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Abstract

While we cannot efficiently emulate quantum algorithms on classical architectures, we can move the weight of complexity

from time to hardware resources. This paper describes a proposition of a universal and scalable quantum computer emulator,

in which the FPGA hardware emulates the behavior of a real quantum system, capable of running quantum algorithms while

maintaining their natural time complexity. The article also shows the proposed quantum emulator architecture, exposing a

standard programming interface, and working results of an implementation of an exemplary quantum algorithm.
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1 Introduction

It has been over 30 years since the idea of using quantum

circuits to perform computational tasks was first proposed.

In spite of the rapid growth of our knowledge in quan-

tum physics, a fully workable quantum computer of a

desired scale still remains outside our reach. Many different

approaches have been taken, from nano-scale superconduct-

ing circuits to ion-traps. Yet, we are still far from running

most of the already developed quantum algorithms in a useful

scale. What cannot be denied, however, is the great poten-

tial and power of quantum computing. This is what drives

researchers around the world to develop new algorithms for

machines that we cannot be sure will ever come to existence.

The praised quantum speedup of many famous algorithms

comes from massive parallelism in quantum computation.

However, as it was suggested by Richard Feynman and

stated by the Quantum Strong Church–Turing Thesis, only

quantum machines are capable of efficient emulation of

quantum circuits [1]. In other words—there is no physical

way to achieve the quantum speedup on classical, sequential

machines. Emulation of any quantum algorithm on a standard
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computer will often require exponentially more time than it

would on a quantum machine. While we cannot bypass that

need for resources when emulating quantum circuits, we can

shift the weight from time to hardware complexity. This is

where field-programmable gate arrays, or FPGAs, come to

help us.

This paper describes an approach to build a very scalable,

easily parametrized and programmable universal quantum

computer emulator, reflecting natural behaviors of real quan-

tum circuits. We designed the hardware to physically emulate

qubits, with quantum manipulation methods provided by uni-

tary matrices and a randomizer to introduce the uncertainty

of quantum systems (as seen in FPGA section in Fig. 1).

Our primary objectives included:

– Natural parallelization—every gate can be applied to the

state in a single operation/clock-tick, regardless of the

number of emulated qubits

– Universality—rather than pre-implementing gates, our

design can run any gates sent by the user to the processor

– Code-level scalability—modifying a single parameter in

our code is enough to change the emulated qubits count,

numerical precision and other processor parameters.

Our implementation can be viewed as a reproduction of a

physical, universal quantum computer, where our hardware

qubits replace ion traps or particle spins, and manipulation

matrices imitate precise lasers or magnetic field generators.

The created system is capable of running any quantum algo-

rithm completely in hardware (only limited by available
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Fig. 1 Quantum system overview

FPGA resources), while maintaining time complexity and

reflecting natural behaviors of quantum circuits, including

parallelism. The processor exposes a standard programming

interface, allowing the user to design and use any quantum

gates from the software level, without any hardware modifi-

cation.

2 Motivation

Today, we are at the very beginning of a quantum revolu-

tion. Companies such as IBM [2], Rigetti [3] or D-Wave

[4] are investing in building physical quantum computers

and exposing programmable interfaces to users around the

world through cloud solutions. At the same time, real quan-

tum machines still have a long way to go before they become

truly universal, stable and scalable. Many of today’s architec-

tures are specifically tailored to run specialized algorithms,

such as quantum annealing [5]. Furthermore, spontaneous

decoherence, state preparation and measurement faults, or

the engineering challenge of creating entangled states, are

serious problems that we are learning to solve in the real

world. For these reasons, quantum emulators are still being

designed and built to help on different frontiers of the quan-

tum revolution.

The goal of our work described in the article was to build a

quantum computer emulator, which from user’s perspective

would behave like a real quantum computer. The primary

focus was to ensure that every operation is naturally paral-

lelized, and therefore every transformation on the n-qubit

state is completed in a single clock-tick.

However, it was not our intention to simulate actual phys-

ical phenomena that would take place in a physical quantum

machine. Instead, we wanted to provide users with the com-

fort of running a universal emulator that delivers results

practically as fast as a quantum machine would, but without

having to pay attention to error correction and other unde-

sired side-effects. Therefore, the current design of our system

emulates a quantum computer composed of perfect qubits.

Thanks to this approach, we hoped to enable users to

design, test and iterate on quantum algorithms without the

need to own, run and maintain an actual quantum computer.

With this in mind, we considered spontaneous decoherence,

state setup uncertainty and measurement faults to be imper-

fections of today’s real quantum systems and, therefore, did

not implement them in our design.

Because of the complexity of the problem, as well as

hardware limitations (small available FPGA chips), we had

to compromise on some of the important implementation

details. In the end we were only able to synthesize a two-

qubit system. One of the most significant settlements was

to use fixed-point number representation (based on [28]),

which allowed us to dramatically reduce the need for FPGA

resources, while limiting precision to a point that may be

problematic for certain algorithms. We have not described

this problem extensively, however, as the modular design

allowed us to abstract the implementation of number repre-

sentations, and we plan on replacing it with a much more

precise floating-point engine in the future. The synthesized

10-bit fixed-point number representation was sufficient for

the tested Deutsch Algorithm, as described in Sect. 8.

Another implementation choice driven by the need for

simplicity in the first iteration was to implement quantum

state processing as matrix–vector multiplications. The uti-

lized approach is correct and universal, reflecting a traditional

mathematical way of representing a quantum system’s evo-

lution. It is also easy to scale from code level, as described in

Sect. 6.4, which was one of our main objectives. However,

much more efficient computing methods for quantum state

evolution, including those proposed by Nikahd et al. [26] or

Viamontes et al. [27], already exist. Our choice allowed us to

achieve our initial goals in the first iteration, and we plan to

research and implement a more efficient method in the future

versions, while keeping the universality and code-level scal-

ability of the current solution.

Thanks to code-level scalability and modularity, the pro-

posed architecture is designed to be easily extendable and

flexible, allowing for simple iterative improvements. As

larger FPGA chips become available, changing single param-

eters in our code enables growing the number of emulated

qubits or improving numerical precision. Examples of easily

scalable code include state transformation parametrized by

emulated qubit count (as described in Sect. 6.4) or numer-

ical type definition abstracted and defined in a single place

(as described in Sect. 6.2). Furthermore, any of the existing

modules, such as those responsible for state transforma-
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tion or measurement, can be easily adjusted or replaced

through modifying single, isolated pieces of code. It should

be emphasized that we have described the first iteration of

our approach, which was focused on building and verifying

the architecture in practice, and thanks to our design it can

be progressively improved in future iterations.

While our emulator utilizes the massive parallelism of an

FPGA chip, it does so to emulate natural quantum paral-

lelism, rather than to achieve the speed-up itself. Because

every transformation in our design takes a single clock-tick,

we can speed the design up by increasing the clock frequency

as far as our FPGA hardware allows us. With every additional

emulated qubit, if we can maintain the clock-frequency, our

design gains an exponential advantage over sequential soft-

ware emulators, thanks to an asymptotically faster hardware

architecture. At the same time, we have not analysed the

emulation speed, as it was not one of our initial objectives in

itself.

To keep the design simple, universal and cross-compatible

(including for future FPGA chips), we resigned from direct

use of specialistic (and quite often custom) computational

and memory modules, such as DSP or BRAM, available

in today’s FPGAs. Of course, it does not mean the mod-

ules are not used in our synthesized hardware—we left it

for the compiler and synthesizer to decide where and when

such improvements will be applied, using various available

resources of the target chip. This way our architecture is com-

pletely independent of the hardware and truly universal.

3 Existing work

There are many approaches to emulate or simulate quantum

computers. Many of them are built around GPU processors,

multiprocessor systems or even supercomputers and focused

on reducing the time necessary to emulate quantum algo-

rithms on classical architectures [6–9]. While these solutions

often provide useful tools to simulate outcomes of running

quantum algorithms, they do not offer the time-complexity

obtained by using real quantum computers.

FPGA technology provides an attractive opportunity to

leverage its massive parallelism to completely emulate the

time-speedup of quantum machines. There are many pro-

posed emulator architectures based on FPGA circuits, but

none of them are fully focused on simple, naturally parallel

emulation of quantum circuits.

VHDL library proposed by Khalid et al. [10] puts empha-

sis on efficient computation of quantum circuits through

analyzing code and ensuring it is implemented in the most

efficient way on the FPGA. In their solution, the authors

decided to model quantum circuits from pre-implemented

gates, that are designed for fast execution on FPGAs and pro-

vided as a VHDL library. Therefore, the quantum circuit to be

emulated must be known before synthesis. In our approach,

hardware is built to run any quantum gates that can be rep-

resented by complex number matrices. Transformations are

dynamically loaded from the software level, while the pro-

cessor itself is gate-agnostic and universal. Furthermore, in

our implementation, quantum measurement is fully paral-

lelized and performed in hardware, as opposed to a software

solution utilized by the authors of [10]. Finally, our design is

built to emulate a quantum processor connected to a classi-

cal machine, allowing to run complete quantum algorithms in

hardware, consisting of any number of gates, including state

preparation, computation and measurement. This stands in

contrast to using VHDL to synthesize hardware to speed-up

parts of quantum algorithms, as described in [10].

Goto and Fujishima [11] designed a solution making use

of unitary macro-operations, allowing memory-efficient sim-

ulation of quantum circuits on FPGA and corresponding to

classical processors’ behavior. Their approach was concen-

trated on decomposing macro-operations in software to some

pre-designed hardware operations, and then running them in

parallel on hardware, rather than trying to emulate physical,

universal quantum computers.

Lee et al. [12] conducted extensive research on existing

solutions and prepared a software–hardware system to emu-

late quantum computation with high precision and efficiency.

The authors took an innovative approach of mixing paral-

lel and serial processing on FPGA, which allowed them to

achieve desired speedups without hardware resources’ expo-

nential growth. While this design provides great tools for

quantum algorithm analysis, it was not focused on reflect-

ing natural, fully parallelized behaviors in hardware. Every

quantum operation emulated in our system is completely par-

allelized, which contributes to exponential growth of required

hardware resources with every emulated qubit, but provides

a closer reflection of natural quantum systems.

Problems with exponential growth of space and time com-

plexity during simulation of larger quantum circuits were

also addressed by Franka et al. [13]. They designed and

conducted empirical complexity measurements of a working

software prototype of a quantum computer simulator avoid-

ing excessive space requirements. Rather than to emulate

quantum systems in hardware, its purpose was to provide a

space-efficient model for running quantum algorithms, with

agreement for some space–time tradeoffs.

Negovetic et al. [18] has proposed a software–hardware

system for emulating quantum circuits on FPGAs. They pre-

sented two approaches: one where a software preprocessor

converts quantum netlists into HDL that can be then syn-

thesized and ran on FPGA, and an evolvable one, where

software generates a netlist satisfying problem constraints,

and then gets it translated into hardware as in the first case.

The authors also considered moving the netlist generation

entirely to hardware. While both of the described solutions
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utilize FPGA parallelism to speed-up quantum computation

emulation, they require re-synthesizing hardware according

to generated HDL for every algorithm. This stands in contrast

to our design, where software dynamically loads gate matri-

ces to hardware to emulate any quantum algorithm without

resynthesis. Furthermore, our architecture allows quantum

gate matrices of any size, only limited by the number of emu-

lated qubits, compared to only 1- and 2-qubit gates proposed

in [18].

Fujishima et al. [19,21] proposed a very interesting

approach of utilizing FPGAs for high-speed quantum com-

puting emulations with small memory requirements. The

described architecture was designed to solve search-based

problems. Utilizing the fact that initial state amplitudes

would be always either 0 or 1√
m

, where m is the number

of possible solution candidates, the proposed logic quantum

processor represents initial amplitudes with single bits, rather

than complex numbers, contributing to large memory savings

and computation speed. The emulator also included stochas-

tic bit error simulation to help emulate quantum systems’

behavior. Fujishima et al. [20,22] proposed an improved

design, where rather than storing the entire quantum state

vector, the architecture includes a quantum index proces-

sor, which only keeps track of the indices of bits set to 1

in the state. This resulted in even greater memory savings,

which allowed for synthesis of a massive 75-qubit emulator.

While the proposed architectures have proven to be very fast,

the emulated quantum operations are restricted to Walsh–

Hadamard and C-NOT gates, and a non-quantum INQUIRY

operation is added to enable emulation of certain algorithms

(like Shor’s factorization algorithm [25].) The architecture

proposed in our paper is less optimized for fast emulations,

but is fully universal and capable of running any quantum

gates and algorithms, limited only by the number of emu-

lated qubits.

Aminian et al. [23] has described a universal and effi-

cient method of emulating quantum circuits on FPGAs. The

authors proposed an efficient way to emulate a universal set

of quantum gates on FPGA hardware and tested multiple

algorithms constructed from gates in the set. This interest-

ing and scalable approach focuses on emulating particular

gates in hardware and using them to emulate quantum algo-

rithms. However, it does not allow direct usage of any desired

quantum gate in hardware without increasing circuit depth,

as opposed to our solution, where any gate matrix can be

dynamically loaded into hardware without resynthesis.

There is also an interesting proposition of QuIDE software

solution [14], providing a quantum computer simulator with

an integrated development environment. It has been designed

to create quantum programs with code (C# QuIDE library),

as well as with a graphical circuit designer. The authors are

working on a bridge between the IBM-Q environment [2] and

their own QuIDE simulator. Software tools such as QuIDE

are focused on providing tools for easier quantum algorithm

design and not on any form of emulating quantum speedup.

However, there are also many other quantum computer emu-

lators for PCs, including QDD emulation library for C++

[24], focusing on optimal use of memory and processing

power for the fastest emulation of quantum circuits on clas-

sical, sequential architectures.

In general, existing approaches can be divided into three

categories:

– Efficient emulation of quantum algorithms from a pre-

built set of operations focused on time and/or hardware

resources used, rather than reflecting physical behav-

ior and universality of a quantum computer. Proposed

designs included HDL libraries, often together with pre-

processing software, as well as CPU-like solutions

– Emulating behavior of chosen physical quantum cir-

cuits. Those solutions were mostly focused on reflecting

physics of a selected group of synthesized circuits,

built from tools provided in HDL libraries, rather than

constructing a processing unit with a universal set of

instructions and able to execute any quantum algorithm

– Tools for designing and running quantum algorithms on

classical architectures. Proposed tools are focused on

providing the user the ability to write and run quantum

algorithms on their classical machines, without focusing

on emulating natural massive parallelism characteristic

for quantum computers.

In our approach, we decided to design a universal archi-

tecture, providing a standard programming interface (set of

instructions), while emulating physical quantum circuits in

hardware. Our design for FPGA consists of modules respon-

sible for emulation of parts of quantum circuits, such as

quantum state, gates and measurement hardware, while being

easily programmable by code sent from a connected PC (as

shown in Fig. 1). Although in some cases it may not be the

most efficient in terms of FPGA resources or emulator-PC

data transfer time, proposed solution fully reflects mathe-

matical representation of a quantum computer’s behavior, is

capable of running any quantum gates loaded from software

while maintaining a computation’s natural time complexity

and is usable in a way similar to classical CPUs.

While many hardware–software systems for quantum

computing emulation already exist, they are mostly focused

on using software to utilize hardware more efficiently (as in

[10–12,18]). In contrast, our approach decouples hardware

from software, and the latter is only used to provide program-

ming abstraction for the former. Our processor is designed to

run entire quantum algorithms, including state preparation,

evolution and measurement, completely in hardware, while
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software allows the programmer to focus on the algorithm,

rather than the use of machine interfaces.

4 Theoretical background

To emulate quantum algorithms using classical hardware, we

needed to decide which quantum computer phenomena we

need to implement and how to do so. The goal of this sec-

tion is to briefly introduce some of the most important ideas

behind quantum computing, before describing our approach

to reflect them in our solution.

4.1 Quantum versus classical information

The fundamental difference between quantum and classi-

cal computation lies in information representation. Classical

information science uses bits to describe the world, where

each bit represents a single value: 0 or 1. Deterministic infor-

mation processing is, in essence, a manipulation of such

binary values. Probabilistic computation introduces proba-

bilistic bits, which return 0 or 1 with some probabilities p0

and p1, respectively. Classical probabilistic computing can

be viewed as manipulating those probabilities for every out-

put bit. Quantum information is stored in quantum bits, or

qubits, which can make use of some unique phenomena only

encountered in quantum physics. State of a single qubit can

be described by a pair of complex numbers, as quantum state

descriptions belong to some vector space over complex num-

bers with inner product of vectors (usually called Hilbert

space).

4.2 Quantum bits

There are three main phenomena that are unique for quantum

bits:

– Superposition—every qubit can be represented as a mix-

ture of two base states, |0〉 and |1〉, with certain complex

amplitudes. In other words, a qubit can be both 0 and 1

at the same time, but only one of those values will be

returned when the qubit’s value is checked (during an

operation called measurement).

– Entanglement—multiple qubits can be entangled, form-

ing a single coherent quantum state that can only be

interfered with as a whole. Entangled qubits react to

changes together, even if we interfere with just a single

qubit and the whole system is spread across great dis-

tances (this is what Albert Einstein described as ”spooky

action at a distance”).

– Interference—because entangled qubits form a coherent

system, changes made to one of them causes shifts in

amplitudes of all the others.

Utilizing all three of these in quantum information repre-

sentation and processing allows us to achieve extreme, even

exponential, speedups in computation.

4.3 Quantum circuit model

While a Turing machine is probably the most popular model

of computation, another commonly used one is the circuit

model. Information processing can be viewed as a series of

operations performed by a set of gates on a group of par-

allel binary inputs, flowing through some paths (wires). A

widely used model for quantum computing is an analogy to

the latter and is called a quantum circuit (or quantum gate)

model of computation. In this case, we envision algorithms

as series of unitary transformations performed by quantum

gates on some quantum state register, rather than qubits flow-

ing through the gates via some paths (which would hardly

reflect physical possibilities).

It should be noted that one of the requirements in quantum

computing is reversibility of computation (which comes from

laws of quantum mechanics). Because all quantum gates rep-

resent unitary operations, this is naturally fulfilled, so that for

an output of any quantum gate we can determine what the

input was [15].

In mathematical notation, we may represent a quantum

state with a vector of complex values (amplitudes of all pos-

sible states), and quantum gates as unitary matrices of such.

Therefore, computation may be viewed as series of matrix–

vector multiplications.

5 Emulating quantum circuits

According to the Quantum Strong Church–Turing Thesis,

only quantum computers can effectively simulate them-

selves. As every qubit can represent both 0 and 1 at the

same time, n qubits are capable of carrying a state of 2n

numbers. This leads to an easy observation that emulating

quantum systems using classical information representation

requires exponentially more resources than it would on a

quantum computer. Apart from clear memory restrictions

(storing state of a system consisting of a few tens of qubits

quickly becomes impractical, if not impossible), processing

such a state is problematic itself.

Software emulators simply unroll quantum parallel trans-

formations and perform them sequentially, in single steps.

For every possible quantum state (and for n emulated qubits

there are 2n possible states), an amplitude must be com-

puted. Of course, time complexity of such an approach makes

it hardly possible to emulate transformation of as little as

30 qubits (which corresponds to series of multiplications of

square matrices sized 230 by 230 and a complex vector of size

1 by 230). FPGA circuits allow us to parallelize this compu-
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tation, which leads to massive performance improvements.

However, we cannot run away from the Quantum Strong

Church–Turing Thesis, and this speedup comes at a cost of

exponential hardware resources.

Depending on the approach, there are designs parallelizing

the whole process or just parts of it, which results in differ-

ent balances between time and resource requirements. An

often-overlooked part is the implementation of quantum mea-

surement, which in reality also relates to exponential amount

of operations performed simultaneously, as measurement of

a single qubit may affect all other qubits in the state. Many

designs chose to perform it sequentially to save limited hard-

ware resources.

In our solution, every operation of the emulated quantum

computer is represented by a single instruction in the pro-

cessor, fully parallelized and performed in one clock-tick.

The natural parallelism of quantum operations is, therefore,

reflected in our design, at the cost of exponential hardware

resources used. Because of the FPGA’s size limitations, such

a model will never compete with physical quantum comput-

ing systems. However, it might be very useful in analysing

quantum algorithms, as well as understanding the quantum

model of computation in general.

6 Hardware representation of qubits

As mentioned earlier, a single qubit can be represented by a

pair of complex numbers. This corresponds to the fact that

we need to store amplitudes for all possible base states of any

given qubit. In quantum computing, we are usually interested

in two base states—|0〉 and |1〉. Therefore, when emulating n

qubits, we have 2n possible base states of the system, which

requires us to store f 2n complex numbers.

6.1 Synthesizable real numbers

In our solution, we started by designing our own synthe-

sizable definition of complex numbers in VHDL hardware

description language. We decided to build it on top of IEEE

VHDL Fixed-point Package [28]. The choice of fixed, rather

than floating-point arithmetic came from two important fac-

tors:

– Both real and imaginary parts of a quantum state’s ampli-

tude are real numbers in the range [0, 1], so we only

require one bit for the integer part

– A fixed-point arithmetic operations’ hardware implemen-

tation is simple, compared to floating-point, and therefore

much more resource efficient

Table 1 Quantum state representation in VHDL

Using the standard package, we defined real numbers as

fixed-point numbers of parametrized constant size. To pre-

vent additional growth of required hardware resources, we

decided to fix the size of every real number represented in the

system. Every arithmetic operation on one or more real num-

bers represented by n bits returns an n-bit result, rather than

one resized to hold all possible outputs. While this approach

might lead to precision loss, especially during multiplica-

tion, it is the only simple scalable option. Enabling scale

adjustment was one of our main focuses, and resizing results

would lead to gigantic number representations after a series

of multiplications.

Our design is easy to adjust—a single parameter defines

the number of bits used to represent every real number. More-

over, because of a modular approach, the entire system is

based on interfaces. Therefore changing the representation of

real numbers only requires code modifications in one place.

6.2 Complex numbers and quantum state
representation

Complex numbers are defined as VHDL records, containing

real and imaginary parts, both represented by real numbers

of our implementation. All necessary operations, including,

but not limited to, addition, multiplication, division, absolute

value and square-root, were designed and implemented to suit

our needs.

Quantum state is represented by arrays of complex num-

bers of our implementation. Similarly, quantum gates are

defined as two-dimensional arrays of complex numbers of

our implementation. The VHDL code for these types is pre-

sented in Table 1.

Like every part of our design, the size of state and gates is

easily adjusted by modifying a single parameter representing

the number of emulated qubits. All structures will be changed

to specified sizes at compilation time. Quantum state is rep-

resented by arrays of 2n complex numbers, while quantum

gates are stored as arrays of 2n ×2n complex numbers, where

n is the parameter defining the number of emulated qubits.
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6.3 Preparing initial state

Every quantum algorithm begins with an initial quantum state

vector. Our solution enables this in two ways:

– Loading the desired initial state directly from software,

as a vector of complex numbers

– Loading the initial state of all qubits set to |0〉 and then

using quantum gates to prepare the desired state

The latter may sound more feasible in physical quantum

computers, but we wanted to leave the possibility of rep-

resenting quantum algorithms in our hardware like they are

often described in theory - with some assumptions about the

initial state. It should also be noted that in reality preparing

a definite quantum state is really hard. Most of the time we

cannot be entirely sure that measurement of a just-prepared

qubit would return an expected value. We decided to remove

that uncertainty from our system and simplify the initializa-

tion process.

6.4 Transforming states and entanglement

In order to avoid complex addressing while operating on

selected qubits, in our approach every transformation is prop-

erly modified and applied to the entire state. This corresponds

to the fact that leaving a qubit untouched is equivalent to

transforming it with an identity gate. Therefore, for every

transformation on any selected qubit or qubits, we can define

a transformation for the whole state, such that all unaf-

fected qubits are transformed through identity. We utilize

this approach in our solution, and every transformation is

performed as a multiplication of a matrix representing a gate

for all qubits and the entire state vector.

The described method also allows us to easily achieve

entanglement of any qubits in the represented state. Any

entangling transformation will modify the whole state to

reflect entanglement of desired qubits. For example, we can

achieve a pair of entangled qubits within a 3-qubit state by

using 2-qubit Hadamard (H ) and Identity (I ) gates, and a

3-qubit CNOT gate as presented in Eq. (1).

|000〉 · I ⊗ H ⊗ I →
1

√
2
|000〉 +

1
√

2
|010〉

1
√

2
|000〉 +

1
√

2
|010〉 · I ⊗ C N OT →

1
√

2
|000〉 +

1
√

2
|011〉. (1)

In our processor, the same transformation would be repre-

sented by a series of matrix–vector multiplications, as shown

in Eq. (2).

Fig. 2 Transformation data flow
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Transformations (or quantum gates) are applied to the state

through multiplying selected gate’s matrix and the state vec-

tor. The result replaces the input state vector in its register, to

reflect physical operations on a quantum register (as shown

in Fig. 2). The transformation module performs matrix multi-

plication as a single operation, in one clock-tick. Amplitudes

of all possible states are considered and recomputed simul-

taneously, which mimics quantum parallelism.

For the transformation module to be easily scalable, we

wanted a single parameter to change the entire structure. The

hardware is, therefore, defined with nested VHDL parallel

“for” loops (example shown in Table 2).

It is sufficient to change a constant defining the number

of emulated qubits for the whole code to adapt.

6.5 State measurement

An often-overlooked problem in quantum circuits emulation

is measurement complexity. Measuring a single qubit affects

amplitudes of all possible states in a quantum system. In

reality, the entire state is affected instantly, which requires
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Table 2 Quantum state transformation in VHDL

exponential resources to emulate with classical devices (as

we need to process 2n amplitudes for n qubits.)

As states’ amplitudes correspond to probabilities of mea-

suring them, another important factor is random value

generation, allowing to emulate qubit’s behavior during mea-

surement. To reflect nature, we provided a hardware circuit,

which sets measured qubit’s state to either 0 or 1 with regard

to corresponding states’ amplitudes.

Qubit measurement in our design is implemented as

the Von Neumann measurement. The following procedure

describes computational steps preformed by the hardware:

1. Probability of measuring 0 is computed based on the

entire state

2. A pseudo-random real number of our implementation is

generated

3. If the number from step 2. is greater than the probability

from step 1., qubit’s measured value is set to 1. Otherwise,

the qubit’s measured value is set to 0

4. Amplitudes of all impossible states (ones where selected

qubit’s value is different than measured) are set to 0

5. All amplitudes are normalized so that
∑

i (ampli tudei )
2

= 1

Just like transformations, this procedure is designed as a

single operation, performed in one clock-tick. An example

measurement for a 3-qubit system is shown in Fig. 3.

As measuring a single qubit changes values of amplitudes

for the entire system, some information that was stored before

measurement gets destroyed. Amplitudes of all states for

which the value of the measured qubit was different from

actually read are set to 0. Therefore, information stored in

those amplitudes gets erased. This behavior represents real

quantum system measurement, which also involves destruc-

tion of unread states.

Because of the randomized factor, the nature of computa-

tion in our system is probabilistic and separate measurements

of the same quantum state may bring different results. The

desired output may be destroyed during measurement, and

actually read bit-sequence may be useless. Therefore, just

like with an actual quantum machine, to get accurate infor-

mation from quantum algorithm’s result, it may be necessary

Fig. 3 Steps of quantum measurement implementation, 3-qubit exam-

ple

to run it multiple times and compare the returned values

later.

7 Quantum system architecture

Our system is divided into hardware and software parts.

Hardware, specified in VHDL, is designed to serve as a

universal quantum computer, emulating a set of qubits, pro-

viding methods to manipulate the quantum state and exposing

an instruction interface. Software, developed with C#, pro-

vides an abstraction layer, allowing an easy and efficient

interaction with the quantum emulator.

The hardware part is designed to be very easily

parametrized and scalable from code-level. As mentioned

before, changing single parameters in VHDL can modify

all hardware to emulate a desired number of qubits, or be

more or less precise in number representation. Software is

prepared to be aware of that setup, so that scaling hardware

does not require any modifications in software, and any spe-

cial tuning should be done through extension (creating new
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Fig. 4 Quantum processor emulator architecture

gates or result interpretation methods), rather than modifica-

tion.

7.1 Architecture of the quantum processor emulator

In our VHDL CPU design, we decided to specify three sep-

arate blocks: computing core, communication and processor

(as shown in Fig. 4).

The first contains hardware for emulating quantum pro-

cesses, including computing and state measurement. The

second one implements communication modules, allowing

software running on PC to access hardware implemented

on FPGA through a specified port. Last block provides an

instruction interface to former blocks, allowing the program-

mer to interact with hardware in a standard way.

7.1.1 Computing core

The core consists of a state register, a transformation unit,

gate memory and a measurement module. During initializa-

tion, the starting state is set in the state register and gates are

loaded to the gate memory. Once that process is finished, the

core is ready to operate. In a single cycle, a gate is loaded

into the transformation unit, which then uses it to transform

the state register. An instruction counter keeps track of which

gate to use. Once all transformations from the memory have

been applied to the state, the instruction counter sets a flag,

marking that the computation has been finished and the result

is ready to be read from the register.

The measurement module is independent of the transfor-

mation unit, as we decided it should not be obligatory to

read the state once the computation is finished (state may

just as well be omitted or destroyed). In our implementa-

tion, the processor module waits for the ready flag to be set

by the computing core, to then run the measurement. A sin-

gle qubit’s measurement, which modifies amplitudes of the

entire state, is also fully parallelized and takes one clock-tick

to complete.

For reasons mentioned in previous sections, we need to

generate some pseudo-random values to emulate qubit mea-

surement. We used a simple linear-feedback shift register,

which shifts with every clock-tick, rather than on request.

This provides slightly better randomness, as returned values

vary depending on time elapsed from system startup. Thanks

to modular architecture, this can be easily replaced with any

generator adjusted to return real numbers of our implemen-

tation.

7.1.2 Communication

In order to make our hardware usable on a higher level, we

designed it to be used with software running on a connected

PC. The communication module is responsible for receiving

and sending data between hardware and software parts.

To keep our design simple, we implemented communica-

tions on top of simple UART transmitter/receiver elements.

On the lowest level, data are sent byte-by-byte, with little-

endian ordering. Using those procedures, we built abstraction

layers allowing hardware to send and receive real and com-

plex numbers of our implementation, as well as entire

matrices representing gates or input state configurations.

The connection was built using USB on the PC side and

two GPIO with one GND pins (for RX, TX and Zero ref-

erence) on the FPGA board. Because of speed limitations

of serial port communications, in some cases the process of

loading information to the core might take a significant part

of the whole operating time. This was not our concern though,

as we were focused on making the computation behave like

one on a real quantum computer, rather than the entire system

to be used in fast emulations.

7.1.3 Processor

The last hardware module encloses previous modules and

drives all computation. It is designed as a finite state machine,

working in a simple cycle:

1. Receive an instruction from the PC using the communi-

cation module

2. Recognize the instruction and send a proper code, con-

firming execution of a given instruction or informing that

it was invalid

3. Run the desired operation using the computing core (for

ex. load initial state, load gates, compute and measure

results etc.)

4. Send results, if any, back to the PC

5. Send ”operation complete” confirmation back to the PC

At the end of every instruction, a confirmation is sent to the

software part. This allows for unified use of all instructions,

regardless of their returning any results (such as computation

and measurement) or not (like setting initial state). Software

always waits for the final confirmation before taking next

actions.
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Table 3 Processor instructions

Code Instruction Description

0000 OK Used for confirmation of various requests from the processor

0001 RECEIVE GATE Signals the intention to load quantum gate matrices. The processor will expect gate data after receiving

this instruction

Every gate is received as a series of complex numbers, describing matrix values left-right, top-bottom.

As gates should process the entire state (as described in Sect. 6.4), the processor expects a fixed size

of the gate equal to 2n by 2n , where n is the number of emulated qubits

After receiving a single gate, the processor sends it back to the user, and expects a confirmation the

data is correct in order to minimize the risk of a transmission error. Confirmation is expressed with

an instruction OK

0010 GATES FINISHED Signals that no more gates should be expected after this instruction

0011 RECEIVE STATE Signals the intention to load initial quantum state. Just like the gates, it is received as a series of

complex numbers of our implementation, and sent back to verify its correctness

0100 COMPUTE Signals the processor to execute the program stored in its memory. The gates will be applied to the

state one-by-one, in the order in which they were received. The finished computation is signalled to

the user with an OK response

0101 MEASURE Signals the intention to receive the index of the qubit to be measured. The state is then measured,

causing the chosen qubit to take one of the base values, 0 or 1 (which, of course, can affect the entire

state)

0110 SEND RESULTS Signals the processor to send the measured state back to the user. The state will be sent as a sequence

of bits, one for every qubit measured. If MEASURE instruction was not received first,

SEND_RESULTS will measure all qubits in the state before returning the result

0111 SEND SPECS Signals the processor to send back its specifications. This includes number of emulated qubits, number

precision in bits and the gate memory size

1000 RESET Signals the processor to clear the gate memory, reset all qubits and get to idle mode

1111 ERROR Signals the processor that there has been an error in transmission, or an unexpected operation has been

performed. This will result in halting the current operation and returning to idle mode

7.2 Interacting with the processor

From the user’s point of view, hardware can be treated as a

quantum computer exposing a programming interface. There

are nine instructions recognized by the processor, represented

by 4-bit integers. The list of available instructions is listed in

Table 3.

A computation could be, therefore, viewed as sending and

receiving signals to and from the processor. An exemplary

simple algorithm could be executed as follows:

1. Send RESET signal to guarantee that we operate on a

fresh state.

2. Send SEND_SPECS signal to receive information about

available resources. Based on this information we know

how to prepare our gates.

3. Send RECEIVE_GATES signal.

4. Send data describing the gates we want to use. For

example, if we wanted to use a 1-qubit gate for a single-

qubit state, we would have to send 4 complex numbers

corresponding to matrix indices [0, 0], [0, 1], [1, 0]

and [1, 1].

5. Receive the data back from the processor, and verify it

is equal to what we sent. If it is, send OK signal and

continue. Otherwise, send ERROR signal and go back to

step 3.

6. Send GATES_FINISHED signal to the processor.

7. If we want to set a specific initial state, we should send

RECEIVE_STATE signal to the processor, and follow by

sending appropriate data and confirmation.

8. Send COMPUTE signal. Await for OK response from the

processor.

9. Send SEND_RESULTS signal to the processor to mea-

sure the entire state. Receive a string of bits equal in

length to the number of qubits, representing the result of

our computation.

The current implementation provides a communication

module, described in Sect. 7.1.2, which allows for interac-

tion with the processor through sending and receiving 8-bit

integer data packages.

However, it should be noted that it is not obligatory to

use our processor through UART. Thanks to the modular

architecture, we can interact directly with the CPU, using its

4-bit instruction-set and appropriate interfaces for gate and

state data input and output.

Therefore, our architecture is not only easy to interact with

using any computer with UART communication capability,

but also to use directly as a processor in other designs.
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Fig. 5 Relation between the number of emulated qubits and required

ALM count

7.3 Software part

While any software capable of sending integers through

UART can be used to interact with our processor, we have

designed a solution to interact with the core in a seamless

way. Our goal was to allow the programmer to think in terms

of quantum gates and states, rather than processor codes.

During initialization, our software requests information

about emulated qubit count and precision of real num-

bers from the core, using the SEND_SPECS instruction (as

described in Table 3). Based on those constants, the PC

adjusts the information sent to the core.

Gates in our software are designed to scale to differ-

ent qubit counts and number precisions, providing a useful

abstraction that can be used regardless of the constants with

which the core has been synthesized. The programmer can

design desired gates by implementing our interfaces, and

then run their algorithms on our processor directly from

their code. A library of ready methods, including ones for

preparing state, applying gates, measurement and interpret-

ing results, allows for easy, high-level use of the powerful

hardware architecture.

8 Example results

Our hardware performs quantum algorithms with the same

time complexity as a real quantum computer, at the cost of

exponential hardware resources. For that reason, every addi-

tional emulated qubit causes rapid growth of required FPGA

size.

Emulating two qubits with our solution requires 8k adap-

tive logic modules (ALMs) after synthesis with Altera

Quartus II software. However, to emulate three qubits, over

25k ALMs would be necessary. With an Altera Cyclone V

FPGA chip used for testing purposes, we were capped at

18k ALMs and could only implement a 2-qubit variant in

hardware (as shown in Fig. 5).

To test our solution, we decided to implement and run the

Deutsch algorithm, using the entire created system. Software

Fig. 6 Deutsch algorithm’s quantum circuit

part was launched on a PC computer connected through serial

port to an FPGA board, with our code synthesized to emulate

a 2-qubit quantum computer.

The Deutsch algorithm is a procedure proposed by David

Deutsch in 1985 [16]. It is designed to check if some func-

tion f (x) defined on {0, 1} → {0, 1} is constant (always

returns 0 or always returns 1) or balanced (returns 0 for half

of input arguments and 1 for the other half). This computa-

tion is, of course, easy to conduct on classical computers, as it

requires just two evaluations of f (x) (for 0 and 1) to provide

the answer. However, Deutsch quantum algorithm needs to

evaluate the tested function just once, giving a deterministic

answer.

While the speedup may not be too impressive, the algo-

rithm does show the potential of quantum computing and its

parallel power, allowing us to check multiple inputs at once.

In fact, the algorithm was improved by Deutsch and Jozsa in

1992 [17] to answer the same question but for f (x) defined

on {0, 1}n → {0, 1}. In that variant, we observe a superpoly-

nomial speedup, compared to the classical solution, as the

quantum algorithm requires just a single evaluation of f (x)

to produce the answer, compared to θ(2n) evaluations needed

by the classical deterministic algorithm.

Unfortunately, to run the Deutsch-Jozsa algorithm we

would need to emulate at least three qubits, which was not

possible due to our test hardware limitations.

The quantum routine from Deutsch algorithm can be pre-

sented by a quantum circuit shown in Fig. 6.

In the presented circuit, H (Hadamard gate) and D f (Deutsch

algorithm gate) represent quantum gates, which can be

described by the unitary operators shown in Eq. (3).

H |0〉 =
1

√
2
(|0〉 + |1〉)

H |1〉 =
1

√
2
(|0〉 − |1〉)

D f (|x〉|y〉) → |x〉|y ⊕ f (x)〉 (3)

where ⊕ represents exclusive alternative (XOR) operation.

The triangle symbol at the end of the top circuit line in Fig. 6

symbolizes qubit measurement. It can be proven that for the

inputs shown in Fig. 6, the measurement of the control qubit

will always return 0 if f (x) is constant, or 1 if f (x) is bal-

anced.
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In our system, the Deutsch algorithm’s circuit for f (x) =
1 is represented and computed as a multiplication of the gate

matrices and the state vector, as shown in Eq. (4).
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The multiplication results in the state vector are presented in

Eq. (5):

[

−1√
2

1√
2

0 0
]

−1√
2
|00〉 + 1√

2
|01〉.

(5)

Only the states where control qubit (one to be measured)

is set to 0 have non-zero amplitudes. Therefore, we can be

sure that the measurement of the control qubit will always

return 0.

To run the computation described above, in our soft-

ware environment we prepared classes representing neces-

sary transformations (2-qubit Hadamard⊗Idenity gate and

Deutsch algorithm gate) and result interpreters. The code

responsible for sending and receiving data through serial

port is provided out-of-the-box. The procedure of running

an algorithm in our system consists of the following steps:

1. A connection with the hardware core is established.

2. Hadamard⊗Identity and Deutsch gates are instantiated,

and the initial state of 1√
2
|00〉 − 1√

2
|01〉 (like shown in

Fig. 6) is created as a byte array. Both gates and the initial

state are sent to the core.

(a) Every instruction sent to the core is confirmed with

an OK reply code from the hardware.

(b) All data sent to the core are afterwards sent back to

the software part, which then confirms correctness or

flags transmission error and retries the operation.

3. Instructions to perform the computation and send back

the results are sent to the core. Received result is pro-

cessed and saved.

Fig. 7 Test-case quantum system overview for the Deutsch algorithm

with f (x) = 1

Table 4 Results of 20 measurements for the Deutsch algorithm run for

f1(x) = 1 and f2(x) = x

Measurement no. f1(x) = 1 f2(x) = x

1 1(01b) 2(10b)

2 1(01b) 3(11b)

3 1(01b) 2(10b)

4 0(00b) 2(10b)

5 1(01b) 3(11b)

6 0(00b) 2(10b)

7 0(00b) 3(11b)

8 1(01b) 3(11b)

9 1(01b) 2(10b)

10 1(01b) 3(11b)

11 1(01b) 2(10b)

12 0(00b) 3(11b)

13 1(01b) 3(11b)

14 1(01b) 2(10b)

15 1(01b) 3(11b)

16 1(01b) 2(10b)

17 0(00b) 2(10b)

18 1(01b) 2(10b)

19 0(00b) 3(11b)

20 1(01b) 2(10b)

4. Step 3. is repeated 20 times. Results are interpreted and

returned to the user.

Figure 7 shows the overview of the synthesized test-case

system just before the computation (after initialization).

We ran our algorithm for two functions: constant f1(x) =
1 and balanced f2(x) = x . The results returned by our system

are presented in Table 4.
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For Deutsch gate testing function f1(x) = 1, the num-

ber 1 was returned 14 times and 0 was returned six times

(meaning we measured states |01〉 and |00〉 14 and six

times, respectively). The software results interpreter cor-

rectly logged constant function. For Deutsch gate testing

function f2(x) = x , the number 2 was returned 11 times

and 3 was returned nine times (meaning we measured states

|10〉 and |11〉 11 and nine times, respectively). The software

results interpreter correctly logged balanced function.

The results also reveal randomness in the returned values,

based on the pseudo-random number generator used in the

module. This is an important observation, as randomness is

one of the intrinsic traits of quantum computing.

9 Conclusions and future work

We have proposed, designed and implemented an easily

scalable universal quantum computer emulator, focused on

reflecting natural quantum processes in hardware, while

maintaining the time complexity of quantum algorithms and

exposing an instruction-set interface. As an exemplary use-

case result, we have created a hardware–software system

capable of running and correctly interpreting results of the

Deutsch quantum algorithm.

The next steps for our solution include optimizing code,

where possible, so that required hardware size would

decrease by some constant, without affecting the clarity and

scalability of the current design. One of the main areas of

focus will be implementing a more efficient way of computa-

tion for quantum state evolution, perhaps utilizing proposals

described in [26] or [27]. We also want to synthesize the code

on a larger FPGA chip to emulate more qubits and run more

sophisticated algorithms. More hardware resources would

also allow us to change the number implementation from

fixed to floating-point, which would benefit heavy numerical

computations’ accuracy.

To increase efficiency of a particular implementation of

our design, at the cost of making it specific for a chosen

FPGA, it is worth considering using DSPs explicitly to speed-

up the computation.

Finally, supporting mixed states and implementing some

state preparation and measurement imperfections could con-

tribute towards the tool being more useful for real-world

quantum computation emulations.
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