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In this paper, an FPGA-based convolutional neural network coprocessor is proposed. The coprocessor has a 1D convolutional
computation unit PE in row stationary (RS) streaming mode and a 3D convolutional computation unit PE chain in pulsating
array structure. The coprocessor can flexibly control the number of PE array openings according to the number of output
channels of the convolutional layer. In this paper, we design a storage system with multilevel cache, and the global cache uses
multiple broadcasts to distribute data to local caches and propose an image segmentation method that is compatible with the
hardware architecture. The proposed coprocessor implements the convolutional and pooling layers of the VGG16 neural
network model, in which the activation value, weight value, and bias value are quantized using 16-bit fixed-point quantization,
with a peak computational performance of 316.0 GOP/s and an average computational performance of 62.54 GOP/s at a clock
frequency of 200MHz and a power consumption of about 9.25W.

1. Introduction

Hardware acceleration of artificial neural networks (ANNs)
has been a hot research topic since the 1990s [1, 2]. The most
representative one is the implementation of a shallow artifi-
cial neural network gas pedal, ETANN, by Intel in 1989,
which supports only a small amount of data [3, 4]. Convolu-
tional neural networks have been proposed since 1989 and
did not become a research hotspot until 2006, mainly due
to the difficulty of hardware computing power at that time.
The convolutional and fully connected layers in CNN are
mainly multiplicative and additive operations with relatively
single control process; however, the training and prediction
process of CNN models generally requires hundreds of mil-
lions of multiplicative and additive operations [5, 6], of which
90% of the computations are concentrated in the convolu-
tional layer [7]. To achieve high computational performance,
it is often necessary to design highly parallel temporal and
spatial architectures [8–10].

Temporal parallelism is mainly for CPUs and GPUs,
which improve computational efficiency mainly by increas-
ing frequency, multilevel cache, single instruction multiple
data, single instruction multiple threads, etc. All Arithmetic
Logic Units (ALUs) share controllers and memory. In these

computing platforms, the convolutional and fully connected
layers are mapped into matrix multiplication to participate in
the computation. CNN has high computational density, sin-
gle task, and high data reuse and requires large-scale compu-
tational logic and storage bandwidth without complex
control logic, so the CPU is not suitable for CNN computa-
tion. On the contrary, GPU has thousands of computational
cores and is more suitable for CNN computation; however,
the power consumption and area of GPU are large, and the
energy efficiency ratio is low mainly deployed in the cloud.
However, GPUs are not suitable for embedded applications,
which are power sensitive. Spatial parallelism is mainly for
ASICs and FPGAs, mainly through stream processing, local
accumulation, proximity storage, etc. to improve data reuse
and thus computational efficiency. FPGAs are highly pro-
grammable and configurable, with high energy efficiency
and short development cycles, especially with tools such as
High Level Synthesis and OpenCL, which accelerate the
development of FPGAs.

Sankaradas et al. designed a coprocessor for CNN
based on FPGA [11] with low precision data bit-width
(20-bit fixed-point quantization for weights and 16-bit
fixed-point quantization for feature map values), support-
ing only fixed size convolutional kernel size, frequent
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accesses, high power consumption, and low computa-
tional efficiency because intermediate values need to be
stored in DDR. Gokhale et al. designed the coprocessor
nn-X for mobile embedded end [12, 13] with a peak
computational performance of 200 GOP/s on Xilinx
ZC706 platform. With the increasing complexity of
CNN models, FPGA logic resources, and memory band-
width, the design space of FPGAs is also expanding. In
order to find the optimal gas pedal design solution,
MIT proposed Eyeriss [14], a highly efficient and reconfi-
gurable deep convolutional neural network accelerator
chip. Eyeriss supports different sizes of input feature
maps and convolutional kernel sizes, uses RLB (run-
length-based) compression to reduce the average image
data transfer bandwidth by a factor of 2, reduces the
interaction between computational units and on-chip
storage through data reuse and local accumulation, and
reduces the interaction between data and DDR through
hierarchical storage. This reduces power consumption.

In this paper, we analyze the convolutional neural net-
work algorithm and design a high-performance and flexible
FPGA-based convolutional neural network coprocessor by
combining the hardware implementation and optimization
with the characteristics of FPGA platform. The paper is orga-
nized in the following sections. Section 2 introduces the copro-
cessor architecture. Section 3 focuses on the design of each
major module in the coprocessor. In Section 4, we perform
FPGA hardware verification. Finally, Section 5 concludes.

2. Coprocessor Architecture

In this paper, we provide a coprocessor implementation for
convolutional neural networks, which is aimed at accelerat-
ing the convolutional and pooling layers of convolutional
neural networks on FPGAs and applying them to heteroge-
neous accelerated systems or embedded terminals. The
design solution includes a controller, input buffer, output
buffer, convolutional unit, and pooling unit. Figure 1 shows
the schematic diagram of the overall architecture of the
coprocessor. The input buffers include a global image buffer
(GIB), tc local image buffers (LIBs), a global bias buffer
(GBB), tm local weight buffers (LWBs), and tm local partial
sum buffers (LPBs). The output buffers include tm local out-
put buffers (LOBs); the convolution operation unit includes
tm PE arrays; the pooling unit includes tm splice pools
(referred to as sp_pool, a pooling unit containing image
stitching function); tm and tc in the figure are given optimal
values by theoretical analysis.

The main functions of each cell module in this architec-
ture are as follows:

(1) The data I/O interface supports AXI4-Stream and
AXI4-Lite bus protocols. The off-chip memory sends
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Figure 1: The schematic diagram of the overall architecture of the coprocessor.
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data in bulk to the input buffer of the coprocessor
through the AXI4-Stream Slave interface to provide
feature map data, weight data, and bias data for the
PE array

(2) The global controller communicates with external
control signals through the AXI4-Lite bus interface.
The global controller contains nine 32-bit instruction
registers, which are used to store the parameters of
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Figure 3: The schematic diagram of the proposed convolutional computation unit.
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Figure 4: The schematic of the data flow of PE performing 1D convolution.
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the convolutional layer as well as the enable signal
and the end-of-computation signal

(3) GIB and GBB and tm LWBs all have an ID. After the
data is input from the S_axis interface, only the buffer
with the matching ID can receive the data

(4) GIB is distributing data to tc LIBs in the form of
global broadcast, each LIB has its own ID, and only
LIBs with matching IDs can receive data

(5) Each sp_pool can implement nonlinear activation,
image stitching, and pooling. This design supports
activation function ReLU and step size 2, size 2 × 2
maximum pooling

The FPGA development board used in this thesis is the
ZYNQ-7000 ZC706 evaluation board, and the number of
DSPs available and the size of on-chip storage is small com-
pared to the mainstream chips. The amount of weight data
in the fully connected layer is large, and there is no reusabil-
ity. If the fully connected layer is executed in FPGA, only a
small performance improvement can be obtained, but at
the same time more computational and storage resources
are occupied and the control logic is more complicated,
which will directly affect the parallelism of the convolutional
layer operation. Therefore, the coprocessor designed in this
thesis is only responsible for the accelerated computation of
the convolutional and pooling layers.

3. Design of Each Major Module in
the Coprocessor

3.1. Convolutional Operation. Convolutional operations are
the most central and computationally intensive operations
in convolutional neural networks, so the efficiency of convo-
lutional units directly affects the performance of the whole
architecture. In fact, most of the hardware resources in the
design solution are also allocated to the acceleration of con-
volutional operations. The basic operation of convolutional
operation is matrix multiplication, and one convolutional
operation consists of multiple multiplication and addition
operations; in convolutional operation, the data is highly
reusable, as shown in Figure 2.

3.1.1. Convolutional Reuse. A 3D convolutional kernel of size
k × k × C slides on a 3D feature of size fmap size × fmap
size × C with a fixed step size. The same convolutional kernel
convolves different receptive domains, and the filter weights
are reused; the activations of two adjacent receptive domains
overlap and are reused by different weights in one convolu-
tional kernel.

3.1.2. fmap Reuse. M 3D convolutional kernels of size k × k
× C are slid over a 3D feature map of size fmap size × fmap
size × C in a fixed step. When M convolution kernels con-
volve the same sensory domain, the activation values in that
domain are reused.

3.1.3. Filter Reuse. A 3D convolutional kernel of size k × k
× C slides over N 3D feature maps of size fmap size ×

fmap size × C with a fixed number of steps. The same
convolutional kernel can convolve multiple sensory
domains at the same location in the feature map, and
the kernel weights are reused.

Although multiple multiplication and addition opera-
tions are required in a single iteration, the data demand
is high, but in fact, since most of the data in the input
feature subregion of the convolution operation can be
reused, fully utilizing this feature can reduce the on-chip
data cache capacity and off-chip storage bandwidth
requirements.

3.2. Convolutional Cell Design. In this paper, in order to take
full advantage of the data multiplexing form of the convolu-
tional computation process and to fully consider the compu-
tational and storage resources of the FPGA, Figure 3 shows
the schematic diagram of the proposed convolutional com-
putation unit, which illustrates the data interaction between
the computational unit and the memory.

The whole convolutional computation unit includes tm
PE arrays, each PE array includes tc PE chains, each PE chain
includes 3 PE, each PE contains a DSP, each PE can complete
a one-dimensional convolution, each PE chain can complete
a two-dimensional convolution, and multiple use of a PE
chain or multiple PE chain parallel computation can achieve
a three-dimensional convolution. As shown in Figure 3, first,
there are tc LIBs corresponding to tc PE chains, and each LIB
passes the image data to tm PE chains in the form of broad-
cast, realizing the feature map reuse form as shown in
Figure 2. In addition, there are tm LWBs in the whole convo-
lutional computation unit, and each LWB corresponds to one
PE array, and the weights are passed to tc PE chains in the
form of broadcast, realizing the convolutional reuse form
shown in Figure 2. Finally, there are tm LPBs in the whole
convolutional computation unit, each LPB stores the bias
value (bias) from GBB for the first time and then stores the
partial sum from PE chain; similarly, each LPB can output
data to PE chain or to splice pool. Each LPB has two data
input ports and two data output ports.
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3.3. PE. The most basic multiplication and addition unit PE
in the convolution unit designed in this paper adopts the
stream processing structure of RS, which can realize the
one-dimensional convolution calculation. Assuming the size
of the input feature map ifmap size = 5 and the size of the
convolution kernel k = 3, the data flow into PE is shown in
Figure 4. The PE structure designed in this paper saves stor-
age resources by reducing the Image Scratch Pad and Filter
Scratch Pad compared to the PE structure of Eyeriss [10],
which is certainly a good design in the case of storage con-
straints. Figure 5 shows the schematic diagram of the PE unit.
Sel in the input signal is the selection control signal; Sel = 1
plus the bias value or the partial sum from the previous PE;
Sel = 0 plus the product of the activation value and the weight
value. This PE structure can be implemented in the FPGA
with only one DSP example. In this paper, to avoid the logic
overhead and control complexity associated with dynamic
fixed-point quantization, both weights and activation values
are quantized using a fixed-state 16-bit fixed-point
quantization.

3.4. PE Chain. PE chain is the core of the entire convolutional
computation unit. Without considering parallel computa-
tion, a PE chain can do all the computations of the convolu-
tional layer in the neural network independently.

Figure 6 shows the schematic diagram of the I/O interface
of the PE chain. When the PE chain detects an enable signal,
it sends an activation request signal to the LIB, a partial sum
signal to the LPB, and a weight request signal to the LWB; the
LIB receives the request signal and sends a feature map value;
the LPB sends a partial sum; the LWB sends a convolution

kernel. A channel counter is designed in PE chain. When a
2D feature map value is computed, the counter is incremen-
ted by one until the counter equals the computed channel,
and all input feature map channels are computed. This marks
the completion of the computation of all channels in a 3D tile
(a large feature map divided into several smaller feature
maps, each of which called a tile).

PE chain computational logic: if the size of the convolu-
tion kernel is k, then a PE chain consists of k PEs connected
sequentially and expanded in space-time, which is a two-
dimensional systolic array structure. In this design, only 3
× 3 convolutional kernels are supported, so a PE chain con-
sists of 3 PEs, as shown in Figure 7, and each two PEs are con-
nected by a FIFO (the last PE chain in a single PE array as
shown in Figure 3 contains only two FIFOs, and the last FIFO
is replaced by an LPB).

A PE chain can implement a 2D convolution, and a PE
chain can fully implement a 3D convolution calculation
without considering the computational speed (all 2D convo-
lutions are executed serially by a PE chain). Assuming an
input feature map of size ifmap size = 5 and a convolution
kernel of size k = 3, the space-time mapping (STM) of a PE
chain is shown in Figure 8.

Each solid circle in the graph represents one PE, three
PEs in total, and the computation process of each PE is
expanded along the time axis to form a two-dimensional
pulsating array structure. Each row of the feature map is
passed to each PE simultaneously in the form of a broad-
cast. The data flow of Psum_row1 in the space-time map-
ping diagram of PE chain is shown in Figure 9, where the
data flow of each PE is shown in Figure 4. The first row of
the convolution kernel is given to PE1, the second row to
PE2, and the third row to PE3, with three rows of input
simultaneously, which requires that one convolution kernel
must be taken from the LWB at a time. In each cycle, the
PE computes a one-dimensional convolution, and the par-
tial sum is temporarily stored in the FIFO. When the pre-
vious PE finishes computing a row, the next PE is opened,
and the partial sum in the previous FIFO is read as bias
into the current PE.

3.5. PE Array. PE array is an array of PE chain, and the whole
convolutional computation unit is implemented by multiple
PE arrays, utilizing two data reuse modes, such as convolu-
tional reuse and feature map reuse shown in Figure 2, to
achieve a high degree of parallelism in convolutional compu-
tation. Due to the limited on-chip storage, the input feature
map must be segmented, and the segmentation strategy is
related to the overall structure of the PE array, which also

Ifmap rows

Filter
row1

Bias or
partial sum
rows

PE1 PE2 PE3

F
IF

O
3

F
IF

O
2

F
IF

O
1

Filter
row2

Filter
row3 Result

rows

Figure 7: The schematic diagram of the proposed PE chain.

Image
row1

Image
row1

Image
row1

Image
row1

Image
row1

Filter
row1

Filter
row1

Filter
row1

Time

Psum
row1

Psum
row1

Psum
row1

Cycle5Cycle4Cycle3Cycle2Cycle1

Figure 8: The space-time mapping (STM) of a PE chain.

5Wireless Communications and Mobile Computing



leads to the decision of computation modes for multiple PE
arrays.

The overall structure of a single PE array is shown in
Figure 10. The detailed I/O interfaces are omitted, and the
directions indicated by the arrows in the figure only represent
data interaction relationships.

A single PE array contains tc PE chains, and tc PE chains
are connected in turn. When PE array receives the signal
from each PE chain, it can easily control the opening and
closing of each PE chain. The nth PE chain sends a signal
to the nth-1st PE chain to request a partial sum. After the
nth-1st PE chain receives the requested signal, it sends a sig-
nal to the next PE chain and at the same time reads its own
FIFO3 and sends a partial sum. The tcth PE chain differs
from the previous PE chain in that it contains only two
FIFOs, and the third FIFO is replaced by the LPB, and the
first PE chain sends a request signal to the LPB.

Data interaction between PE array and each buffer: each
PE chain has its corresponding local image buffer (LIB),
and all PE chains share a local weight buffer (LWB), as shown
in Figure 11, and the LWB sends the weights to PE array in
the form of broadcast, and only the PE chain with matching
ID can receive them. chain can only receive them. The start of
PE array is controlled by three signals, the signal from GIB
and the signals from LPB and LWB, respectively.

3.6. Image Segmentation Strategy. For a PE array with a PE
chain in each PE array, the entire convolutional computation
unit has only one PE chain (with 3 DSPs), and all local caches
alone require at least 53Mb of storage space to satisfy the
computation of all convolutional layers. For 4 PE arrays, each
PE array contains 64 PE chains, i.e., the entire convolutional
computation unit uses 256 PE chains (with 768 DSPs), and
the local cache alone requires at least 255Mb of storage
space. The on-chip storage of FPGA chip resources is only
19.1M, while the number of DSP is 900. Obviously, if the fea-
ture map is not divided, the on-chip storage is not enough
and the computational unit cannot be fully utilized. In order
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to balance the allocation of on-chip storage and computa-
tional units, this paper adopts the strategy of splitting the fea-
ture map size. The smaller the size of the split feature map,
the smaller the local storage occupation, and the larger the
global cache can be allocated with limited storage resources,
reducing the delay of data loading during each round of com-
putation of computation units. Of course the trouble brought
is the increase in the number of rounds of computation
needed and the increase in the number of data loading from
the global buffer. So the size of the partition needs to be
adapted to the architecture of the hardware, taking into
account both the parallelism of multiple PE arrays and the
time delay of opening multiple PE chains in each PE array
in turn.

In the hardware architecture design of this thesis, for the
convenience of control, so that the size of each tile is equal, C
should be divisible by tc. A tile (ts × ts × C) of depth C is
decomposed into C/tc groups according to successive groups
of tc 2D tile, and the 2D tile in each group is stored in the cor-
responding LIBs, which correspond to PE array, as shown in
Figure 12. Each LIB stores 2D tile.

The actual simulation verifies that after PE chain is
enabled, it needs to request feature map data, weight data,
and partial sum data and then turn on the first PE, and
the process takes five clock cycles. According to the calcu-
lation logic of PE chain, the previous PE needs to calculate
one row of feature map data before the next PE can be
turned on, and the process takes 3ðts − k + 1Þ clock cycles.
The PE3 calculation of the previous PE chain produces
the first partial sum to start the next PE chain, and the
actual simulation verifies that the process takes seven clock
cycles. It takes tc × ½5 + 6ðts − k + 1Þ + 7� clock cycles from
the first PE chain first enable to the second enable, while
it takes 5 + ts × 3ðts − k + 1Þ clock cycles for the first PE
chain to finish computing the first 2D tile. tc and ts are
bounded as follows:

5 + ts × ts − k + 1ð Þ < tc × 5 + 6 ts − k + 1ð Þ + 7½ �: ð1Þ

When k = 3, the inequality is rewritten as follows:

0 < 6tc × ts − 3ts2 + 6ts − 5: ð2Þ

The constructor is as follows:

f ts, tcð Þ6tc × ts − 3ts2 + 6ts − 5: ð3Þ

In order to minimize the interval time of PE chain, f
ðts, tcÞ should be taken as the minimum value. To facili-
tate control, tc should be equal to 2n, considering that
there are only 900 DSPs in the FPGA and each PE chain
contains 3 DSPs, the relationship between the number of
DSPs used. When tc = 4 and ts = 9, the function f ðts, tcÞ
is greater than 0 and smallest. The theoretical interval of
the PE is 22 clock cycles.

The design of this thesis uses 64 PE arrays for parallel
computation. When tc = 4, tm = 64, ts = 9, the local buffer
occupies at most 5.5Mb. This paper uses distributed RAM
instantiation for memories with larger bit width (48 bits) or
smaller space occupancy, such as FIFO, LPB, and LOB.

3.7. Computational Decision for Multiple PE Chains. The
convolutional computation unit uses 64 PE arrays, and each
PE array contains 4 PE chains. The computation model used
in this paper is as follows: the feature map values in each LIB
are shared by 64 PE arrays, and each PE array has its own
separate LWB, as shown in Figure 13.

The previous PE chain passes the computed partial sum
to the next PE chain. Each tc 2D tile is computed as a small
cycle (called a 2D_tile_cycle), and each 3D tile takes C/tc
small cycles to compute, so the number of clocks (timetile)
needed to finish computing a 3D tile is as follows:

timetile = tc × 5 + 6 ts − k + 1ð Þ + 7½ � ×
c

tc
: ð4Þ

Each 3D tile is a large cycle (called a 3D_tile_cycle), and
64 PE arrays produce 64 output feature maps at the same
time. The PE array designed in this paper contains 4 PE
chains, and each PE chain corresponds to a channel of the
input feature map, and when there are only three channels
of the input feature map, the value stored in the fourth LIB
is all 0 for the convenience of control.

This computational model has a great improvement for
the utilization of computational units. According to the
parameters of the neural network model of VGG16, the min-
imum number of output channels is 64, so it can ensure that
all 64 PE arrays can be effectively computed when computing
each layer of convolution. For neural networks with less than
64 output channels, we can flexibly control the number of PE
array through the controller parameter configuration to
reduce unnecessary power consumption.

3.8. Splice Pool. The overall structure of splice pool is shown
in Figure 14 (the clock signal and reset signal are omitted in
the figure) and contains an internal Pool Buffer and a spe-
cially designed comparator. After PE array calculates a 3D
tile, it sends a signal to splice pool, and splice pool detects
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Figure 12: Correspondence of a 3D tile to a PE array.
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the signal and starts to enable it, delays one clock cycle to
send a signal to request the convolution result, and after
LPB receives the request signal, it sends a transmission signal
and delays one clock cycle to send the convolution result.
When an output tile is stored, splice pool stops enabling
and enters the state of waiting for the next enable. When four

output tiles are spliced, the comparator is started and the
ready pooling signal is sent to the LOB, and then, the pooling
result is output every four clock cycles.

3.9. Memory System. The memory system mainly consists of
input buffers and output buffers, both of which are connected
to the DMA controller through the AXI4-Stream bus, and
interacts with DDR3 by DMA. This avoids frequent data
exchange with DDR3memory and reduces access to memory
power. The memory capacity configuration in the coproces-
sor is combined with the features of Block RAM and Distrib-
uted RAM (DistRAM) in FPGAs. The memory capacity

3D tile

3D �lter_1 3D �lter_2 3D �lter_3 3D �lter_64

PE_array_1 PE_array_2 PE_array_3 PE_array_64

Figure 13: Convolutional unit computation model.
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configuration method in this design is flexible based on per-
formance requirements and resource redundancy.

The input buffers include GIB, LIB, LWB, GBB, and LPB.
The data interaction relationship is as follows Figure 15.
Since all data needs to be input from the axis_S port, each
memory connected to the interconnect logic is assigned an
ID for efficient distribution, and only the memory with the
matching ID can receive the current data. Table 1 shows
the individual input buffer IDs. Considering that DDR reads
and writes are usually in burst mode, the bandwidth utiliza-
tion is higher when reading or writing batches of data
sequentially and lower when random address reads and ran-
dom address writes alternate frequently. Therefore, the data

Figure 16: The ZC706 evaluation board.

Figure 17: The resource utilization report.

Table 2: The performance statistics of the coprocessor computing
VGG16.

Layer
Number of
operations
(Ops)

Number of
clocks (clk_

num)

Performance
(GOP/s)

Power
(W)

Model 9437184 21669 87.10 9.21

Conv1 176518656 471803 74.83 9.21

Conv2 3765731328 33739520 22.32 9.23

Conv3 1916338176 4287402 89.39 9.24

Conv4 3832676352 17419712 44.00 9.23

Conv5 1984167936 2440995 162.57 9.22

Conv6 3968335872 9996224 79.40 9.23

Conv7 3968335872 9996224 79.40 9.25

Conv8 2123366400 3468295 122.44 9.28

Conv9 4246732800 7790023 109.03 9.25

Conv10 4246732800 7790023 109.03 9.26

Conv11 1207959552 3621895 66.70 9.23

Conv12 1207959552 3621895 66.70 9.24

Conv13 1207959552 3621895 66.70 9.23

Table 3: The computational performance comparison results for
different platforms.

Layer group This work (GOP/s) VGG16 [15] [16] [17]

Conv_1 23.04 46.42 1578.8 45.15

Conv_2 52.97 80.44 1675.5 69.60

Conv_3 88.45 151.57 2177.1 103.51

Conv_4 111.47 147.91 2791.6 86.04

Conv_5 66.70 186.99 1003.5 36.27
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is stored in DDR in the order of the first layer (bias–filter–
feature map), the second layer (bias–filter–feature map),
and so on. Therefore, the order of ID change is 1,2,3 ......66,
when data is loaded from off-chip memory into the input
buffer before each layer of convolutional computation, and
the order of ID change after that varies according to the con-
figuration parameters of the controller.

The output buffer consists of tm local output buffer
(LOB) with one LOB connected after each pooling unit. 64
LOBs are stored at the same time, and a signal is sent to the
controller, and the host reads the output feature values
sequentially through the M_axis port.

3.10. Global Controller. The global controller mainly consists
of a lookup table and a register configuration unit, which
completes the control of each module of the whole coproces-
sor. The configuration of the registers is done through the
AXI4-Lite interface configuration, including nine 32-bit reg-
isters, each with corresponding address and description. The
global controller starts the coprocessor when it detects an
enable signal. In order to use as much DSP as possible for
convolution calculation instead of for address or other inter-
mediate parameters, this thesis unifies the parameters that
may be used by each module in the controller for calculation
and then sends them to each module on demand.

4. FPGA Hardware Verification

The coprocessor designed in this thesis focuses on the accel-
erated computation of the convolutional layer in the VGG16
neural network model. The coprocessor is verified in hard-
ware based on the ZC706 evaluation board kit, as shown in
Figure 16. The evaluation board contains a configurable
dual-core ARM Cortex A9 processor and a 28 nm XC7Z045
FFG900-2-based FPGA chip with 54650 Slice (each Slice
contains 4 LUTs and 8 flip-flops), 900 DSP cells, and 545
Block RAM cells.

The proposed coprocessor implements parallel computa-
tion of 64 PE arrays with the coprocessor resources as shown
in Figure 17. 768 DSPs are used for the convolutional compu-
tation unit, 2 DSPs for the controller, and 1 DSP for the GIB.
In the process of implementation and layout wiring, the
“default” implementation strategy is selected, and the clock
frequency can reach 200MHz.

At the clock frequency of 200MHz, the peak computa-
tion capacity of the coprocessor designed in this paper is
316.0 GOP/s. Due to the long loading time of the data, espe-
cially in the case of a relatively large number of 3D tiles, the
interval time of PE array accumulates relatively large, result-

ing in a relatively low average computation capacity. Table 2
shows the performance statistics of the coprocessor comput-
ing VGG16. In the verification scheme, the ROM of the off-
chip memory needs to be instantiated using Block RAM.
Therefore, the verification can only have the storage capacity
of GIB, so the convolutional layers with more parameter
values and activation values cannot be verified. We can
extrapolate the convolutional computation time and data
loading time based on the verified convolutional layers and
then infer the computational performance of the convolu-
tional layers that cannot be verified directly. According to
the actual test results in Table 2, it can be found that the total
computational power consumption increases slightly with
the number of accesses when all DSPs are involved in the
computation. The main reason is that the DDR is not
accessed during the test, and all data interactions take place
between on-chip memory and registers and before registers
and DSPs. The difference in the number of accesses results
in a slight difference in the total power consumption.

Table 3 shows the computational performance compari-
son results for different platforms. The CPU is Intel Xeon
E5-2690 CPU@2.90GH, the GPU is Nvidia K40 GPU, and
the mGPU is Nvidia TK1 Mobile GPU development kit.
The convolutional layers between the two pooling layers are
called a conv group, and there are five groups. The weights
of this design are not processed by any compression, while
the paper [12] uses SVD compression, and the weight values
are reduced to 36% of the original; nevertheless, the compu-
tational performance of the coprocessor designed in this
paper is at the same level as the mGPU.

Table 4 shows the computational performance of the
coprocessor of this design compared with other FPGA pro-
cessor. The coprocessor designed in this paper mainly adopts
two solutions to achieve higher clock frequency. First, reduce
the fan-out, the signal fan-out from LIB broadcast output to
64 PE arrays is 64, and the design reduces the fan-out to 8 by
adding intermediate flip-flops. Second, reduce the multipli-
cation calculation except convolution calculation, put all
the parameters involved in the controller to calculate uni-
formly, and then distribute to each module as needed. The
computational performance of this design scheme is rela-
tively high compared to the paper [14–16] and much worse
compared to the paper [13]. On the one hand, it is because
the paper [13] uses the SVD compression algorithm to
reduce the amount of weight value to 36% of the original,
and on the other hand, this design scheme in the cache read
and write processes, we often start the computation process
or the transfer operation between memories only after all
the read and write processes are completed in order to

Table 4: The computational performance of the coprocessor of this design compared with other FPGA processor.

Parameters [18] [13] [19] [17] This work

Platform Virtex5SX240t ZynqXC7Z045 Virtex7VX485t ZynqXC7Z045 ZynqXC7Z045

Frequency (MHz) 120 150 100 150 200

Quantification 48 bits 16 bits 32 bits 16 bits 16 bits

Power 14 8 18.61 9.63 9.30

Performance (GOP/s) 16 23.18 61.62 187.80 62.54
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simplify the logic, which will cause the computation unit to
hang, and the waiting time overhead at this time will become
larger as the 2D_tile. The waiting time overhead becomes
larger as the number of 2D_tile increases.

5. Conclusion

In this paper, an FPGA-based architecture for convolutional
neural network coprocessor is proposed and fully validated,
starting from the optimization methods of convolutional
neural networks at the algorithmic and hardware accelera-
tion levels. A one-dimensional convolutional computation
unit PE with row stationary (RS) streaming mode is proposed
to maximize the energy efficiency of convolutional computa-
tion by using RF-level data reuse and partial and local accu-
mulation; a three-dimensional convolutional computation
unit PE chain with pulsating array structure is proposed with
the MIT Eyeriss structure. Each PE chain consists of three
PEs connected in sequence, which can achieve the functions
that require nine PEs in the Eyeriss structure. Multiple PE
chains form a PE array in the form of pipeline processing,
and the coprocessor can flexibly control the number of PE
array openings according to the number of output channels
of the convolutional layer to reduce invalid computation
and reduce power consumption. A picture segmentation
method is proposed that is compatible with the hardware
architecture, and this segmentation method can make the
PE chain run with the shortest interval between two runs.
The performance evaluation results show a peak computa-
tional performance of 316.0 GOP/s and an average computa-
tional performance of 62.54 GOP/s at a clock frequency of
200MHz, with a power consumption of around 9.25W.
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