
An FPGA-based coprocessor for the parsing of context-free grammarsCristian Ciressany, Eduardo Sanchezz, Martin Rajmanyand Jean-Cédric ChappelieryÉcole Polytechnique Fédérale de Lausanne,Computer Science Dept., 1015-Lausanne, Switzerland,{Cristian.Ciressan, Eduardo.Sanchez, Martin.Rajman, Jean-Cedric.Chappelier}@ep�.chAbstractThis paper presents an FPGA-based implementa-tion of a co-processing unit able to parse context-freegrammars of real-life sizes. The application �elds ofsuch a parser range from programming languages syn-tactic analysis to very demanding Natural LanguageApplications where parsing speed is an important is-sue.1 IntroductionFormal languages, in particular those described bycontext-free (CF) grammars [11], are used in manyapplications such as syntactic pattern recognition [10],syntactic analysis of programming languages [1], natu-ral language processing (NLP), etc. The parser speedfor such formal languages is an important issue in thecase of real-life applications in the above mentioneddomains. For instance, in the particular case of in-dustrial NLP applications, real-time constraints oftenhave to be considered and e�cient parsing solutionsneed to be proposed. Typical examples of such appli-cations are:� data production and processing : optical charac-ter recognition and spell checking, as well as ad-vanced information retrieval [13, 8] and text min-ing [6, 7] techniques may all require parsing tofurther enhance performance by integrating syn-tactic knowledge about the language. When hugeamounts of data need to be processed, e�cientlow complexity parsers are required;� human-machine interface : state-of-the-art vo-cal interfaces use standard Hidden Markov Mod-els (HMM) that only integrate very limited syn-tactic knowledge. Better integration of syntac-yArti�cial Intelligence Laboratory; this work is funded bythe FNRS grant # 21-52689.97zLogical Systems Laboratory

tic processing within speech-recognition systemsis therefore an important goal; e.g., in the casewhere the output of the speech recognizer is fur-ther processed with a syntactic parser to �lter outthose of the hypotheses (i.e. sentences) that arenot syntactically correct. The case of a sequen-tial coupling, presented in [5], is such an exam-ple. Due to the real-time constraints in such anapplication, fast parsing is again required.Various low complexity (i.e. polynomial) parsing solu-tions have been proposed for context-free languages, inparticular several parallel implementations of the stan-dard O(n3) time complexity1 Cocke-Younger-Kasami(CYK) algorithm [1]. This algorithm is known to haveO(n2) time complexity when executed on a 1D-arrayof processors and O(n) time complexity when executedon a 2D-array of processors [9].For such arrays, various VLSI designs have beenproposed : a syntactic recognizer based on the CYKalgorithm on a 2D-array of processors [4] and a robust(error correcting) recognizer and analyzer (with parsetree extraction) based on the Earley algorithm on a2D-array of processors [3]. Although these designsmeet the usual VLSI requirements (constant-time pro-cessor operations, regular communication geometry,uniform data movement), the hardware resources theyrequire do not allow them to accommodate real-life CFgrammars used in large-scale NLP applications2.In this context, we propose an FPGA-based 1D-array of processors implementation of the CYK al-gorithm able to accommodate real-life CF grammarsthat can parse input sentences of parametrical, i.e.customizable, maximal length. The design was de-scribed in VHDL, simulated for validation, synthe-sized and tested on an existing FPGA board, and �-nally compared for performance against two software1Where n is the length of the input sentence2For instance the CF grammar extracted from the SU-SANNE corpus [12] contains more than 10,000 non-terminalsand 70,000 grammar rules when written in Chomsky normalform

implementations. Its main features are:� word-lattice parsing : the output of a speech rec-ognizer is a number of possible sentences, oftenrepresented in the compact form of a word-lattice.Unlike the usual parsing algorithms that processsentences, our system is able to parse whole word-lattices and is therefore better adapted for inte-gration in the framework of a speech recognitionsystem. When integrating the parser within aspeech recognition system, the ability to parseword-lattices is an important functionality thatis required by a large number of applications re-lying on speech recognition interfaces;� scalability : the system can be exactly tailored tothe characteristics of any given Chomsky normalform (CNF) CF grammar so that no hardwareresources are wasted;� extensibility : the number of processors is notlimited by the resources available in the FPGA. Itcan be increased on demand by cascading severalFPGA circuits.The design was described in VHDL in order to havea technology independent implementation that can belater used to target an ASIC implementation.In section 2 we brie�y present the CYK algorithmand the changes required for its adaptation to word-lattice parsing. Section 3 describes the design, itsmain components, and scalability and extensibilityproperties. Section 4 analyzes the performance of theFPGA design in comparison with two software imple-mentations of the CYK algorithm. Conclusions andfuture extensions are presented in section 5.2 CYK algorithm for word-latticeparsing2.1 The CYK algorithmA CF grammar is a 4-tupleG = fN;�; S; Pgwhere:� N is a set of non-terminals (representing gram-matical categories, e.g. verb V , noun-phrase NP ,sentence S, . . .);� � is a set of terminals (representing words);� S 2 N is the top level non-terminal (correspond-ing to a sentence);

� P is a set of grammar rules, i.e. a subset ofN � (N S�)� written in the form of X ! �,where X 2 N and � 2 (N S�)�. For instance,a grammar rule can be S ! NP V , represent-ing that a sentence can consist of a noun-phrasefollowed by a verb;We use capital letters X , Y , Z, . . . to denote non-terminal symbols and a, b, . . . to denote terminal sym-bols. The CYK algorithm is constraint to use CFgrammars written in CNF : every grammar rule is ei-ther of the form X ! Y Z or X ! a. However, sinceany CF grammar can be rewritten in CNF, this con-straint is not a theoretical limitation, but a practicalone.Assume that we have the CNF CF grammarG = fN;�; S; Pg and an input sentence w1w2 : : : wn,n � 1, and wi 2 � is the ith word in the sentence.Let wij = wiwi+1 : : : wi+j�1 be the part of the in-put sentence that starts at wi and contains the nextj � 1 words and Ni;j the subsets of N de�ned byNi;j = fX 2 N : X)? wijg, where X)? wijmeans that wij can be derived from X by applyinga succession of grammar rules.Every set Ni;j can be associated with the entry oncolumn i and row j of a triangular parse table (see�gure 1(a)) � henceforth referred as CYK table.The CYK algorithm is de�ned as follows:1: for i = 1 to n do2: Ni;1 = fX : (X ! wi) 2 Pg3: for j = 2 to n� i+ 1 do4: Ni;j = ;5: end for6: end for7: for j = 2 to n do8: for i = 1 to n� j + 1 do9: for k = 1 to j � 1 do10: Ni;j = Ni;j SfX : (X ! Y Z) 2 P withY 2 Ni;k and Z 2 Ni+k;j�kg11: end for12: end for13: end forThe lines 1� 6 in the algorithm correspond to the ini-tialization step, when the sets Ni;1 are initialized byonly using the grammar rules of the form X ! wi. Inthe CYK table this corresponds to the initialization ofall entries on the bottom row. The lines 7� 13 corre-spond to the subsequent �lling-up of the CYK tableonce the initial sets Ni;j were constructed. Finally,the parsing trees can be extracted from the CYK ta-ble if necessary. If S is the topmost symbol (root) of

{ X, Z } { Z }{ Y } { Y } { X }

{ X }{ Z }

{ Y }

{ S , Z }

{ S }

b a d b c

1

3

1 2

2

4

5

3 4 5

i

j

{ X }

a d

XY

S

X

b cb

r2

r5r6

r1

YZ

Z X

Y

a d

XY

Y X

Z X

S

X Y

b cb

r2

r5r6 r6 r8

r2

r3

r1

r6 r8

r3

(b)(a)

r4

r9 r9

Figure 1: (a) CYK table initialization (j=1) and �lling (j=2,3,4 and 5), (b) two possible parsing trees correspondingto the input sentence �b a d b c�such a tree, the sentence is syntactically correct forthe grammar G.2.2 ExampleAssume that the CF grammar G is given by:N = fS;X; Y; Zg,� = fa; b; c; dg,P = fS ! XY (r1); X ! Y X (r2); Y ! ZX (r3);Z ! ZY (r4); X ! a (r5); Y ! b (r6);Z ! a (r7); X ! c (r8); Z ! d (r9)gwhere S is the top level non-terminal and r1; : : : ; r9,are used to denote the grammar rules. With this gram-mar, we want to parse the sentence �b a d b c�. Dur-ing the initialization step, only the rules r5 to r9 areused (see �gure 1(a)) to �ll-in the entries on the bot-tom line of the CYK table. During CYK table �lling,the rows j = 2; : : : ; 5 are �lled successively in this or-der, making use of the grammar rules r1 to r4. Finally,two possible parsing trees are extracted from the CYKtable (see �gure 1(b)).2.3 Word-lattice adaptationAn example of word-lattice representation is givenin �gure 2. Each path starting in the leftmost nodeand ending in the rightmost node of the word-latticecorresponds to a possible recognized sentence. Thesesentences are subject to be �ltered-out by the syntac-tic parser.When dealing with word-lattices, the di�erencewith the previously presented CYK algorithm is that

b

d

a

b

b

b

a

b c

a

ba t1

t4

t5

t7

t6

t3

t2

a a b ba b d ba b b ab b a ab c b ab c d bFigure 2: A toy word-lattice containing 6 sentences.not only the setsNi;1 may be initialized during the ini-tialization step, but any of the sets Ni;j as with word-lattice representation words may occur anywhere inthe CYK table (see �gure 3(b)). Thus, in order toadapt the CYK algorithm to word-lattice parsing, theinitialization step needs to be extended [5].To illustrate this point, let us consider the word-lattice given in �gure 2, containing the six sentences"a a b b", "a b d b", "a b b a", "b b a a", "b cb a" and "b c d b" and the same grammarG as usedin the former example. First the lattice nodes areordered by increasing depth3 (see �gure 3 (a)). Suchan ordering is natural in the case of lattices producedby a speech recognizer, in which nodes correspond to(chronologically ordered) time instants t1, t2, . . .This new representation of the word-lattice can bemapped over the CYK table as follows:1. the intervals between successive nodes are associ-3A node depth is the minimal number of arcs from the initialnode, with random choice in case of equalities

ated to the column indices of the parsing table;2. if the lattice arc (tm; tn) (n > m) is labeledw, then the set Nm+1;n�m corresponding to theCYK table entry (m+1, n�m) is initialized withfX : (X ! w) 2 Pg (see �gure 3 (b)).The hardware design we are going to present imple-ments the CYK algorithm adapted for word-latticeparsing.3 The FPGA DesignThe general idea of our current hardware designis to use n � 1 processors to parse sentences of atmaximum n words. For example, the block dia-gram in �gure 4 represents a 10 processor system thatcan parse any sentence of length less or equal to 11words and that we have e�ectively implemented ona RC1000-PP4 FPGA board. In the �gure, the ele-ments inside the dashed line are implemented withinthe on-board FPGA chip. The other elements (CYKand grammar memories) are implemented in SRAMchips also present on the board. Before any pars-ing can start, the grammar memories have to be con-�gured with the binary image of the data-structurerepresenting the CNF CF grammar (see section 3.4).Similarly, the CYK memory need to be initialized,where needed, with the structures used to representthe sets Ni;j (see section 3.2) and the GLOBALcontroller (G-CTRL) has to be initialized with thelength of the sentence to be parsed. All initializa-tions are done o�-line in the current implementation.The startPARSE signal starts the parsing and theoverPARSE signal indicates the end of the pars-ing. The parse result is available at some outputoutPARSE (not represented in �gure 4) of each pro-cessor and can be collected to build the parse tree.When the parsing starts for a sentence of lengthl � n+1, the processors P1 to P l�1 are �rst activatedand the processors P l to Pn are deactivated (i.e. notused for that parsing). It is the task of the G-CTRLto activate or deactivate the processors, based on thelength l of the sentence. The G-CTRL also synchro-nizes the processors at the end of iteration j (line 7 ofthe CYK algorithm), before starting iteration j + 1.This is necessary due to the data dependency amongthe sets Ni;j .The CYK memory stores the sets Ni;j and is sharedfor read and write by all working processors in the sys-4ESL at http://www.embeddedsol.com/tech_info_3.htm

tem. A token passing priority arbiter handles concur-rent accesses to this memory.The grammar memories store identical copies ofthe binary representation of the CNF CF grammar.During parsing, the processors intensively access thegrammar memories but due to physical constraints(i.e. the number of I/O pins of an FPGA) it is impos-sible to have a grammar memory for each processor inthe system. Instead, processors are grouped in clustersthat share the same grammar memory. The numberof processors in a cluster may vary from one cluster tothe other, and clusters are built in such a way that, inthe general case, the number of concurrent accesses isas reduced as possible.As for the CYK memory, a token passing priorityarbiter handles concurrent accesses in every cluster.3.1 Processor Datapath StructureThe processors have the task of �lling-up the entriesof the CYK table. More precisely, if l is the sentencelength, the task of the processor Pi, i � l� 1, is to �llthe CYK table entries on column i during l � i itera-tions in a bottom-up order. In other words, to com-pute the sets Ni;j , based on previously constructedsets (line 10 of the CYK algorithm). The newly com-puted sets Ni;j are stored in the CYK memory forlater use. The parsing terminates after exactly l � 1iterations, when processor P1 �nishes to �ll-up thecolumn 1.During iteration j (2 � j � l), the processors Pi(1 � i � l � j + 1) work in parallel, and the proces-sor Pi is constructing the set Ni;j . At the end of eachiteration the processors wait for a synchronization sig-nal raised by the G-CTRL before beginning iterationj+1 and the rightmost active processor is deactivatedand becomes idle for the rest of the processing time.The datapath structure of the processor is given in�gure 5. The processor is a high frequency pipelineimplementation. As depicted in �gure 5, we can dis-tinguish 4 main functional units in the processor:� the CYK memory addressing unit: used by theprocessor to address the sets Ni;j and other datastored in the CYK memory (see section 3.2);� the update unit: updates the representation ofNi;j when necessary (see section 3.3 for details);� the grammar look-up unit: for computing a newset Ni;j a processor requires intensive grammarlook-up. This is the task of the MAG module.Considering processor Pi during iteration j, theMAG module has as input all ordered pairs of

b
b

d

a

b

c

a a
b b

b

a

t2 t3 t4 t5 t6 t7t1

1 2 3 4 5 6 7 8

1

2

4

3

5

6

7

8

t1 t2 t3 t4 t5 t6 t7

{X,Z}

{Y} {X,Z} {X,Z}

{X,Z}

{Y} {Y} {Y} {Y}

{Y}{X} {Z}

(a) (b)Figure 3: (a) Word-lattice of �g 2 represented as a speech word-lattice (nodes are naturally ordered since theyrepresent di�erent time-instants). (b) The representation of the word-lattice in (a) in the form of a initializedCYK tablenon-terminals (RHS1; RHS2) 2 Ni;k�Ni+k;j�k,1 � k � j � 1, and gives as output all non-terminals LHS for which there is a rule LHS !RHS1RHS2 in the grammar (see section 3.4 fordetails);� the synchronization unit: used by a processor toachieve synchronization with the other processorsafter each iteration of the CYK algorithm.3.2 CYK table representation in memoryThe purpose of the CYK memory is to store thesets Ni;j . The data-structure used to represent thesesets is critical and also has to correspond to a goodcompromise between memory size and access-time tothe non-terminals in a set. Ni;j can be any subset ofN , hence jNi;j j5 can be equal to jN j in the worst case.However, to allocate for each set Ni;j an amount ofmemory proportional to jN j would represent an im-portant memory waste, as in practice jNi;j j � jN j.Therefore, in order to reduce the size of the CYKmemory, we impose to jNi;j j an upper limit C. Duringrun-time, if Ni;j receives more than C non-terminals,the hardware generates a fault signal and the parsingstops. This is, however, a very unlikely event for awell chosen value of C and we can thus use tables ofsize proportional to C to store the non-terminals of thesets Ni;j . Note that, if the number of processors in the5jN j represents the cardinal (the size) of set N .

system is n, the CYK memory has to store n(n� 1)=2such tables.Given i, j and k, during parsing, a processor has toimplement the following three functionalities:� F1: go through all non-terminals of the set Ni;k(or Ni+k;j�k)� F2: is X in Ni;j ?� F3: insert X in Ni;jFor understanding how these functions are imple-mented, we give in �gure 6 the CYK table organizationin memory. We discuss each of these functionalities inturn.For the implementation of F1, the Phead pointeris used as a base address that points to the �rst non-terminal in the non-terminal table. It is stored eitherin RHS1base (Ni;k) or RHS2base (Ni+k;j�k) registers(see �gure 5). A displacement, i.e. index, for ad-dressing any non-terminal stored in the non-terminaltable is kept in RHS1Index, respectively RHS2Index.The addition of the base address with the index ad-dress gives the physical address in memory of the non-terminal. For implementing F1, the processor needsto know whether the table is empty or not, and, inthe later case, to know which is the last non-terminalin the table. This is implemented by means of twospecial bits attached to each non-terminal in the ta-ble. One bit is set when the table is empty, the otherwhen the non-terminal is the last in the table. Thecurrent implementation uses 2 bytes for representing

(DATA + ADDRESS + CONTROL) bus

(DATA + ADDRESS + CONTROL) bus

(DATA + ADDRESS + CONTROL) bus

CYK
memory
arbiter

memory
CYK

(DATA + ADDRESS + CONTROL) bus

GRAMMAR

MEMORY

GRAMMAR

MEMORY

GRAMMAR

MEMORY

cluster 3cluster 1
arbiter

cluster 2
arbiter arbiter

(SRAM) (SRAM) (SRAM)

(SRAM)

GRAMMAR
CLUSTER 1 CLUSTER 2

GRAMMAR

Processor

P1

Processor Processor Processor Processor Processor Processor Processor Processor Processor

P2 P3 P4 P5 P6 P7 P8 P9 P10

GRAMMAR
CLUSTER 3

length
sentence

overPARSE

FPGA chip

FPGA board (RC1000-PP)

PROCESSOR CONTROL bus
startPARSE

GLOBAL
controler

G-CTRL

Figure 4: A 10 processor systema non-terminal, thus, 2C bytes are used to representan entry, i.e. a set, in the CYK table. While 2 bitsout of 16 representing the non-terminal are used forspecial purposes, only 14 are used to code the non-terminal. For this reason only grammars having lessthan 214 = 16; 384 non-terminals can be considered.F2 is a highly time consuming function. To speed itup, we use a guard-vector (i.e. bit-vector) table storedin the CYK memory along with the non-terminals ta-ble. Every non-terminal in N has an associated bit inthe guard-vector which is thus of size jN j bits. If thebit associated withX is set in the guard-vector thenXis already in Ni;j . For the implementation of F2 thePguard pointer is used as a base address that pointsto the �rst bit (in a 4-byte word) in the guard-vector.It is stored in the Guardbase register (see �gure 5).The displacement for addressing the bit associated toa non-terminalX is given by the binary representationof X .For the implementation of F3, both Phead andDtail are used to point the beginning of the non-terminals table, and, respectively, to index the lastnon-terminal. Phead is stored in IJbase and Dtail inIJindex registers. If during the parsing Dtail > C,a fault signal is raised to signal that the Ni;j hastoo many non-terminals. In a non word-lattice pars-ing (i.e. sentence parsing) Dtail is always 0, and isnot used since every set Ni;j is empty at the begin-ning. However, in a word-lattice parsing the sets Ni;jare not necessarily empty and the insertion of newnon-terminals has to be made at the end of the non-

terminals table where Phead+ Dtail points.The initialization of the CYK table corresponds to:the initialization of the non-terminals table, the as-sociated Dtail indexes and the guard-vectors. ThePhead and Pguard pointers are initialized only onceand they do not change.In order to retrieve the pointers Phead and Pguardand the displacement Dtail, the processor builds anaddress for addressing the indexing table (see �g-ure 6) from i, j and k. The address is constructedin IJshadow as 8(32i+ j) for Ni;j , in RHS1shadow as8(32i+k) for Ni;k and in RHS2shadow as 8(32(i+k)+j � k) for Ni+k;j�k .3.3 Update unitThe tasks of the update unit are:� set the �ags (i.e. the 2 special bits) of each non-terminal before writing it in memory in the non-terminal table. This is done in the LHS updatemodule;� update the guard-vectors. Every time a new non-terminal is inserted in the non-terminal table itscorresponding bit in the guard-vector has to beset. This is done in the guard update module.3.4 Grammar representation in memoryThe CYK algorithm uses CF grammars in CNF.Thus, the �rst pre-processing step is to transform a

module

guard

ReadData

L
R

E
G

1

L
R

E
G

2

R
R

E
G

2

R
R

E
G

1

tmpIndex tmpBase

shadowtmp

CYKaddress

WriteData

Processor synchronisation unitCYK memory addressing unit

CYK memory DATA

grammar memory ADDRESS

grammar memory DATA

RHS2RHS1

LHS Grammar
memory

access module
MAG

RHS1Index RHS2Index

RHS1base RHS2base Guardbase

LHS
update
module

IJIndex

IJbase

IJshadow RHS1shadow RHS2shadow

CYK memory address

update

module
sinisino

synchronisation

update unit

grammar look-up unitFigure 5: Processor datapathgiven general CF grammar in an equivalent CNF CFgrammar. This is done o�-line only once for each CFgrammar used.The CNF grammar is then represented by a data-structure that has to allow, for any grammar ruleright-hand side (RHS) of the form YZ, to retrieve (1)all non-terminalsXi such that there is a ruleXi ! YZin the grammar, and (2) a code that uniquely identi�esthe given RHS. As the data-structure used to repre-sent the grammar is critical for the design, it has tocorrespond to a good compromise between the mem-ory space taken by and the access time to the storedinformation.Concretely, the data-structure representing thegrammar is converted in a binary memory image readyto be dumped on the FPGA-board to con�gure thegrammar memories.

As it is shown in �gure 7, the data-structure usedin our implementation is organized on 3 levels. Level 1is a table with an entry for each distinct non-terminalpresent in the grammar. Such an entry contains eithera NULL pointer if there is no RHS starting with thecorresponding non-terminal Y or a non-NULL pointerpointing to the root of a tree at level 2. Level 2 isa collection of binary sorted trees, each containingall distinct second position non-terminals present inthe RHSs that start with a given Y . Finally, in thebinary trees, each node contains, in addition to theptr_left and ptr_right pointers that link with itsleft and right sons, the indication of the second posi-tion non-terminal Z it corresponds to, and a pointerto a table in level 3 that stores the required informa-tion (a RHS code RHScode and a list of non-terminalsX1, X2, . . .).

N11

N21

N1n

N11

N21

N1n

N21

N1n

N11

indexing table non-terminals table guard-vectors table

Phead Pguard

PguardPhead

Phead Pguard

free

free

free

bit 10 15

empty
last

0 0

0 0 0 0

0

1 0 0 1 0

100

0 0 0 0 01

2*C [bytes] | N | [bits]

Dtail

Dtail

Dtail

8 [bytes]

Figure 6: CYK table organization in memory3.5 Scalability and extensibility proper-tiesScalability: when the binary memory image for thegrammar and CYK memories are created, several pa-rameters characterizing the grammar and CYK data-structures are also computed. These parameters arethe number of bits needed to represent a non-terminal,the grammar memory address, the CYK memory ad-dress and the RHS code. These parameters are thenused to con�gure the VHDL code. Such a paramet-ric approach allows to scale the design, i.e. to assignto the hardware resources (registers, counters, multi-plexers, etc.) bit sizes that match the grammar char-acteristics. Due to this scalability property, the FPGAresources can be optimally used and, for each gram-mar, an optimal number of processors can be �t in theFGPA.Extensibility: in the case where the maximumlength of a sentence to be parsed requires a numberof processors that does not �t on a single FPGA, thesystem can be extended by cascading several FPGAcircuits. Therefore, the number of processors can beincreased as needed and the system can be adapted toparse sentences of any length.4 Design PerformanceAll tests and performance measurements presentedin this section were made with a grammar extractedfrom the SUSANNE corpus, referred henceforth as the

SUSANNE grammar. In CNF the SUSANNE gram-mar contains 10,129 non-terminals and 74,350 rules.The grammar memory size required to store the data-structure representing the CNF SUSANNE grammaris of 558,576 bytes. The CYK memory size depends onthe number of processors in the system (e.g. 446,496bytes for a 10 processors system).In order to determine the real maximal clock fre-quency at which the system is able to work, the10 processor system shown in �gure 4 was synthe-sized6 and placed&routed7 in a Xilinx FPGA, VirtexV1000bg560-4. The synthesized 10 processor systemuses less than 35% of the FPGA resources. The sys-tem was then tested, and checked for correctness, on aRC1000-PP board with a clock frequency of 48 MHz.Due to the fact that the RC1000-PP board can ac-commodate only 3 grammar clusters, the hardwarerun-times we present were obtained by simulating8 theVHDL model of a system with 14 processors and 7grammar memory clusters.The software used for comparison is an implementa-tion of an enhanced CYK algorithm developed in ourlaboratory [2]. The hardware performance (i.e. therun-time hereafter denoted by hard) was comparedagainst two software run-times. The former (soft1)uses the SUSANNE grammar [12] in CNF, as it isalso the case for the hardware. The latter (soft2) usesthe SUSANNE grammar in its original context-freeform. The software was run on a SUN (Ultra-Sparc 60)6With LeonardoSpectrum v1999.1f7With Design Manager (Xilinx Alliance Series 2.1i)8With ModelSim EE/Plus 5.2e

X1 X2

X1

X1

X1

X1

X1

X1

X1

X2

X2

X2

X2

X2

X2

X2

1

0

|N|-2

|N|-1

|N|-3

LEVEL1 LEVEL2 LEVEL3

ptr_right

ptr_left

ptr_table

RHScode

RHScode

RHScode

RHScode

RHScode

RHScode

RHScode

RHScode

Y

Y

Y

Y

Y

Z

ZZ

Z

ZZZ

Z

Z

Xm

Figure 7: The data-structure used to represent the CNF grammarwith 512 Mbytes memory, 770 Mbytes of swap mem-ory, and 1 processor at a clock frequency of 360 MHz.The initialization of the CYK table was not takeninto account for the computation of the run-times.For accuracy, the timing was done with the time()C library function and not by pro�ling the code. For

0 100 200 300 400 500 600

3

4

5

6

7

8

9

10

11

12

13

14

15

4.02
22.71

0.26

6.85
39.48

0.5

9.45
55.39

0.74

13.56
84.16

1.22

15.75
98.78

1.35

21.72
141.64

2.13

25.69
171.58

2.37

37.26
250.15

3.73

37.73
255.82

3.69

46.22
314.56

4.64

53.16
363.9

5.64

63.89
435.36

6.83

71.12
508.97

7.7

se
nt

en
ce

 le
ng

th
[w

or
ds

]

time[ms]

soft1
soft2
hard

Figure 8: soft1, soft2 and hard average run-timesthe purpose of the comparison, 2,044 sentences wereparsed and validated by comparing the hardware out-put against the software output for detecting mis-matches. The sentences have a length ranging from 3

to 15 and were all taken from the SUSANNE corpus.Figure 8 shows the average run-times soft1, soft2 andhard as functions of the sentence length (vertical axe).The average speedup factor E(S) has been computedfor both soft1 and soft2. For soft1, Esoft1(S) = 69:646and for soft2, Esoft2(S) = 10:772. Figure 9 shows thehardware speedup in comparison with soft1 and soft2as a function of the sentence length.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

sentence length[words]

sp
ee

du
p

vs. soft2
vs. soft1

Figure 9: Hardware speedup

5 ConclusionsIn this paper we presented an FPGA-based copro-cessor implementation of the CYK algorithm adaptedfor word-lattice parsing and that can accommodatereal-life CF grammars. The design interface was de-signed to allow an easy integration of the parser withina larger system (e.g. a speech-recognition applicationon a desktop computer) in which the parsing hardwarewould work as a co-processing unit.The performance measurements show an averagespeedup of 10:7 for the hardware when compared withour best software implementation of the CYK algo-rithm using a general CF grammar and a speedup of69:9 when compared with the software using a CNFversion of the same grammar.These preliminary experiments represent encourag-ing results for the application of the recon�gurablecomputing paradigm for the implementation of NLPalgorithms and other applications requiring e�cientparsing with CF grammars.In addition, the experience acquired during the im-plementation of the system suggests the following pos-sible extensions for our research work:� further improvements of the design such as a bet-ter processor control corresponding to a higher ex-ploitation of the parallelism available in the CYKalgorithm and therefore to a more e�cient proces-sor utilization. In particular, the average numberof processors idle during parsing should be sub-stantially reduced;� further functional extensions of the design suchas stochastic, i.e. probabilistic, parsing and theability for the design to cope with general CFgrammar not requiring a preliminary transforma-tion in CNF.References[1] A. V. Aho and J. D. Ullman. "The Theory ofParsing, Translation and Compiling", volume 1.Prentice-Hall, 1972.[2] J.-C. Chappelier and M. Rajman. A general-ized CYK algorithm for parsing stochastic CFG.In TAPD'98 Workshop, pages 133�137, Paris(France), 1998.[3] Y. T. Chiang and K.S. Fu. "Parallel Parsing Algo-rithms and VLSI Implementations for SyntacticPattern Recognition". In IEEE Transactions on

Pattern Analysis and Machine Intelligence, May1984.[4] K.H. Chu and K.S. Fu. "VLSI architectures forhigh speed recognition of context-free languagesand �nite-state languages.". In Proc. 9th Annu.Int. Symp. Comput. Arch., pages 43�49, April1982.[5] J.-C. Chappelier et al. Lattice parsing for speechrecognition. In Proc. of 6ème conférence surle Traitement Automatique du Langage Naturel(TALN'99), pages 95�104, Cargèse (France), July1999.[6] R. Feldman et al. Text mining at the term level.In Proc. of the 2nd European Symposium on Prin-ciples of Data Mining and Knowledge Discovery(PKDD'98), Nantes, France, Sept 1998.[7] R. Feldman, I. Dagan, and W. Kloegsen. E�-cient algorithm for mining and manipulating as-sociations in texts. In 13th European Meeting onCybernetics and Research, 1996.[8] D. et al. Hull. Xerox trec-5 sire report: Routing,�ltering, nlp and spanish tracks. In NIST SpecialPublication 500-238: The Fifth Text REtrievalConference (TREC-5), Gaithersburg, Maryland,November 1996.[9] S. R. Kosaraju. "Speed of recognition of context-free languages by array automata". SIAM J.Comput., 4:331�340, 1975.[10] Fu K.S. Syntactic methods in pattern recognition.Academic Press, 1974.[11] Linz P. An Introduction to Formal Languages andAutomata. Jones and Bartlett Publishers, 1997.[12] G. Sampson. "The Susanne Corpus Release 3".School of Cognitive & Computing Sciences, Uni-versity of Sussex, Falmer, Brighton, England,1994.[13] P. Schäuble. Mutlimedia Information Retrieval -Content-Based Information Retrieval from LargeText and Audio Databases. Kluwer AcademicPublishers, 1997.

