
An FPGA-Based Stream Processor for Embedded Real-Time Vision with

Convolutional Networks

Clément Farabet, Cyril Poulet and Yann LeCun

Courant Institute of Mathematical Sciences, New York University

{cfarabet,yann}@cs.nyu.edu

http://www.cs.nyu.edu/˜yann

Abstract

Many recent visual recognition systems can be seen as

being composed of multiple layers of convolutional filter

banks, interspersed with various types of non-linearities.

This includes Convolutional Networks, HMAX-type archi-

tectures, as well as systems based on dense SIFT features

or Histogram of Gradients. This paper describes a highly-

compact and low power embedded system that can run such

vision systems at very high speed. A custom board built

around a Xilinx Virtex-4 FPGA was built and tested. It mea-

sures 70 × 80 mm, and the complete system—FPGA, cam-

era, memory chips, flash—consumes 15 watts in peak, and

is capable of more than 4 × 109 multiply-accumulate oper-

ations per second in real vision application. This enables

real-time implementations of object detection, object recog-

nition, and vision-based navigation algorithms in small-size

robots, micro-UAVs, and hand-held devices. Real-time face

detection is demonstrated, with speeds of 10 frames per sec-

ond at VGA resolution.

1. Introduction

Vision systems have progressed a lot in the past decade,

but most of the modern algorithms still require an amount

of computation that makes their integration to autonomous

vehicles, cameras or toys impossible. The present work is a

step in the direction of low power, lightweight, and low cost

vision systems that are required for such applications.

We describe an implementation of a complete vi-

sion/recognition system on a single Field-Programmable

Gate Array (FPGA). The design requires no external hard-

ware, other than a memory chip, and has been integrated

onto a small 70 × 80 mm printed circuit board, that con-

sumes less than 15W, camera included. The system is pro-

grammable, and can implement any vision system in which

the bulk of the computation is spent on convolutions with

small-size kernels. The design is specifically geared to-

wards Convolutional Networks [8, 9], but can be used for

many similar architectures based on local filter banks and

classifiers, such as HMAX [15, 11], and HoG methods [4].

Convolutional Networks (ConvNets) are feed-forward

architectures composed of multiple layers of convolutional

filters, interspersed with point-wise non-linear functions [8,

9]. Because they can easily be trained for a wide variety

of tasks (e.g. OCR [9], face/person detection [6, 12], object

recognition [13], and robot navigation [10, 7]), ConvNets

have many potential applications in micro-robots and other

embedded vision systems that require low cost and high-

speed implementations.

Pre-trained ConvNets are algorithmically simple, with

low requirements for arithmetic precision. Hence, sev-

eral hardware implementations have been proposed in the

past. The first one was the ANNA chip, a mixed high-end,

analog-digital processor that could compute 64 simultane-

ous 8 × 8 convolutions at a peak rate of 4.109 multiply-

accumulate operations per second [1, 14]. Subsequently,

Cloutier et al. proposed an FPGA implementation of Conv-

Nets [2], but fitting it into the limited-capacity FPGAs of the

time required the use of extremely low-accuracy arithmetic.

Alternatively, pre-trained ConvNets and other

convolution-based systems can be implemented on

Digital Signal Processors (DSPs), or Graphics Processing

Units (GPUs). DSPs are very simple to program, and often

result in systems that consume less power than FPGAs,

but have lesser capabilities in terms of parallelism. On

the other hand, GPUs provide a very flexible environment

for parallelism, but consume a lot of power. FPGAs have

a clear advantage over these platforms, as they allow

the development of custom logic, targeted for precise

applications. Although they are not necessarily low-power

when compared to equivalent DSPs, they can be seen as a

step towards custom chips (e.g. ASICs) to achieve very low

power.

The system presented in this paper is a programmable

ConvNet Processor (CNP), which can be thought of as a

SIMD (Single Instruction, Multiple Data) processor, with

http://www.cs.nyu.edu/~yann

FPGA

External
Memory
Chip(s)

Streaming
Multiport
Interface

Memory
Interface

Terminal
Interface

Control
Unit (CU)

32bit
General CPU

Pre/Post
Processing

Memory I/O

File
Manager

Serial
Interface

ALU Driver

Vector / Stream ALU

NONLIN

CONV, DOT,
SUB

Arbiter
{ Mux

 Demux }

I/O
Video

Manager
Display

Manager

CameraScreen

Remote system

Hardware

Memory

Software

SQRT

PRODUCTDIVISION

External
Flash

Stream
Router

Figure 1. Architecture of the CNP.

a vector instruction set that matches the elementary oper-

ations of a ConvNet. While these elementary operations

are highly optimized at the hardware level, implementing

a particular ConvNet simply consists in reprogramming the

software layer of our processor, and does not require to re-

configure the logic circuits in the FPGA.

Section 2 describes the architecture for the ConvNet Pro-

cessor (CNP). Section 3 describes a particular application,

based on a standard ConvNet. Finally section 4 gives results

on the performance of the system.

2. Architecture

Figure 1 shows the functional architecture of the system.

This design has been implemented within a single Xilinx

Virtex-4 SX35, coupled to a pair of QDR-SRAM chips, on

a custom board. This FPGA is rather small in terms of

gates—about 34,000 logic cells—but provides 192 built-in

hardware multiply and accumulate units that can operate at

up to 450MHz. The bandwidth from/to the external mem-

ory is 7.2GB/s in this custom design, but only half of it is

currently used. The built-in fixed-point multipliers use 18

bit inputs and accumulate on 48 bits.

2.1. Hardware

The CNP contains a Control Unit (CU), a Paral-

lel/Pipelined Vector Arithmetic and Logic Unit (VALU), an

I/O control unit, and a Memory Interface. The CU is actu-

ally emulated on a full-fledged 32-bit soft CPU, based on

the PowerPC architecture, which is used to sequence the

operations of the VALU. The VALU implements ConvNet-

specific operations including 2D convolutions (CONV),

spatial pooling/subsampling (SUB), point-wise non-linear

functions (NONLIN), and other more general vector oper-

ators, such as square root (SQRT), division (DIV), It

has direct memory access (DMA). The I/O unit comprises

two hardware modules: one to acquire video data from a

standard DVI1 port (camera, or other video source), and the

other to generate a video signal for display on a standard

DVI monitor.

Memory Interface

The Memory Interface is a key part of the system. Its first

purpose is to enable parallelization by allowing multiple si-

multaneous access of the same memory location transpar-

ently. A dedicated hardware arbiter has been designed to

multiplex/demultiplex access to the external memory chip,

by providing 8 ports that can read/write from/to the mem-

ory at the same time. To ensure continuity of data flows,

each port is buffered with FIFOs. The depth of these FIFOs

determine the maximum time slice that can be attributed per

port without interrupting the streams.

The arbiter has a simple heuristic: it cycles through the

ports, and connects a port to the external memory if its re-

quest queue is not empty. Then it estimates its bandwidth

1Digital Visual Interface

based on the quantity of data present in this queue, to al-

locate a certain time slice. As the arbiter constantly cy-

cles through the ports, the amount of requests in a queue

is a fairly good estimate of the bandwidth requirement for a

port. Once a queue is fully processed, or if the time slice is

over (whatever is shortest), it switches to the next port.

The second purpose of the Memory Interface is to pro-

vide an abstract representation of the memory. For that,

it uses a streaming interface that can read/write streams

from/to the memory. A stream is defined by an offset

in memory, strides (to access multi-dimensional data) and

sizes for each dimension. For example, a module connected

to a port of the streaming interface can simply request a 2D

image starting at location X, with dimensions W × H , and

the streaming interface will compute the offsets, generate

all the addresses, start fetching data, and sets a flag when

ready to stream. It will then stream out the data, until the

whole chunk has been read out.

It is then easy to build up a system on top of this Memory

Interface, as each module can request 2D chunks of data,

process them, and simply hand them back. It also allows

easy integration of other systems, such as a camera, or dis-

play, as each of these can simply read/write to a particular

area of the memory. However, there is no hardware check-

ing on the validity of data at some particular location, e.g.

if a port is writing at some location, no other port should

read from this location before the former operation is fully

completed.

Vector/Stream ALU

The second key component is the Vector/Stream ALU. All

the basic operations of a ConvNet have been implemented

at the hardware level, and provided as macro-instructions.

These macro-instructions can be executed in any order.

Their sequencing is managed at the software level by the

soft CPU.

The main hard-wired macro-instructions of this system

are: (1) 2D convolution with accumulation of the result

(CONV), (2) 2D spatial pooling and subsampling (SUB),

using a max or average filter, (3) dot product between val-

ues at identical locations in multiple 2D planes and a vec-

tor (DOT), and (4) point-wise non-linear mapping (NON-

LIN, currently an approximation of the hyperbolic tangent

sigmoid function). These are higher-level instructions than

those of most traditional processors, but provide an opti-

mal framework for running ConvNets. This VALU contains

other instructions (division, square root, product), that are

needed to pre-process images. The entire instruction set is

vectorial, and properly pipelined to compute any of these in-

structions in a linear time to the input size. More precisely,

once the instruction pipeline is filled, one value is computed

per clock cycle. Streams are handled by the streaming in-

terface, therefore instructions process streams of similar el-

ements continuously, until the stream stops.

We will not go into the details of implementation here,

but simply describe the two most important instructions of

the system: the 2D convolution and the sigmoid.

When computing a ConvNet, most of the effort goes

into 2D convolutions. Therefore the efficiency of the sys-

tem relies mainly on the efficiency of the convolution hard-

ware (combined with the efficiency of the streaming inter-

face). Our 2D convolver, shown in Fig. 2, is inspired by

Shoup [16], and includes a post accumulation to allow the

combination of multiple convolutions. It performs the fol-

lowing basic operation in a single clock cycle:

zij = yij +

K−1∑

m=0

K−1∑

n=0

xi+m,j+nwmn, (1)

where xij is a value in the input plane, wmn is a value in a

K × K convolution kernel, yij is a value in a plane to be

combined with the result, and zij is the output plane.

Values from the input plane are put into K on-chip

FIFOs of which the size is the width of the image minus

the width of the kernel. Shifting values in these FIFOs cor-

responds to shifting the convolution window over the in-

put plane. At each clock cycle, values are shifted by one,

and the dot product between the input plane window and

the kernel is computed in parallel. In other words, the con-

volver performs K2 multiply-accumulate operations simul-

taneously (plus the accumulation of the temporary plane Y ,

plus a possible subsampling), at each clock cycle. Conse-

quently, the number of clock cycles for a complete convolu-

tion is equal to the number of values in the output plane,

plus the latency necessary to fill up the FIFOs (roughly

equal to the width of the input plane times the height of the

kernel). All arithmetic operations are performed with 16-bit

fixed-point precision for the kernel coefficient, and 8-bit for

the states. The intermediate accumulated values are stored

on 48 bits in the FIFOs.

The FPGA used for this implementation has 192

multiply-accumulate units, hence the maximum square ker-

nel size is 13×13, or two simultaneous kernels of size 9×9,

corresponding to a theoretical maximum rate of 32×109 op-

erations per second at 200MHz. However, our experiments

use a single 7×7 convolver because our current application

does not require a larger kernel, which corresponds to a the-

oretical maximum of 10 × 109op/s at 200MHz. A 13 × 13
convolver has been successfully synthesized and routed by

itself, but we could only go up to 10 × 10 with the rest of

the design (the 32-bit CPU consumes a lot of logic/area).

As noted previously, the convolution engine is also used

to perform the subsampling and the dot products.

The point-wise non-linearity is implemented as a piece-

wise approximation of the hyperbolic tangent function

W00

0 ∆ ∆

∆ ∆

∆ ∆

������

��������

����������
������������

W01 W02

W10 W11 W12

W20 W21 W22

+ +
x
+

x
+

x
+

x
+

x
+

x
+

x
+ +

�������������

x
∆ ∆ ... ∆

������������

∆ ∆ ... ∆

������������

�����������
�����������������

��������������
��������

������������������
���������

�������

Pooling /
Subsampling

�����������

������

��������

�����������������
����������������

�������������

x

Figure 2. 2D Convolution for K = 3, K = kernel width = kernel height, W = image width.

g(x) = A.tanh(B.x). Since the hard-wired multipliers are

used by the convolver, the implementation was designed to

avoid the use of multiplications, relying exclusively on ad-

ditions and shifts. The function is approximated by a collec-

tion of linear segments for which the binary representation

of the slopes ai has few ones. This allows use to implement

the multiplication using a small number of shifts and adds:

g(x) = aix + bi for x ∈ [li, li+1] (2)

ai =
1

2m
+

1

2n
m, n ∈ [0, 5]. (3)

With this constraint, the sigmoid can be computed with two

shifts and three adds.

The different instructions of the system have concurrent

access to the external memory, through the stream interface,

allowing them to work asynchronously, given that enough

bandwidth is available.

2.2. Software

The soft CPU adds a layer of abstraction to the system:

a program on the soft CPU acts as a micro-program for the

VALU, allowing a high degree of flexibility.

Control Unit

The advantage of using a full-blown CPU instead of a sim-

ple state machine is that standard libraries (in C/C++) can

be easily adapted to run on this platform. In fact, our cur-

rent Control Unit is a complex embedded C++ program

that reproduces most of the feed-forward part of common

machine learning libraries (e.g.Lush, Torch): modular-

ity, high-level representations of networks, de/serialization

of architectures to files, dynamic/hidden memory manage-

ment, . . . The main difference with these libraries is that the

computations are not done by the CPU, but off-loaded to the

VALU that can read/write data from/to the Streaming In-

terface asynchronously. The model is similar to the model

adopted by GPUs, for which a general purpose CPU handles

high-level aspects of the code (what needs to be computed),

while the actual computations are executed by the special

purpose processor. This model is extremely efficient when

the amount of communications between these two entities

is small compared to the actual computations.

Prior to being run on the CNP, a ConvNet must be de-

fined and trained on a conventional machine. Currently

available software implementations of ConvNets are avail-

able in the Lush language (a dialect of Lisp), or as C/C++

libraries, such as Torch and EBLearn. Our system is

built around the ConvNet training environment distributed

as part of the Lush system. We wrote a Lush compiler that

takes the Lush description of a trained ConvNet, and auto-

matically compiles it into a compact representation describ-

ing the content of each layer—type of operation, matrix of

connections, kernels. This representation can then be stored

on a flash drive (e.g. SD Card) connected to the CNP.

The Control Unit running on the soft CPU is then able

to decode this representation and dynamically create a rep-

resentation of the network, with all its layers, tables of con-

nections, and kernels. Once the representation is created

the program computes each state of the system in a feed-

forward way, from an input image to the output states, by

generating the proper sequence of calls to the VALU and

Streaming Interface. Memory management is totally ab-

stracted by this program. As a result, the CNP can run dif-

ferent different recognition tasks at the same time and/or

easily switch from an application to another at run-time.

Pre/Post Processing

Another advantage of using a 32-bit CPU is the ability

of performing less common tasks that are not worth im-

plementing in hardware. To do so, the CPU has to have

full read/write access to the same memory used by the

VALU/Streaming Interface. This is handled by the Memory

I/O driver, which provides high-latency access to the exter-

nal memory. The code can then have access to all the feature

maps and images computed by the VALU, asynchronously

(the CPU uses one of the Streaming Interface ports).

Post processing operations for object detection applica-

tions include blob detection, non-maximum suppression,

computation of centroids of activities, and other functions

such as formatting the results of the computation and plot-

ting positions of objects detected on the DVI output, or con-

verting pixel coordinates into real-world zenith/azimuth an-

gles, and so on. All these operations are easily integrated in

our C++ environment.

Other Tasks

As shown in Fig. 1, other functions run on this processor.

A File Manager is used to store/retrieve network config-

urations from/to an external memory (flash, or SD Card).

These configurations contain network architectures and pre-

trained convolution kernels and other trainable parameters.

A Serial Interface/Terminal Interface, which provide a

means of transferring data from/to an external system (e.g.

a host computer). Once the FPGA is programmed, this is

the easiest way of uploading new network configurations.

The embedded software also controls external peripher-

als, such as the camera (e.g. dynamic exposure adjustment,

resolution), and the video monitor (resolution, color).

3. Application to Face Detection

To demonstrate the system and to test its performance,

a ConvNet face detection system was built and run on the

CNP. Face detection systems based on ConvNets have been

shown to outperform the popular boosted cascades of Haar

wavelets method [17], both in speed and accuracy [6, 12].

3.1. Network Architecture

The ConvNet was built and trained on a conventional

computer using the Lush language, and compiled to the

CNP using the automatic ConvNet compiler mentioned in

the previous section. The architecture of the network is

quite similar to those described in [6, 12]. The training ar-

chitecture of the network is given in table 1. The training

images are greyscale images of size 42 × 42 that have been

high-pass filtered by subtracting a Gaussian-filtered version

of the image from the image itself. The first layer, called

C1, performs 6 convolutions with 7 × 7 kernels on the in-

put image, producing 6 feature maps of size 36 × 36. The

second layer, S2 performs 2×2 spatial pooling and subsam-

pling of each feature map using a box filter (local averaging

without overlap). The third layer, C3, computes high-level

features by performing 7 × 7 convolutions on several S2

feature maps and adding the results. Each of the sixteen

C3 feature maps combines different random subsets of S2

feature maps. Layer S4 performs 2×2 pooling and subsam-

pling similarly to S2. The C5 layer performs 6×6 convolu-

tions, combining random subsets of S4 feature maps into 80

different C5 feature maps. Finally, F6 multiplies all feature

map values at a single location by a 2×80 matrix. Each fea-

ture map in F6 represents a map of activation peaks for each

category (face or background). Layer F7 is a fixed, dummy

layer that simply combines the face and background outputs

into a single score.

Layer Kernels: dims [nb] Maps: dims [nb]

Input image 42 × 42 [1]

C1 (Conv) 7 × 7 [6] 36 × 36 [6]

S2 (Pool) 2 × 2 [6] 18 × 18 [6]

C3 (Conv) 7 × 7 [61] 12 × 12 [16]

S4 (Pool) 2 × 2 [16] 6 × 6 [16]

C5 (Conv) 6 × 6 [305] 1 × 1 [80]

F6 (Dotp) 1 × 1 [160] 1 × 1 [2]
Table 1. Architecture of the face detector ConvNet. Each layer

contains a certain number of feature maps, e.g. C1 contains 6 fea-

ture maps that are each 36x36. Processing the input image through

C1 shrinks the size of these features, because of the convolution

kernel.

3.2. Training and Running the ConvNet

The network was trained on a data set of faces and

non-faces according to the method described in [9]. The

data set contained 45,000 images from various sources, of

which 30,000 were used for training, and 15,000 for test-

ing. Each set contains 50% faces, and 50% random images

(non faces). The face examples include a wide variety of

angles, and slight variations of size and position within the

window to improve the robustness of the detector. With a

fixed detection threshold, the system reaches a roughly 3%

equal error rate on this data set after only 5 training epochs

through the training set. After training, the Lush-to-CNP

compiler normalizes and quantizes the kernel coefficients

to 16-bit fixed point representation for transfer to the CNP.

The weight quantization did not adversely affect the accu-

racy of the system in any significant way.

A key advantage of ConvNets is that they can be applied

to sliding windows on a large image at very low cost by

Convolutions Convolutions Conv. Full connectionsSubs.Subsampling

Input Image

C1: 6@314x234

S2: 6@157x117

C3: 16@151x111
S4: 16@75x55

C5: 80@70x50

F6:
 2@70x50

F7:
 1@70x50

Figure 3. Architecture of LeNet-5, an example of Convolutional Network.

simply computing convolutions at each layer over the entire

image. The output layer is replicated accordingly, produc-

ing a detection score for every 42×42 window on the input,

spaced every 4 pixels. The overall network is depicted in

Fig. 3 for a 320 × 240 input image.

4. Results

The system was connected to a simple greyscale camera,

and the output was displayed on a monitor using the DVI

interface, as shown on Fig. 4. Fig. 7 also shows captures

for an other possible application: object recognition. Fig. 8

shows the complete system, which only requires an external

power source.

��������������
Figure 4. Face detection without (top) and with (bottom) embed-

ded centroid detection. The output maps are shown for three dif-

ferent scales: on the medium scale the three faces are clearly de-

tected. A blob detector is then run on these maps to find the cen-

troids of these activation peaks, and squares are drawn on the input

images. All these steps are performed by the soft CPU, and these

images are actual captures of the DVI signal generated by the sys-

tem.

4.1. Usage

The design uses 90% of the logic in the Virtex4, but only

28% of the multipliers. The multipliers are mainly used

by the 2D convolver, which requires 7 × 7 = 49 hardware

multipliers. 60% of the RAM blocks are used, mostly by

the Memory Interface. The Virtex4 also provides hardware

FIFOs, which are only used at 7% in this design. Table 2

shows the usage of other resources.

The size of the kernel can be easily increased up to a cer-

tain point, as the convolution engine mostly requires FIFOs

and multipliers. When the router starts packing unrelated

logic in the same slices, the process of optimization be-

comes extremely difficult, and it is hard to predict if a design

will actually fit in the device.

Entity Number Usage

I/O Buffers 238 out of 448 53%

Clock Managers 2 out of 8 25%

DSP48s (Mult/Accs) 53 out of 192 27%

FIFO blocks 14 out of 192 7%

RAM Blocks 144 out of 192 75%

Logic Slices 13741 out of 15360 89%

Related 13741 out of 13741 100%

Unrelated 0 out of 13741 0%
Table 2. Device usage for a Virtex-4 SX35.

4.2. Speed

The current design can be run at up to 200MHz. At

this frequency, the peak performance is 9.8 billion con-

nections per second, and approximately 4 billion connec-

tions per second on average, when computing a realistic

network, post-processing included. The difference between

these two values is due to the time spent on pre/post pro-

cessing, stream generations (initiating a stream has a certain

latency), and other operations such as sigmoids.

Fig 6 compares raw performances when only comput-

ing convolutions. From an actual implementation of 2D

convolution on a standard computer (in C, using nested for

loops) to a convolution computed by our CNP, the speed-

up is about 10x for small kernels (≈7x7), and 30x for large

kernels (≈17x17).

More convincing is the speed-up attained when comput-

ing realistic networks, as shown on Fig 6. In that case, our

system is approximately 100 times faster than a standard

software implementation (tested), and 12 times faster than

an ideal version of that code (theoretically computed, based

on the Intel specifications). A realistic software implemen-

tation, optimized for a particular CPU would be somewhere

in between, still giving our system the advantage of a 30x

speed-up.

With these computing resources, processing a full 512×
384 greyscale image—using a standard convolutional net-

work containing 530 million connections (as shown in

Fig. 3)—takes 100ms, or 10 frames per second. This is for a

scale-invariant detection system that pre-computes a multi-

resolution image pyramid as input to the ConvNet (as shown

in Fig. 7). Computing the same ConvNet on a monoscale in-

put reduces this time by a factor of 1.5, or allows full VGA

frames (640 × 480) to be processed at 10fps.

1x1 3x3 5x5 7x7 9x9 11x11 13x13 15x15 17x17
10−1

100

101

102

103

104

������������������������
����������������

������������������������
�����������������
��������������

������������������������������������

����������������������������������

��

��
��
���
��

�����������������
Figure 5. Time required to compute a 2D convolution, on different

platforms. The current CNP uses a 7x7 convolver, whereas the

optimized CNP would use a 14x14 convolver, and an optimized

pre-caching system (as explained in the conclusion).

4.3. Power

An interesting survey was done by Cope [3], to compare

raw performances of GPUs, FPGAs and classical CPUs for

2D convolutions.

His results for the FPGA are similar to ours, approxi-

mately 30 times faster than a Pentium-4 3.0GHz for a 7x7

kernel, which is what we would get if not using our stream-

ing interface. The fastest GPU he used was an nVidia 6800

Ultra, and he achieved a 10x speed-up for the same kernel

size, which is a bit slower than what we get when using our

streaming interface.

It is then fair to compare our CNP to an this GPU-based

system, as they offer similar performances in terms of 2D

convolutions. An even better comparison would be a full

0 100 200 300 400 500 600100

101

102

103

104

105

������������������������
����������������

������������������������
�����������������

���������������������
���������������

��������������������
��������������

���

��
��

���
��

����
���

��
�

���������������������������������
��

Figure 6. Time required to compute a full ConvNet, on different

platforms. The 400 million connection network is the one used for

face recognition.

implementation of ConvNets on a GPU, but the authors are

not aware of any.

The results are in favor of our CNP. While our full

system—camera included—draws 15W in peak computa-

tions, an nVidia 6800 PCI board draws more than 70W in

average. To use a GPU in embedded systems, one also

needs to use a general purpose CPU to interface it, and a

camera

Comparisons with standard CPUs is pointless, as those

have lesser performances. Low-power DSPs are an alterna-

tive, but their performances cannot match those of a GPU

or FPGA when kernel sizes are larger than 3x3.

5. Conclusions, Future Work

This paper presents a self-contained, high performance

implementation of Convolutional Networks on a single

FPGA. The system opens the door to intelligent vision ca-

pabilities for low-cost robots. Given the compactness, small

form factor (see Fig. 8), and low power requirement of

the design (15W in peak, for a complete and autonomous

system), a particularly interesting potential application is

vision-based navigation for micro-UAVs.

While the present system was demonstrated for face de-

tection, ConvNets can be trained to perform a large variety

of tasks, including vision-based obstacle avoidance for mo-

bile robots [10, 7], or object recognition.

Our system can also be implemented in a low-end FPGA

(Xilinx Spartan-3A DSP, as first introduced in [5]) and still

reach decent performances.

The next step of this work will aim at improving the de-

sign to make full use of the FPGA, and to target ASICs

�����

��������������������������

�� ��

Figure 7. Captures of the video signal generated by the CNP, run-

ning an object recognition application. The input is shown first

(top), then a pyramid of 3 scales, pre-processed with a Mexican

Filter (middle), and a few feature maps from the two first convo-

lutional layers (bottom). These images show that the convolutions

and subsampling are applied on all the scale, to minimize the effect

of latency in the system

Figure 8. Our custom platform, embedding the FPGA and two

QDR memory chips. The complete recognition only draws 15W

in peak.

to reduce the power consumption. Our current efforts aim

at: (1) transforming the convolver into a flexible and pro-

grammable grid of elementary units (e.g. multipliers, non-

linear mappings, . . .), to compute several convolutions of

different sizes at the same time, (2) allowing the operations

in the VALU to be cascaded (creating different paths in this

grid) to reduce latencies, (3) pre-caching the kernels in the

grid, and pre-fetching streams of data while processing.

References

[1] B. Boser, E. Sackinger, J. Bromley, Y. LeCun, and

L. Jackel. An analog neural network processor with pro-

grammable topology. IEEE Journal of Solid-State Circuits,

26(12):2017–2025, December 1991. 1

[2] J. Cloutier, E. Cosatto, S. Pigeon, F. Boyer, and P. Y. Simard.

Vip: An fpga-based processor for image processing and neu-

ral networks. In Fifth International Conference on Micro-

electronics for Neural Networks and Fuzzy Systems (Mi-

croNeuro’96), pages 330–336, Lausanne, Switzerland, 1996.

1

[3] B. Cope. Implementation of 2d convolution on fpga, gpu and

cpu. Technical report, Department of Electrical and Elec-

tronic Engineering, Imperial College, London, UK, 2006. 7

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In Proc. of Computer Vision and Pattern

Recognition, 2005. 1

[5] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. Cnp: An

fpga-based processor for convolutional networks. In Inter-

national Conference on Field Programmable Logic and Ap-

plications, Prague, September 2009. IEEE. 7

[6] C. Garcia and M. Delakis. Convolutional face finder: A

neural architecture for fast and robust face detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

26(11):1408–1423, 2004. 1, 5

[7] R. Hadsell, A. Erkan, P. Sermanet, J. Ben, K. Kavukcuoglu,

U. Muller, and Y. LeCun. A multi-range vision strategy for

autonomous offroad navigation. In Proc. Robotics and Ap-

plications (RA’07), 2007. 1, 7

[8] Y. LeCun. Generalization and network design strategies. In

R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, editors,

Connectionism in Perspective, Zurich, Switzerland, 1989.

Elsevier. an extended version was published as a technical

report of the University of Toronto. 1

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, November 1998. 1, 5

[10] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp. Off-

road obstacle avoidance through end-to-end learning. In

Advances in Neural Information Processing Systems (NIPS

2005). MIT Press, 2005. 1, 7

[11] J. Mutch and D. Lowe. Multiclass object recognition with

sparse, localized features. In CVPR, 2006. 1

[12] M. Osadchy, Y. LeCun, and M. Miller. Synergistic face de-

tection and pose estimation with energy-based models. Jour-

nal of Machine Learning Research, 8:1197–1215, May 2007.

1, 5

[13] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsu-

pervised learning of invariant feature hierarchies with ap-

plications to object recognition. In Proc. Computer Vi-

sion and Pattern Recognition Conference (CVPR’07). IEEE

Press, 2007. 1

[14] E. Säckinger, B. Boser, J. Bromley, Y. LeCun, and L. D.

Jackel. Application of the ANNA neural network chip to

high-speed character recognition. IEEE Transaction on Neu-

ral Networks, 3(2):498–505, March 1992. 1

[15] T. Serre, L. Wolf, and T. Poggio. Object recognition with

features inspired by visual cortex. In CVPR, 2005. 1

[16] R. G. Shoup. Parameterized convolution filtering in a field

programmable gate array. In Selected papers from the Oxford

1993 international workshop on field programmable logic

and applications on More FPGAs, pages 274–280, Oxford,

United Kingdom, 1994. Abingdon EE&CS Books. 3

[17] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In CVPR, 2001. 5

