Memory Mapped interfaces; the compatibility between the

Avalon and AXI interfaces is solved by the interconnection

logic automatically generated by Platform Designer [29].

The logic synthesis and physical design of the system

were performed using Quartus Prime [30]. Experimentally,

we chose clocks of 150 MHz for the interface clock domain

and 200 MHz for the system clock domain. To support these

clock speeds, the logic synthesis tool has been constrained

to prioritize speed versus area (i.e., resource consumption).

Additionally, retiming techniques have been used to increase

the clock speed. The physical design results are summarized

in Table 8.

D. TESTS CONDUCTED WITH THE PROTOTYPE

Tests were conducted with the prototype by computing a wide

set of transforms with random input blocks, transform types

and sizes.

In this testbench, the GPP boots a Linux OS from an SD

card that also contains the FPGA configuration file generated

by Quartus Prime; this file is transferred to the FPGA during

the OS booting. Finally, a UART interface is used to imple-

ment a PC terminal to run applications from the GPP OS.

A test application was written in C language and compiled to

be run in the GPP. When executing the application from the

console, a menu is displayed with the following options:

� Option 1: A reset command is sent to the processor. The

effect is the same as that of a hardware reset.

� Option 2: A set of 106transforms, each with random

input data blocks, type and size, is performed.

FIGURE 12. Platform Designer view of the SoPC.

FIGURE 13. Running the test with the prototyping board.

� Option 3: A set of 106 transforms, grouped in bursts

of 8, are performed. Each transform has random input

data blocks, types and sizes.

� Options 4, 5, 6, 7 and 8: These are the same as option

3 except that the block sizes are fixed to N×N, where

N = 4 × 2(#option−4).

� Option 9: This option works similar to option 3 but with

block sizes fixed to 32 × 32 and transform types fixed

to DCT2.

� Option 10: This option works similar to option 9, but

the block types are randomly selected from DST–VII

and DCT–VIII.

In all of the above options, the GPP also computes the same

transforms by software and compares the results with those

81898 VOLUME 8, 2020



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

FIGURE 14. Simplified flow diagram of test option 3.

obtained by the processor on the fly. The software imple-

mentation is based on V 4.2 of VVC Reference Software.

Fig. 13 shows the prototyping board connected to a PC host

using an USB–UART interface. The console on the left side

shows the test menu.

Test option 2 is focused on validating the processor’s func-

tionality. After the execution of this test, the console shows

the percentage of blocks of different sizes and transform

types used in the test and indicates whether errors were found

when the hardware- and software-computed transforms were

compared.

The remaining test options focus on measuring the time

needed to perform transforms in the burst mode. In Fig. 14,

a simplified flow diagram for test option 3 is shown (the flows

in options 4. . . 10 are similar; the flow in option 2 is simpler).

Initially, NTMAX is fixed to 106, and BURST is set to 8. For

each loop, a random set of 8 input blocks with random types

and sizes is generated. After the input blocks are written into

the OCR, 8 commands (one per transform) are written to the

processor input buffer (into COMM–BUF1), and DMA1 is

configured and begins to move the input blocks from the

OCR to the processor input buffer (into IBUF–MEM). After

DMA1 transfer is completed, the processor status is polled

until the transforms are completed. It is worth noting that,

in an actual application, the GPP could perform other tasks

instead of continuously polling the DMA and the processor.

When the transforms have been computed, DMA2 is con-

figured and begins to move the results from the processor

output buffer (from OBUF–MEM) into the OCR. Finally,

when DMA2 transfer has been completed, the 8 transforms

are computed in software, and the results are compared with

the results stored in the OCR. When the NTMAX transforms

have been performed, the console shows statistics for the

number of transformed blocks of each size and type and the

average time used to run various parts of the test.

To measure time, the Linux clock_gettime function was

used. As shown in Fig. 14, the execution time between each

sequential pair of 7 test points labeled from 1 to 7 was

measured. The time measured for test point #N is the GPP

execution time between the start gettime #N point and the

stop gettime #N point in Fig. 14. These test points correspond

to the following time measurements:

� Test point #1: whole loop.

� Test point #2: generation of random inputs, types and

sizes.

� Test point #3: copying of input blocks into the OCR.

� Test point #4: implementation of the transforms, includ-

ing data motion into/from the processor.

� Test point #5: software computation of the transforms.

� Test point #6: packaging of software results to make

them ready for the comparison.

� Test point #7: time spent comparing processor and

software-computed results.

Table 9 outlines the main results obtained with the afore-

mentioned tests. All of the measurements shown in this table

are given in microseconds. The first row, Th, was included

for reference. It corresponds to the theoretical time needed

by the 2D–VVC–MTS processor to complete transforms of

different sizes and types assuming fully pipelined work. The

times in this row are obtained bymultiplying the system clock

period (5 ns) by the number of clocks needed to implement

the horizontal 1D transform, which is given in Table 5.

The times in the second row, Hw, come from the mea-

surements obtained with test options 3, 4, 5, 6, 8, 9 and 10.

They include the DMAs configuration, the time to move

data from the GPP OCR to the 2D–VVC–MTS processor,

the time to complete the transforms, and the time to move

the results back to the OCR. In all cases, the transforms are

computed in bursts of 8. Thus, the fastest 1D transforms are

shadowed by the slowest ones; this is true for all but the first

VOLUME 8, 2020 81899



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

FIGURE 15. Snapshot of the Logic Analyzer timing chronogram obtained during test 8.

TABLE 9. Time to complete 2D transforms of different sizes and
types (µs).

and the last transforms in each burst. Moreover, part of the

time to move data from the OCR to the processor is also

shadowed with the computation of the first transforms. The

times shown were obtained by dividing the average time to

complete 125000 bursts by 8.

Finally, in the third row, Sw, the time employed by the

GPP to compute the same transforms by software, is given

for reference. The software implementation is based on the

VVC reference software; in particular, no optimizations were

performed to take advantage of any GPP special instructions.

The measurements in Table 9 show that the 2D–VVC–

MTS processor’s actual computation times are close to the

theoretical times only for large block sizes (e.g., 32 × 32 or

64 × 64). For small sizes, the time required to program the

DMA configuration and move data to/from the processor is

dominant. However, for all block sizes, the computation times

are significantly shorter than those obtained with the software

implementation.

E. LOGIC ANALYZER SNAPSHOTS

To obtain further insight into the SoPC operation, the Quartus

Prime Signal Tap Logic Analyzer was used to monitor several

key internal signals in real time. As an example, Fig. 15 shows

the snapshot obtained during the occurrence of a 32×32 burst

in test option 8. In the upper left corner, the simultaneous

activity in the WR_BUF and CMD_DAT signals shows the

writing of the 8 commands into the INPUT BUFFER. The

activity in WR_BUF that occurs while CMD_DAT = ‘0’

identifies the DMA1 transfers of the input data blocks from

the GPP OCR to the INPUT BUFFER. When enough data

has been moved into the INPUT BUFFER, the first vertical

transform is started; this can be identified by the pulse in

the internal START_VT signal. When a vertical transform

is completed, a new one is started, and a horizontal trans-

form (START_HT) is started at the same time. It is worth

noting that the DMA1 data motion runs in parallel with the

first 1D vertical transforms. Additionally, with the exception

of the first vertical transform and the last horizontal trans-

form, the vertical and horizontal transforms run in parallel.

Finally, when the last horizontal transform is completed,

the DMA2 transfers the results from the OUTPUT BUFFER

to the GPP OCR. This can be identified by the activity on the

RD_BUF and DATA_OUT_BUF signals.

F. COMPARISON WITH OTHER PROPOSALS

Table 10 summarizes the key parameters used to compare the

performance of the 2D–VVC–MTS processor with that of

other implementations. All proposals in Table 10 implement

2D transforms using two 1D transform processors plus a

transposition memory. The type of transform implemented in

the proposals (direct or inverse) is not relevant for the purpose

of the comparison. To ensure a fair comparison, the data

included in Table 7 were used to characterize the performance

of our proposed implementation (SoPC, in the first row).

81900 VOLUME 8, 2020



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

TABLE 10. Comparison of FPGA–based implementations considering
UHD (3840 × 2160) resolution and 4:2:0 sampling.

At this point, it is important to say that the implementation

described in this paper has a set of unique features:

� First, it is the only implementation that supports rect-

angular block sizes up to 64 × 64. The proposal in 17]

only supports DCT–VIII and DST–VII transform types

(with sizes up to 32×32, as defined in the standard). The

proposal in [15] supports 4×4 and 8×8 sizes only. The

other proposals ([16], 18] and [19]) support sizes up to

32× 32. Rectangular blocks are only supported in [16]

and in our proposal.

� Second, it is the only implementation that supports the

simplified computation for the higher size transforms

that were defined in WD 4 (and that have been main-

tained in the actual CD).

� Third, our proposal is the only proposal that has been

implemented as a peripheral ready to be connected to a

GPP. Moreover, it has been implemented and tested in

an SoPC.

It is worth noting that all of these characteristics introduce

a complexity in the design that is not present in the other

proposals, posing a challenge in achieving good results with

respect to both consumed logic resources and throughput.

Regarding logic resources consumption, our proposal is

clearly better than [16] and [18]. Even considering that the

implementation in [18] includes both direct and inverse trans-

forms, the differences are very large. Compared with [15],

our implementation has 32 multipliers and twice the number

of registers, but it supports rectangular blocks up to 64 × 64

size. A fair comparisonwith proposal in [17] is difficult as it is

an ASIC implementation. In any case, its functionality is very

limited compared with that of our proposal. Finally, it must be

taken into account that the architecture proposed in this paper

is an enhancement of our previous work in [19]; this enhanced

system supports 64 × 64 block sizes, rectangular blocks and

simplified computation of large transforms and includes the

input and output buffers and the system architecture described

in subsection IV.D. All of these improvements are responsible

for the increment in logic resource usage compared with [19].

As would be expected, the best throughputs are obtained by

the less complete implementations [15] and [17]. Our imple-

mentation yields results similar to those of [16] but uses far

less logic resources. The implementation in [18] exhibits very

good performance for 32×32 block sizes, but the throughput

decreases as the block sizes go down. Our implementation

has the opposite behavior. In an actual application, a mixture

of blocks of different sizes can be expected; in this case,

the performances of the two proposals approach similarity.

As an example, for a mix of equally probable blocks of sizes

from 4× 4 to 32× 32, our proposal would have a throughput

of 30 fps, while the proposal in [18] would reach 41 fps.

It is worth noting that, with the same mixture of blocks,

the proposal in [19] has a throughput of over 40 fps. From

this, it follows that the difference (40 – 30 = 10) is the

cost of supporting 64 × 64 block sizes, rectangular blocks,

simplified computations for large transforms and a complete

interface for a GPP. Additionally, as mentioned previously,

the approximated approach in [18] is non–standard and has a

slight cost in terms of bit rate.

Last but not least, it should be noted that our proposal was

implemented with a low–end FPGA, while proposals [16]

and [18] were implemented with medium–end FPGAs, and

proposal [17] was implemented with an ASIC. Our estima-

tion is that with a medium or high–end FPGA or an ASIC,

the architecture proposed in this paper could support real–

time UHD formats.

VI. CONCLUSION

In this paper, 2D–VVC–MTS, an efficient FPGA–based

architecture for the computation of the future versatile video

coding (VVC) multiple transform selection (MTS) core, has

been proposed. The architecture supports rectangular trans-

form sizes ranging from 4 × 4 to 64 × 64 and simplified

algorithms for large bocks according toWD 4 of the standard.

Moreover, 2D–VVC–MTS has been provided with a flex-

ible input/output interface, and a system on a programmable

chip (SoPC) has been designed to demonstrate its perfor-

mance. To the best of our knowledge, this is the first proposal

to include block sizes of up to 64×64 and the simplified algo-

rithms for large-size blocks. These two key characteristics

introduce a complexity that is not seen in previous proposals,

including those for the current HEVC standard and those for

the new VVC. In comparison with the latter, the architec-

ture proposed in this paper consumes fewer logic resources

and is able to work at higher or similar clock frequencies.

It supports HD resolution in real time and UHD@10 fps.

These numbers are achieved with a low–end FPGA-based

implementation, but with an ASIC or even a high–end FPGA,

VOLUME 8, 2020 81901



M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

UHD formats could be processed in real time. In addition,

the small footprint of the core 1D transform processor leaves a

margin for future parallelization of the transform computation

by doubling or quadrupling the number of cores to increase

the speed (e.g., ×2 or ×4).

REFERENCES

[1] ISO/IEC CD 23090-3 Versatile Video Coding, document N10692, Joint

Video Experts Team (JVET) of ITU-T SG 16WP3 and ISO/IEC JTC 1/SC

29/WG 11, 127th Meeting: Gothenburg, Jul. 2019.

[2] High Efficiency Video Coding, document Rec. ITU-T H.265, 2013.

[3] Requirements for a Future Video Coding Standard v5, document N17074,

MPEG, Joint Video Exploration Team (JVET) of ITU-T VCEG (Q6/16)

and ISO/IEC MPEG (JTC 1/SC 29/WG 11), Jul. 2017.

[4] V. Britanak, P. Yip, and K. R. Rao, Discrete Cosine and Sine Trans-

forms: General Properties, Fast Algorithms and Integer Approximations.

Feb. 2016. [Online]. Available: http://dsp-book.narod.ru/BYPRDCT.pdf

[5] Versatile Video Coding (Draft 4), document JVET-M1001-v7, Joint Video

Experts Team (JVET) of ITU-T SG 16 WP3 and ISO/IEC JTC 1/SC

29/WG 11, 13th Meeting, Marrakech, Jan. 2019.

[6] M. J. Garrido, C. Sanz, M. Jiménez, and J. M. Menesses, ‘‘An FPGA

implementation of a flexible architecture for H.263 video coding,’’ IEEE

Trans. Consum. Electron., vol. 48, no. 4, pp. 1056–1066, Nov. 2003.

[7] P. Kitsos, N. S. Voros, T. Dagiuklas, and A. N. Skodras, ‘‘A high speed

FPGA implementation of the 2D DCT for ultra high definition video

coding,’’ in Proc. 18th Int. Conf. Digit. Signal Process. (DSP), Jul. 2013,

pp. 1–5.

[8] W. Zhao, T. Onoye, and T. Song, ‘‘High-performance multiplierless trans-

form architecture for HEVC,’’ in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), May 2013, pp. 1668–1671.

[9] R. Conceição, J. C. de Souza, Jr., R. Jeske, B. Zatt, M. Porto, and

L. Agostini, ‘‘Low-cost and high-throughput hardware design for the

HEVC 16×16 2-D DCT transform,’’ J. Integr. Circuits Syst., vol. 9, no. 1,

pp. 25–35, Dec. 2014.

[10] G. Pastuszak, ‘‘Hardware architectures for the H.265/HEVC discrete

cosine transform,’’ IET Image Process., vol. 9, no. 6, pp. 468–477,

Jun. 2015.

[11] M. Chen, Y. Zhang, and C. Lu, ‘‘Efficient architecture of variable size

HEVC 2D-DCT for FPGA platforms,’’ AEU-Int. J. Electron. Commun.,

vol. 73, pp. 1–8, Mar. 2017.

[12] P. Sjovall, V. Viitamaki, J. Vanne, and T. D. Hamalainen, ‘‘High-level

synthesis implementation of HEVC 2-D DCT/DST on FPGA,’’ in Proc.

IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017,

pp. 1547–1551.

[13] M. Masera, G. Masera, and M. Martina, ‘‘An area-efficient variable-

size fixed-point DCT architecture for HEVC encoding,’’ IEEE Trans.

Circuits Syst. Video Technol., vol. 30, no. 1, pp. 232–242, Jan. 2020.

[Online]. Available: https://ieeexplore.ieee.org/document/8576601, doi:

10.1109/TCSVT.2018.2886736.

[14] M. Zheng, J. Zheng, Z. Chen, L. Wu, X. Yang, and N. Ling, ‘‘A reconfig-

urable architecture for discrete cosine transform in video coding,’’ IEEE

Trans. Circuits Syst. Video Technol., vol. 30, no. 3, pp. 810–821,Mar. 2020.

[Online]. Available: https://ieeexplore.ieee.org/document/8630665, doi:

10.1109/TCSVT.2019.2896294.

[15] A. C. Mert, E. Kalali, and I. Hamzaoglu, ‘‘High performance 2D trans-

form hardware for future video coding,’’ IEEE Trans. Consum. Electron.,

vol. 63, no. 2, pp. 117–125, May 2017.

[16] A. Kammoun,W.Hamidouche, F. Belghith, J.-F. Nezan, andN.Masmoudi,

‘‘Hardware design and implementation of adaptive multiple transforms

for the versatile video coding standard,’’ IEEE Trans. Consum. Electron.,

vol. 64, no. 4, pp. 424–432, Nov. 2018.

[17] Y. Fan, Y. Zeng, H. Sun, J. Katto, and X. Zeng, ‘‘A pipelined

2D transform architecture supporting mixed block sizes for the VVC

standard,’’ IEEE Trans. Circuits Syst. Video Technol., early access,

Aug. 12, 2020, doi: 10.1109/TCSVT.2019.2934752. [Online]. Available:

https://ieeexplore.ieee.org/document/8794833

[18] A. Kammoun, W. Hamidouche, P. Philippe, O. Deforges, F. Belghith,

N. Masmoudi, and J.-F. Nezan, ‘‘Forward-inverse 2D hardware imple-

mentation of approximate transform core for the VVC standard,’’ IEEE

Trans. Circuits Syst. Video Technol., early access, Nov. 20, 2019.

[Online]. Available: https://ieeexplore.ieee.org/document/8907817, doi:

10.1109/TCSVT.2019.2954749.

[19] M. J. Garrido, F. Pescador, M. Chavarrías, P. J. Lobo, and C. Sanz, ‘‘A 2-

D multiple transform processor for the versatile video coding standard,’’

IEEE Trans. Consum. Electron., vol. 65, no. 3, pp. 274–283, Aug. 2019.

[20] S. A. White, ‘‘Applications of distributed arithmetic to digital signal pro-

cessing: A tutorial review,’’ IEEE ASSP Mag., vol. 6, no. 3, pp. 4–19,

Jul. 1989.

[21] Y. Voronenko and M. Püschel, ‘‘Multiplierless multiple constant multipli-

cation,’’ ACM Trans. Algorithms, vol. 3, no. 2, p. 11, May 2007.

[22] Versatile Video Coding (Draft 2), document JVET-K1001-v7, Joint Video

Experts Team (JVET) of ITU-T SG 16 WP3 and ISO/IEC JTC 1/SC

29/WG 11, 11th Meeting, Ljubljana, Jul. 2018.

[23] Algorithm Description for Versatile Video Coding Test Model 4 (VTM 4),

document JVET-M1002-v2, Joint Video Experts Team (JVET) of ITU-T

SG 16 WP3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting, Marrakech,

Jan. 2019.

[24] VVC VTM Reference Software. [Online]. Available:

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM

[25] Mentor. ModelSim Functional Verification Tool Web.

Accessed: May 2, 2020. [Online]. Available: https://www.mentor.com/

products/fv/modelsim/

[26] JVET Common Test Conditions and Software Reference Configurations for

SDR Video, document JVET-K1010-v2, Joint Video Experts Team (JVET)

of ITU-T SG 16 WP3 and ISO/IEC JTC 1/SC 29/WG 11, 11th Meeting,

Ljubljana, Jul. 2018.

[27] Intel. (2016). Cyclone V Device Overview. [Online]. Available:

https://www.altera.com/documentation/sam1403480548153.html

[28] SoCkit Development Kit Product Description. Accessed: May 2, 2020.

[Online]. Available: https://www.arrow.com

[29] Platform Designer. (2019). Intel Quartus Prime Standard Edition User

Guide. [Online]. Available: https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/literature/ug/ug-qps-platform-designer.pdf

[30] Intel FPGA Download Center. Accessed: May 2, 2020. [Online]. Avail-

able: https://www.altera.com/downloads/software.html

[31] Intel. (2017). Intel Arria 10 Device Overview. [Online]. Available:

https://www.altera.com/documentation/sam1403480274650.html

[32] Xilinx. (2017). Ultrascale Architecture and Product Data Sheet:

Overview. [Online]. Available: https://www.xilinx.com/support/

documentation/data_sheets/ds890-ultrascale-overview.pdf

[33] Intel. (2017). Intel Stratix 10 GX/SX Device Overview. [Online]. Available:

https://www.altera.com/documentation/joc1442261161666.html

MATÍAS J. GARRIDO was born in Valencia,

Spain, in 1965. He received the B.S. and M.S.

degrees in telecommunications engineering and

the Ph.D. degree from the Universidad Politécnica

deMadrid (UPM), Spain, in 1986, 1996, and 2004,

respectively.

Since 1987, he has been an Associate Professor

with the UPM. He has been with the Electron-

ics and Microelectronics Design Group (GDEM)

since its creation, in 1997, and with the Soft-

ware Technologies and Multimedia Systems for Sustainability (CITSEM)

Research Center, since 2013. He has authored 14 journal articles and

38 conference papers. He holds a patent. He has participated in more

than 40 Research and Development industry projects. His research interests

include electronics digital design, video coding, and digital video broadcast-

ing. He received the Best Paper Award from the 2011 IEEE International

Symposium on Consumer Electronics and the IEEE Consumer Electronics

Society Chester Sall Award for the third place best paper in the IEEE

TRANSACTIONS ON CONSUMER ELECTRONICS, in 2014.

81902 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCSVT.2018.2886736
http://dx.doi.org/10.1109/TCSVT.2019.2896294
http://dx.doi.org/10.1109/TCSVT.2019.2934752
http://dx.doi.org/10.1109/TCSVT.2019.2954749


M. J. Garrido et al.: An FPGA-Based Architecture for the VVC MTS Core

FERNANDO PESCADOR (Senior Member,

IEEE) received the Ph.D. degree from the Uni-

versidad Politécnica de Madrid (UPM), Spain,

in 2011.

He has been an Associate Professor with the

UPM, since 1995, and the Head of the Department

of Telematics and Electronics Engineering (DTE),

since 2012. He has been with the Electronics and

Microelectronics Design Group (GDEM), since

1999, and with the Software Technologies and

Multimedia Systems for Sustainability (CITSEM) Research Center, since

2013. His research interests are real-time video coding, multiprocessor

architectures for video coding, and digital video broadcasting. He received

the Best Paper Award from the 2011 IEEE International Symposium on

Consumer Electronics and the IEEE Consumer Electronics Society Chester

Sall Award for the third place best paper in the IEEE TRANSACTIONS ON

CONSUMER ELECTRONICS, in 2014. Since 2017, he has been the Editor-in-Chief

of the IEEE TRANSACTIONS ON CONSUMER ELECTRONICS.

MIGUEL CHAVARRÍAS received the Ph.D.

degree from the Universidad Politécnica de

Madrid (UPM), Spain, in 2017. He has been

an Assistant Professor with the Department of

Telematics and Electronics Engineering, UPM,

since 2019. He has been with the Electronics and

Microelectronics Design Group (GDEM), since

2011, and with the Software Technologies and

Multimedia Systems for Sustainability (CITSEM)

Research Center, since 2012. His current research

interests include high-performance embedded systems, machine learning,

and new video coding techniques.

PEDRO J. LOBO received the B.S. and M.S.

degrees in telecommunications engineering from

the Universidad Politécnica de Madrid (UPM),

Spain, in 1993 and 2004, respectively, where he

is currently pursuing the Ph.D. degree. He has

been a member of the Electronics and Microelec-

tronics Design Group (GDEM), since 2001, which

was integrated into the Software Technologies

and Multimedia Systems for Sustainability (CIT-

SEM) Research Center, in 2012. His research

interests are multiprocessor architectures and multiprocessor programming

methodologies.

CÉSAR SANZ (Senior Member, IEEE) received

the Ph.D. degree in telecommunications engineer-

ing from the Universidad Politécnica de Madrid

(UPM), in 1998. He has led the Electronics

and Microelectronics Design Group (GDEM).

He has been involved in Research and Develop-

ment projects with private companies and public

institutions, since 1996. Since 2013, he has been

a Researcher with the Software Technologies and

Multimedia Systems for Sustainability (CITSEM)

Research Center. He was the Dean of the School of Telecommunications

Systems and Engineering (UPM), from 2008 to 2017. Since 1985, he has

been a Faculty Member of the UPM, where he is currently a Full Professor

with the Department of Telematics and Electronics Engineering (DTE).

He has more than 100 publications in international journals and conferences,

and has participated inmore than 80 Research andDevelopment projects. His

research interests include electronics digital design applied to video coding

and hyperspectral imaging.

PEDRO PAZ was born in A Coruña, Spain,

in 1997. He received the B.S. degree in telecom-

munications engineering from the Universidad

Politécnica de Madrid (UPM), Spain, in 2019,

where he is currently pursuing the M.S. degree

in telecommunications engineering. He has been

with the Software Technologies and Multimedia

Systems for Sustainability (CITSEM) Research

Center, since 2018. His research interests are elec-

tronics digital design and video coding.

VOLUME 8, 2020 81903


