An FPGA-based coprocessor for the parsing of context-free grammars

Cristian Ciressan! Eduardo Sanchez! Martin Rajmanfand Jean-Cédric Chappelierf
Ecole Polytechnique Fédérale de Lausanne,
Computer Science Dept., 1015-Lausanne, Switzerland,
{Cristian.Ciressan, Eduardo.Sanchez, Martin.Rajman, Jean-Cedric.Chappelier }@Qepfl.ch

Abstract

This paper presents an FPGA-based implementa-
tion of a co-processing unit able to parse contert-free
grammars of real-life sizes. The application fields of
such a parser range from programming languages syn-
tactic analysis to very demanding Natural Language
Applications where parsing speed is an important is-
sue.

1 Introduction

Formal languages, in particular those described by
context-free (CF) grammars [11], are used in many
applications such as syntactic pattern recognition [10],
syntactic analysis of programming languages [1], natu-
ral language processing (NLP), etc. The parser speed
for such formal languages is an important issue in the
case of real-life applications in the above mentioned
domains. For instance, in the particular case of in-
dustrial NLP applications, real-time constraints often
have to be considered and efficient parsing solutions
need to be proposed. Typical examples of such appli-
cations are:

e data production and processing : optical charac-
ter recognition and spell checking, as well as ad-
vanced information retrieval [13, 8] and text min-
ing [6, 7] techniques may all require parsing to
further enhance performance by integrating syn-
tactic knowledge about the language. When huge
amounts of data need to be processed, efficient
low complexity parsers are required;

¢ human-machine interface : state-of-the-art vo-
cal interfaces use standard Hidden Markov Mod-
els (HMM) that only integrate very limited syn-
tactic knowledge. Better integration of syntac-

T Artificial Intelligence Laboratory; this work is funded by
the FNRS grant # 21-52689.97
fLogical Systems Laboratory

tic processing within speech-recognition systems
is therefore an important goal; e.g., in the case
where the output of the speech recognizer is fur-
ther processed with a syntactic parser to filter out
those of the hypotheses (i.e. sentences) that are
not syntactically correct. The case of a sequen-
tial coupling, presented in [5], is such an exam-
ple. Due to the real-time constraints in such an
application, fast parsing is again required.

Various low complexity (i.e. polynomial) parsing solu-
tions have been proposed for context-free languages, in
particular several parallel implementations of the stan-
dard O(n?) time complexity! Cocke-Younger-Kasami
(CYK) algorithm [1]. This algorithm is known to have
O(n?) time complexity when executed on a 1D-array
of processors and O(n) time complexity when executed
on a 2D-array of processors [9].

For such arrays, various VLSI designs have been
proposed : a syntactic recognizer based on the CYK
algorithm on a 2D-array of processors [4] and a robust
(error correcting) recognizer and analyzer (with parse
tree extraction) based on the Earley algorithm on a
2D-array of processors [3]. Although these designs
meet the usual VLSI requirements (constant-time pro-
cessor operations, regular communication geometry,
uniform data movement), the hardware resources they
require do not allow them to accommodate real-life CF
grammars used in large-scale NLP applications?.

In this context, we propose an FPGA-based 1D-
array of processors implementation of the CYK al-
gorithm able to accommodate real-life CF grammars
that can parse input sentences of parametrical, i.e.
customizable, maximal length. The design was de-
scribed in VHDL, simulated for validation, synthe-
sized and tested on an existing FPGA board, and fi-
nally compared for performance against two software

"Where n is the length of the input sentence

2For instance the CF grammar extracted from the SU-
SANNE corpus [12] contains more than 10,000 non-terminals
and 70,000 grammar rules when written in Chomsky normal
form

implementations. Its main features are:

e word-lattice parsing : the output of a speech rec-
ognizer is a number of possible sentences, often
represented in the compact form of a word-lattice.
Unlike the usual parsing algorithms that process
sentences, our system is able to parse whole word-
lattices and is therefore better adapted for inte-
gration in the framework of a speech recognition
system. When integrating the parser within a
speech recognition system, the ability to parse
word-lattices is an important functionality that
is required by a large number of applications re-
lying on speech recognition interfaces;

e scalability : the system can be exactly tailored to
the characteristics of any given Chomsky normal
form (CNF) CF grammar so that no hardware
resources are wasted;

e extensibility : the number of processors is not
limited by the resources available in the FPGA. It
can be increased on demand by cascading several
FPGA circuits.

The design was described in VHDL in order to have
a technology independent implementation that can be
later used to target an ASIC implementation.

In section 2 we briefly present the CYK algorithm
and the changes required for its adaptation to word-
lattice parsing. Section 3 describes the design, its
main components, and scalability and extensibility
properties. Section 4 analyzes the performance of the
FPGA design in comparison with two software imple-
mentations of the CYK algorithm. Conclusions and
future extensions are presented in section 5.

2 CYK
parsing

algorithm for word-lattice

2.1 The CYK algorithm

A CF grammaris a 4-tuple G = {N, X, S, P} where:

e N is a set of non-terminals (representing gram-
matical categories, e.g. verb V', noun-phrase NP,
sentence S, ...);

e ¥ is a set of terminals (representing words);

e S € N is the top level non-terminal (correspond-
ing to a sentence);

e P is a set of grammar rules, i.e. a subset of
N x (N|JX)* written in the form of X — a,
where X € N and a € (N |JX)*. For instance,
a grammar rule can be S — NPV, represent-
ing that a sentence can consist of a noun-phrase
followed by a verb;

We use capital letters X, Y, Z, ...to denote non-
terminal symbols and a, b, . ..to denote terminal sym-
bols. The CYK algorithm is constraint to use CF
grammars written in CNF : every grammar rule is ei-
ther of the form X — Y7 or X — a. However, since
any CF grammar can be rewritten in CNF, this con-
straint is not a theoretical limitation, but a practical
one.

Assume that we have the CNF CF grammar
G = {N,X,S, P} and an input sentence wyws ...wy,,
n > 1, and w; € ¥ is the i’ word in the sentence.
Let w;; = w;w;y1 ... wiyj—1 be the part of the in-
put sentence that starts at w; and contains the next
j — 1 words and N;; the subsets of N defined by
Nij = {X € N : X =* w;}, where X =* w;
means that w;; can be derived from X by applying
a succession of grammar rules.

Every set N; ; can be associated with the entry on
column ¢ and row j of a triangular parse table (see
figure 1(a)) henceforth referred as CYK table.

The CYK algorithm is defined as follows:

1: for 1 =1 ton do

22 Njp={X:(X - w;) € P}

3 for j=2ton—i+1do

4 N,‘,,j =0

5 end for

6: end for

7: for j =2 ton do

8 fori=1ton—j7+1do

9 for k=1toj—1do

0 Nz'7j = Ni’]' U{X : (X — YZ) € P with
Y € Nz'7k and 7 € Ni+k,j7k}

11: end for
12: end for
13: end for

The lines 1 — 6 in the algorithm correspond to the ini-
tialization step, when the sets N;; are initialized by
only using the grammar rules of the form X — w;. In
the CYK table this corresponds to the initialization of
all entries on the bottom row. The lines 7 — 13 corre-
spond to the subsequent filling-up of the CYK table
once the initial sets N;; were constructed. Finally,
the parsing trees can be extracted from the CYK ta-
ble if necessary. If S is the topmost symbol (root) of

EMICNE
! {é} Wé} {&%}Ks{@}

@

X z X Z
)i)r\
Y X Z Y
5 r9 ré 8 ré r5 9 |r6 r8
a d b c b a d b c
(b)

Figure 1: (a) CYK table initialization (j=1) and filling (j=2,3,4 and 5), (b) two possible parsing trees corresponding

to the input sentence “b a d b ¢”

such a tree, the sentence is syntactically correct for
the grammar G.

2.2 Example

Assume that the CF grammar G is given by:

N = {57 X7 Y7 Z}7
¥ ={a,b,c,d},
P={S—= XY (rl), X 5 YX (12), Y = ZX (r3),
Z—ZY (rd), X - a(r5), Y = b (r6),

Z—=a(r?), X - c(r8), Z - d(r9)}

3 3

where S is the top level non-terminal and r1,...,79,
are used to denote the grammar rules. With this gram-
mar, we want to parse the sentence“d a d b c¢”. Dur-
ing the initialization step, only the rules 5 to r9 are
used (see figure 1(a)) to fill-in the entries on the bot-
tom line of the CYK table. During CYK table filling,
the rows 7 = 2,...,5 are filled successively in this or-
der, making use of the grammar rules r1 to r4. Finally,
two possible parsing trees are extracted from the CYK
table (see figure 1(b)).

2.3 Word-lattice adaptation

An example of word-lattice representation is given
in figure 2. Each path starting in the leftmost node
and ending in the rightmost node of the word-lattice
corresponds to a possible recognized sentence. These
sentences are subject to be filtered-out by the syntac-
tic parser.

When dealing with word-lattices, the difference
with the previously presented CYK algorithm is that

oo o S VR)
0o 0o oT oo
oo oo
oM p oo

Figure 2: A toy word-lattice containing 6 sentences.

not only the sets V; ; may be initialized during the ini-
tialization step, but any of the sets N, ; as with word-
lattice representation words may occur anywhere in
the CYK table (see figure 3(b)). Thus, in order to
adapt the CYK algorithm to word-lattice parsing, the
initialization step needs to be extended [5].

To illustrate this point, let us consider the word-
lattice given in figure 2, containing the six sentences
"aabb" "abdb" "abba'","bbaa","bc
b a"and "b ¢ d b" and the same grammar G as used
in the former example. First the lattice nodes are
ordered by increasing depth?® (see figure 3 (a)). Such
an ordering is natural in the case of lattices produced
by a speech recognizer, in which nodes correspond to
(chronologically ordered) time instants t1, ¢2, . ..

This new representation of the word-lattice can be
mapped over the CYK table as follows:

1. the intervals between successive nodes are associ-

3A node depth is the minimal number of arcs from the initial
node, with random choice in case of equalities

ated to the column indices of the parsing table;

2. if the lattice arc (¢tm,tn) (n > m) is labeled
w, then the set Ny, 41— corresponding to the
CYK table entry (m+1, n—m) is initialized with
{X : (X —» w) € P} (see figure 3 (b)).

The hardware design we are going to present imple-
ments the CYK algorithm adapted for word-lattice
parsing.

3 The FPGA Design

The general idea of our current hardware design
is to use m — 1 processors to parse sentences of at
maximum 7 words. For example, the block dia-
gram in figure 4 represents a 10 processor system that
can parse any sentence of length less or equal to 11
words and that we have effectively implemented on
a RC1000-PP* FPGA board. In the figure, the ele-
ments inside the dashed line are implemented within
the on-board FPGA chip. The other elements (CYK
and grammar memories) are implemented in SRAM
chips also present on the board. Before any pars-
ing can start, the grammar memories have to be con-
figured with the binary image of the data-structure
representing the CNF CF grammar (see section 3.4).
Similarly, the CYK memory need to be initialized,
where needed, with the structures used to represent
the sets N;; (see section 3.2) and the GLOBAL
controller (G-CTRL) has to be initialized with the
length of the sentence to be parsed. All initializa-
tions are done off-line in the current implementation.
The startPARSE signal starts the parsing and the
overPARSE signal indicates the end of the pars-
ing. The parse result is available at some output
outPARSE (not represented in figure 4) of each pro-
cessor and can be collected to build the parse tree.

When the parsing starts for a sentence of length
I < n+1, the processors P1 to Pl—1 are first activated
and the processors Pl to Pn are deactivated (i.e. not
used for that parsing). It is the task of the G-CTRL
to activate or deactivate the processors, based on the
length [of the sentence. The G-CTRL also synchro-
nizes the processors at the end of iteration j (line 7 of
the CYK algorithm), before starting iteration j + 1.
This is necessary due to the data dependency among
the sets N; ;.

The CYK memory stores the sets IV; ; and is shared
for read and write by all working processors in the sys-

4ESL at http://www.embeddedsol.com/tech _info 3.htm

tem. A token passing priority arbiter handles concur-
rent accesses to this memory.

The grammar memories store identical copies of
the binary representation of the CNF CF grammar.
During parsing, the processors intensively access the
grammar memories but due to physical constraints
(i.e. the number of I/O pins of an FPGA) it is impos-
sible to have a grammar memory for each processor in
the system. Instead, processors are grouped in clusters
that share the same grammar memory. The number
of processors in a cluster may vary from one cluster to
the other, and clusters are built in such a way that, in
the general case, the number of concurrent accesses is
as reduced as possible.

As for the CYK memory, a token passing priority
arbiter handles concurrent accesses in every cluster.

3.1 Processor Datapath Structure

The processors have the task of filling-up the entries
of the CYK table. More precisely, if [is the sentence
length, the task of the processor Pi, i <[—1, is to fill
the CYK table entries on column 7 during | — 7 itera-
tions in a bottom-up order. In other words, to com-
pute the sets N;;, based on previously constructed
sets (line 10 of the CYK algorithm). The newly com-
puted sets N;; are stored in the CYK memory for
later use. The parsing terminates after exactly I — 1
iterations, when processor P1 finishes to fill-up the
column 1.

During iteration j (2 < j < 1), the processors Pi
(1 <i<1l-j+1) work in parallel, and the proces-
sor Pi is constructing the set N; ;. At the end of each
iteration the processors wait for a synchronization sig-
nal raised by the G-CTRL before beginning iteration
j+1 and the rightmost active processor is deactivated
and becomes idle for the rest of the processing time.

The datapath structure of the processor is given in
figure 5. The processor is a high frequency pipeline
implementation. As depicted in figure 5, we can dis-
tinguish 4 main functional units in the processor:

e the CYK memory addressing unit: used by the
processor to address the sets N; ; and other data
stored in the CYK memory (see section 3.2);

e the update unit: updates the representation of
N; ; when necessary (see section 3.3 for details);

e the grammar look-up unit: for computing a new
set IN; ; a processor requires intensive grammar
look-up. This is the task of the MAG module.
Considering processor Pi during iteration j, the
MAG module has as input all ordered pairs of

3 {YH A {YH]{V}

2|{Y} {(X.Z}| {X} {Z} (X2 {Y}

Figure 3: (a) Word-lattice of fig 2 represented as a speech word-lattice (nodes are naturally ordered since they
represent different time-instants). (b) The representation of the word-lattice in (a) in the form of a initialized

CYK table

non-terminals (RHS1, RHS2) € N, p X Nitk j—k,
1 < k < j—1, and gives as output all non-
terminals LH S for which there is a rule LHS —
RHS1RHS? in the grammar (see section 3.4 for
details);

e the synchronization unit: used by a processor to
achieve synchronization with the other processors
after each iteration of the CYK algorithm.

3.2 CYK table representation in memory

The purpose of the CYK memory is to store the
sets N; ;. The data-structure used to represent these
sets is critical and also has to correspond to a good
compromise between memory size and access-time to
the non-terminals in a set. N;; can be any subset of
N, hence |N; ;|° can be equal to |N| in the worst case.
However, to allocate for each set N;; an amount of
memory proportional to |N| would represent an im-
portant memory waste, as in practice |N; ;| < |N]|.
Therefore, in order to reduce the size of the CYK
memory, we impose to |N; ;| an upper limit C. During
run-time, if V; ; receives more than C non-terminals,
the hardware generates a fault signal and the parsing
stops. This is, however, a very unlikely event for a
well chosen value of C' and we can thus use tables of
size proportional to C to store the non-terminals of the
sets N; ;. Note that, if the number of processors in the

5| N| represents the cardinal (the size) of set N.

system is n, the CYK memory has to store n(n — 1)/2
such tables.

Given 4, j and k, during parsing, a processor has to
implement the following three functionalities:

e F1: go through all non-terminals of the set N;
(or Niggj—+)

e F2:is X in N;; 7
e F3: insert X in N, ;

For understanding how these functions are imple-
mented, we give in figure 6 the CYK table organization
in memory. We discuss each of these functionalities in
turn.

For the implementation of F1, the Phead pointer
is used as a base address that points to the first non-
terminal in the non-terminal table. Tt is stored either
in RHS1base (Ni,k) or RHS2base (Ni+k,j7k) registers
(see figure 5). A displacement, i.e. index, for ad-
dressing any non-terminal stored in the non-terminal
table is kept in RHS1Index, respectively RHS2Index.
The addition of the base address with the index ad-
dress gives the physical address in memory of the non-
terminal. For implementing F1, the processor needs
to know whether the table is empty or not, and, in
the later case, to know which is the last non-terminal
in the table. This is implemented by means of two
special bits attached to each non-terminal in the ta-
ble. One bit is set when the table is empty, the other
when the non-terminal is the last in the table. The
current implementation uses 2 bytes for representing

FPGA board (RC1000-PP)

cYK -----
memary 1| cvk :
memor
i (SRAM) 7| e |,
FPGA chip 1 ;
b e .- .- —m—————— - Fd e mm e e e e e e e e e e e e e e e e e e .- —m——— -
S PARSE | (DATA + ADDRESS + CONTROL) bus !
art 7 1
|| GLOBAL| PROCESSORGONTROL bus | [} [} [} [} [}]
OVErPARSE <17 controler ¢ % t % ¢ ¢ @ ¢ @ ¢ % $ ‘L ¢ :
sentence —{4o-| G-CTRL
length
9 1 Processor Processor Processor Processor Processor Processor Processor Processor Processor Processor :
! PL P2 P3 P4 PS5 P6 P7 P8 P9 PO | |
1
| 1
| 1
| (DATA¥+ ADDRESS + CONTROL) bus 1
1 (DATA + ADDRESS + CONTROL) bus :
! (DATA + ADDRESS + CONTROL) bus \
1
h 1
————————————————————————] === ====|= Ll ettty Rl —_——————!
GRAMMAR h | GRAMMAR ! 1 GRAMMAR) !
CLUSTER 1 h ; CLUSTER2 : L ClLUSTER3 . 1
1
| 1
' [duser X 1| duser2 |, ' usera i
GRAMMAR h arbiter | GRAMMAR ! arbiter I GRAMMAR Ir arbiter 1
MEMORY | o« _ _ _ _ 1 MEMORY L MEMORY | o !
(SRAM) (SRAM) (SRAM)

Figure 4: A 10 processor system

a non-terminal, thus, 2C bytes are used to represent
an entry, i.e. a set, in the CYK table. While 2 bits
out of 16 representing the non-terminal are used for
special purposes, only 14 are used to code the non-
terminal. For this reason only grammars having less
than 2'* = 16, 384 non-terminals can be considered.

F2 is a highly time consuming function. To speed it
up, we use a guard-vector (i.e. bit-vector) table stored
in the CYK memory along with the non-terminals ta-
ble. Every non-terminal in N has an associated bit in
the guard-vector which is thus of size |N| bits. If the
bit associated with X is set in the guard-vector then X
is already in N, ;. For the implementation of F2 the
Pguard pointer is used as a base address that points
to the first bit (in a 4-byte word) in the guard-vector.
It is stored in the Guardbase register (see figure 5).
The displacement, for addressing the bit associated to
a non-terminal X is given by the binary representation
of X.

For the implementation of F3, both Phead and
Dtail are used to point the beginning of the non-
terminals table, and, respectively, to index the last
non-terminal. Phead is stored in IJbase and Dtail in
IJindex registers. If during the parsing Dtail > C,
a fault signal is raised to signal that the IV;; has
too many non-terminals. In a non word-lattice pars-
ing (i.e. sentence parsing) Dtail is always 0, and is
not used since every set N;; is empty at the begin-
ning. However, in a word-lattice parsing the sets NN ;
are not necessarily empty and the insertion of new
non-terminals has to be made at the end of the non-

terminals table where Phead + Dtail points.

The initialization of the CYK table corresponds to:
the initialization of the non-terminals table, the as-
sociated Dtail indexes and the guard-vectors. The
Phead and Pguard pointers are initialized only once
and they do not change.

In order to retrieve the pointers Phead and Pguard
and the displacement Dtail, the processor builds an
address for addressing the indexing table (see fig-
ure 6) from i, j and k. The address is constructed
in IJshadow as 8(32i + j) for N, ;, in RHS1shadow as
8(32i + k) for N; 1. and in RHS2shadow as 8(32(i + k) +
j— k) for Niyp j—r.

3.3 Update unit

The tasks of the update unit are:

e set the flags (i.e. the 2 special bits) of each non-
terminal before writing it in memory in the non-
terminal table. This is done in the LHS update
module;

¢ update the guard-vectors. Every time a new non-
terminal is inserted in the non-terminal table its
corresponding bit in the guard-vector has to be
set. This is done in the guard update module.

3.4 Grammar representation in memory

The CYK algorithm uses CF grammars in CNF.
Thus, the first pre-processing step is to transform a

CYK memory address

"C_\-(-I{-rﬁ-e;ﬁc;r-y-éﬁ-ia;ﬁé-ljr;i-t"""n"""""i """"

|
'

'

'

H

synchronisation H
'

module :
i

'

h

|

5 tmp shadow 1

| i

' 1

| | S : pp A . 5

: | mpBee | | lsnedow | |ReSishedow | | Reseshadow | |

' H

! H

. [ttty]

H N rammar memdry ADDRESS
: It e Genpe ooy

E I 1 ! E acmm%ule rammar memory DATA
‘ 13index ‘ ‘ RHSLIndex ‘ RHS2Index v RHSL RHS?

h "

H "

H v

LHS guard
update update

'
'
'
'
i
' module
'
'
'
'
'

o | LWt

CYK memory DATA

Figure 5: Processor datapath

given general CF grammar in an equivalent CNF CF
grammar. This is done off-line only once for each CF
grammar used.

The CNF grammar is then represented by a data-
structure that has to allow, for any grammar rule
right-hand side (RHS) of the form YZ, to retrieve (1)
all non-terminals X; such that thereisarule X; —» YZ
in the grammar, and (2) a code that uniquely identifies
the given RHS. As the data-structure used to repre-
sent the grammar is critical for the design, it has to
correspond to a good compromise between the mem-
ory space taken by and the access time to the stored
information.

Concretely, the data-structure representing the
grammar is converted in a binary memory image ready
to be dumped on the FPGA-board to configure the
grammar memories.

As it is shown in figure 7, the data-structure used
in our implementation is organized on 3 levels. Level 1
is a table with an entry for each distinct non-terminal
present in the grammar. Such an entry contains either
a NULL pointer if there is no RHS starting with the
corresponding non-terminal Y or a non-NULL pointer
pointing to the root of a tree at level 2. Level 2 is
a collection of binary sorted trees, each containing
all distinct second position non-terminals present in
the RHSs that start with a given Y. Finally, in the
binary trees, each node contains, in addition to the
ptr_left and ptr_right pointers that link with its
left and right sons, the indication of the second posi-
tion non-terminal Z it corresponds to, and a pointer
to a table in level 3 that stores the required informa-
tion (a RHS code RHScode and a list of non-terminals
X] s XQ, P)

indexing table non-terminals table guard-vectors table

8 [bytes] 2*C[bytes] —— =——— |N]|[bit —
[
I i v i
[\ \ v
Nqi1| Phead Dt ai | Pguar d Ngg | | |~ ‘ ‘ free N11| ol o] 1/ o o 1l 0
Ny | Phead Dtail Pguard Nyq ”" ‘ free N21 | o] o] o o] 1 0/ 0
\] [| P |
1] } w ‘
! ! ; |
Nin Phead ‘ Dt ai | ‘ Pguar d N1p ‘ ‘ fffffff ‘ ‘ free N1n 0‘ 1‘ 0‘ 0‘ 0‘ ‘ 0‘ 0

bit 0 1 15
L empty
last

Figure 6: CYK table organization in memory

3.5 Scalability and extensibility proper-
ties

Scalability: when the binary memory image for the
grammar and CYK memories are created, several pa-
rameters characterizing the grammar and CYK data-
structures are also computed. These parameters are
the number of bits needed to represent a non-terminal,
the grammar memory address, the CYK memory ad-
dress and the RHS code. These parameters are then
used to configure the VHDL code. Such a paramet-
ric approach allows to scale the design, i.e. to assign
to the hardware resources (registers, counters, multi-
plexers, etc.) bit sizes that match the grammar char-
acteristics. Due to this scalability property, the FPGA
resources can be optimally used and, for each gram-
mar, an optimal number of processors can be fit in the
FGPA.

Extensibility: in the case where the maximum
length of a sentence to be parsed requires a number
of processors that does not fit on a single FPGA, the
system can be extended by cascading several FPGA
circuits. Therefore, the number of processors can be
increased as needed and the system can be adapted to
parse sentences of any length.

4 Design Performance

All tests and performance measurements presented
in this section were made with a grammar extracted
from the SUSANNE corpus, referred henceforth as the

SUSANNE grammar. In CNF the SUSANNE gram-
mar contains 10,129 non-terminals and 74,350 rules.
The grammar memory size required to store the data-
structure representing the CNF SUSANNE grammar
is of 558,576 bytes. The CYK memory size depends on
the number of processors in the system (e.g. 446,496
bytes for a 10 processors system).

In order to determine the real maximal clock fre-
quency at which the system is able to work, the
10 processor system shown in figure 4 was synthe-
sized® and placed&routed” in a Xilinx FPGA, Virtex
V1000bg560-4. The synthesized 10 processor system
uses less than 35% of the FPGA resources. The sys-
tem was then tested, and checked for correctness, on a
RC1000-PP board with a clock frequency of 48 MHz.

Due to the fact that the RC1000-PP board can ac-
commodate only 3 grammar clusters, the hardware
run-times we present were obtained by simulating® the
VHDL model of a system with 14 processors and 7
grammar memory clusters.

The software used for comparison is an implementa-
tion of an enhanced CYK algorithm developed in our
laboratory [2]. The hardware performance (i.e. the
run-time hereafter denoted by hard) was compared
against two software run-times. The former (soft1)
uses the SUSANNE grammar [12] in CNF, as it is
also the case for the hardware. The latter (soft2) uses
the SUSANNE grammar in its original context-free
form. The software was run on a SUN (Ultra-Sparc 60)

6With LeonardoSpectrum v1999.1f
“With Design Manager (Xilinx Alliance Series 2.1i)
8With ModelSim EE/Plus 5.2e

LEVEL1

LEVEL2

LEVEL3

Riscode | X4| X,] [x4

RHScode ‘ Xl‘ Xz‘

RHScode ‘ Xl‘ Xz‘

0 Y
1 Y
INI-3 Y
INJ-2 Y
INJ-1 Y

RHscode | Xq| X,]

Riscode | X4 | X,]

RHScode | Xq| X,]

Riscode | X4 | X,]

ptr_tabl e
ptr_left
ptr_right
~_

Riscode | Xq| X,]

Figure 7: The data-structure used to represent the CNF grammar

with 512 Mbytes memory, 770 Mbytes of swap mem-
ory, and 1 processor at a clock frequency of 360 MHz.
The initialization of the CYK table was not taken
into account for the computation of the run-times.
For accuracy, the timing was done with the time()
C library function and not by profiling the code. For

1508.97

1435.36

1363.9

] 314.56

] 255.82

1250.15

sentence length[words]

7 [softl
[soft2 4
5 ﬁu:l 55.39 Il hard

w
I

, \ \ , ,
0 100 200 300 400 500 600
time[ms]

Figure 8: soft1, soft2 and hard average run-times

the purpose of the comparison, 2,044 sentences were
parsed and validated by comparing the hardware out-
put against the software output for detecting mis-
matches. The sentences have a length ranging from 3

to 15 and were all taken from the SUSANNE corpus.
Figure 8 shows the average run-times soft1, soft2 and
hard as functions of the sentence length (vertical axe).
The average speedup factor E(S) has been computed
for both soft! and soft2. For softl, Esop11(S) = 69.646
and for soft2, Eg,p2(S) = 10.772. Figure 9 shows the
hardware speedup in comparison with soft! and soft2
as a function of the sentence length.

90

—©— vs. soft2
—o— vs. softl
80

70

107@\6\@\9’%\9,49\@#9_9\9_9_@,

0 I I I
2 4 6

. . .
8 10 12 14 16
sentence length[words]

Figure 9: Hardware speedup

5 Conclusions

In this paper we presented an FPGA-based copro-
cessor implementation of the CYK algorithm adapted
for word-lattice parsing and that can accommodate
real-life CF grammars. The design interface was de-
signed to allow an easy integration of the parser within
a larger system (e.g. a speech-recognition application
on a desktop computer) in which the parsing hardware
would work as a co-processing unit.

The performance measurements show an average
speedup of 10.7 for the hardware when compared with
our best software implementation of the CYK algo-
rithm using a general CF grammar and a speedup of
69.9 when compared with the software using a CNF
version of the same grammar.

These preliminary experiments represent encourag-
ing results for the application of the reconfigurable
computing paradigm for the implementation of NLP
algorithms and other applications requiring efficient
parsing with CF grammars.

In addition, the experience acquired during the im-
plementation of the system suggests the following pos-
sible extensions for our research work:

e further improvements of the design such as a bet-
ter processor control corresponding to a higher ex-
ploitation of the parallelism available in the CYK
algorithm and therefore to a more efficient proces-
sor utilization. In particular, the average number
of processors idle during parsing should be sub-
stantially reduced;

e further functional extensions of the design such
as stochastic, i.e. probabilistic, parsing and the
ability for the design to cope with general CF
grammar not requiring a preliminary transforma-
tion in CNF.

References

[1] A. V. Aho and J. D. Ullman. "The Theory of
Parsing, Translation and Compiling”, volume 1.
Prentice-Hall, 1972.

[2] J.-C. Chappelier and M. Rajman. A general-
ized CYK algorithm for parsing stochastic CFG.
In TAPD’98 Workshop, pages 133 137, Paris
(France), 1998.

[3] Y. T. Chiang and K.S. Fu. "Parallel Parsing Algo-
rithms and VLSI Implementations for Syntactic
Pattern Recognition". In IEEE Transactions on

4]

5]

[6]

7]

18]

[9]

[10]

[11]

[12]

[13]

Pattern Analysis and Machine Intelligence, May
1984.

K.H. Chu and K.S. Fu. "VLSI architectures for
high speed recognition of context-free languages
and finite-state languages.". In Proc. 9th Annu.
Int. Symp. Comput. Arch., pages 43 49, April
1982.

J.-C. Chappelier et al. Lattice parsing for speech
recognition. In Proc. of 6éme conférence sur
le Traitement Automatique du Langage Naturel
(TALN’99), pages 95 104, Cargése (France), July
1999.

R. Feldman et al. Text mining at the term level.
In Proc. of the 2nd European Symposium on Prin-
ciples of Data Mining and Knowledge Discovery
(PKDD’98), Nantes, France, Sept 1998.

R. Feldman, I. Dagan, and W. Kloegsen. Effi-
cient algorithm for mining and manipulating as-
sociations in texts. In 13" European Meeting on
Cybernetics and Research, 1996.

D. et al. Hull. Xerox trec-5 sire report: Routing,
filtering, nlp and spanish tracks. In NIST Special
Publication 500-238: The Fifth Text RFEtrieval
Conference (TREC-5), Gaithersburg, Maryland,
November 1996.

S. R. Kosaraju. "Speed of recognition of context-
free languages by array automata". SIAM J.
Comput., 4:331-340, 1975.

Fu K.S. Syntactic methods in pattern recognition.
Academic Press, 1974.

Linz P. An Introduction to Formal Languages and
Automata. Jones and Bartlett Publishers, 1997.

G. Sampson. "The Susanne Corpus Release 3".
School of Cognitive & Computing Sciences, Uni-
versity of Sussex, Falmer, Brighton, England,
1994.

P. Schiuble. Mutlimedia Information Retrieval -
Content-Based Information Retrieval from Large

Text and Audio Databases. Kluwer Academic
Publishers, 1997.

