An FPGA Implementation and Performance Evaluation of the Serpent Block
Cipher*

AJ Elbirt!, C Paar?
Electrical and Computer Engineering Department
Worcester Polytechnic Institute
100 Institute Road
Worcester, MA 01609, USA

1 Email: aelbirt@ece.wpi.edu

2 Email: christof@ece.wpi.edu

Abstract

With the expiration of the Data Encryption Standard (DES)
in 1998, the Advanced Encryption Standard (AES) develop-
ment process is well underway. It is hoped that the result
of the AES process will be the specification of a new non-
classified encryption algorithm that will have the global ac-
ceptance achieved by DES as well as the capability of long-
term protection of sensitive information. The technical anal-
ysis used in determining which of the potential AES candi-
dates will be selected as the Advanced Encryption Algorithm
includes efficiency testing of both hardware and software
implementations of candidate algorithms. Reprogrammable
devices such as Field Programmable Gate Arrays (FPGAs)
are highly attractive options for hardware implementations
of encryption algorithms as they provide cryptographic algo-
rithm agility, physical security, and potentially much higher
performance than software solutions. This contribution in-
vestigates the significance of an FPGA implementation of
Serpent, one of the Advanced Encryption Standard candi-
date algorithms. Multiple architecture options of the Ser-
pent algorithm will be explored with a strong focus being
placed on a high speed implementation within an FPGA in
order to support security for current and future high band-
width applications. One of the main findings is that Serpent
can be implemented with encryption rates beyond 4 Gbit/s
on current FPGAs.

Keywords: cryptography, algorithm-agility, FPGA, block ci-
pher, VHDL

*This research was supported in part through NSF CAREER
award #CCR-9733246.

1 Introduction

The Data Encryption Standard has become the most widely
used cryptosystem in the world. Developed by IBM, the
DES algorithm was first published in the Federal Register
of March 17, 1975 and was adopted as an interoperability
standard for non-classified applications on January 15, 1977.
DES has been reviewed every five years since its adoption
and expired in 1998 [1]. The National Institute of Standards
and Technology (NIST) has initiated a process to develop
a Federal Information Processing Standard (FIPS) for the
Advanced Encryption Standard specifying an Advanced En-
cryption Algorithm. It is intended that the AES will specify
a non-classified, publicly disclosed encryption algorithm that
will be as widely accepted as DES in the private and public
sectors [2].

NIST has solicited candidate algorithms for inclusion in
AES, resulting in fifteen official candidate algorithms. This
field was recently narrowed down to five. Unlike DES, which
was designed specifically for hardware implementations, one
of the design criteria for AES candidates is that they can
be efficiently implemented in both hardware and software.
Thus, NIST has announced that both hardware and soft-
ware performance measurements will be included in their ef-
ficiency testing. So far, however, essentially all performance
comparisons have been restricted to software implementa-
tions on various platforms [3].

The advantages of a software implementation include ease
of use, ease of upgrade, portability, and flexibility. However,
a software implementation offers only limited physical secu-
rity, especially with respect to key storage [4]. Conversely,
cryptographic algorithms and their associated keys that are
implemented in hardware are, by nature, more physically
secure as they cannot easily be modified by an outside at-
tacker [5]. However, algorithm agility is required to support
algorithm independent protocols — that is, switching of en-
cryption algorithms as frequent as on a per-session basis.
The majority of modern security protocols, such as SSL or
IPsec, allow multiple encryption algorithms. Reconfigurable
devices such as FPGAs are a highly attractive option for a
hardware implementation as they provide the flexibility of
dynamic system evolution as well as the ability to easily im-
plement a wide range of functions/algorithms. It appears
to be especially relevant to focus on high-throughput imple-
mentations for FPGA-based encryption. We demonstrate
that FPGA solutions can be at least one order of magnitude
faster than the fastest AES algorithm implementation on
a high-end processor which encrypts at approximately 100

Mbit/s [6].

For this study, the AES candidate chosen was the Ser-
pent encryption algorithm. As will be shown in Section 5,
the Serpent algorithm was chosen due to its compact round
structure. This structure readily lends itself to a pipelined
implementation within an FPGA, leading to high-speed im-
plementations. What follows is an investigation of the Ser-
pent algorithm to determine the nature of its underlying
components. The characterization of the algorithm’s com-
ponents will lead to the choice of a target FPGA so as to
yield an implementation that is optimized for high-speed op-
eration within a commercially available device. Finally, mul-
tiple architecture options of the Serpent algorithm within
the targeted FPGA will be discussed and the overall per-
formance of the implementations will be evaluated versus a
typical software implementation.

2 Related Work

As opposed to custom hardware or software implementa-
tions, little work exists in the area of block cipher imple-
mentations within existing FPGAs. DES, the most common
block cipher implementation targeted to FPGAs, has been
shown to operate at speeds of up to 400 Mbit/s [7]. We
believe that this performance can be greatly enhanced us-
ing today’s technologies. As an example, the performance
in [7] may be greatly improved by increasing the number of
pipeline stages and retargetting the design to a more mod-
ern device. However, these speeds are still significantly faster
than the best software implementations of DES [8] [9] [10],
which typically have throughputs below 100 Mbit/s. This
performance differential is an expected result of DES having
been designed in the 1970s with hardware implementations
in mind.

Other block ciphers have been implemented in FPGAs
with varying degrees of success. A typical example is the
IDEA block cipher which has been implemented at speeds
ranging from 2.8 Mbit/s [11] to 528 Mbit/s [12]. Note that
while the 528 Mbit/s throughput was achieved in a fully
pipelined architecture, the implementation required four Xil-
inx XC4000 FPGAs. Additionally, IDEA is a 64-bit block
cipher as opposed to the AES candidates which are 128-
bit block ciphers. By employing bus widths and pipeline
stages that are half the size of the AES candidates, FPGA
implementations of IDEA are able to achieve higher clock
frequencies and therefore higher throughputs as there is less
routing congestion.

Some FPGA implementation throughputs for the AES
candidates have been shown to be far slower than their
software counterparts. Hardware throughputs of about 12
Mbit/s [14] [13] have been achieved for CAST-256. How-
ever, software implementations have resulted in throughputs
of 37.8 Mbit/s for CAST-256 on a 200 MHz PentiumPro PC
[6], a factor of three faster on average than FPGA imple-
mentations. These results were an important indication for
us to investigate other AES candidate algorithms which are
better suited for FPGA realizations.

When examining the AES candidate algorithms, it is im-
portant to note that they do not necessarily exhibit similar
behavior to DES when comparing hardware and software
implementations. While software implementations may be
executed on processors operating at frequencies as high as
800 MHz, typical block cipher implementations that target
FPGAs reach a maximum clock frequency of 50 MHz. More-
over, hardware pipelining becomes non-viable for some block
ciphers. In particular, this is true when the pipeline’s atomic

32
Rounds

Figure 1: Serpent block diagram

operation is the algorithm’s round function. This limitation
is primarily caused by the requirement of some algorithms
such as CAST-256 for large look-up-tables, typically on the
order of 16-32K bits of memory. While many FPGAs are
capable of providing up to 32K bits of memory, these look-
up-tables would have to be replicated based on the number of
rounds in the cipher in order to implement a fully pipelined
design. This cannot be done given the resources available in
current FPGAs. However, it will be shown that the Serpent
algorithm is highly suitable for pipelined FPGA implemen-
tations, resulting in superior performance when compared to
a software implementation.

3 Preliminaries: The Serpent Algorithm

The Serpent algorithm is a 32-round Substitution-
Permutation (SP) network operating on four 32-bit words.
The algorithm encrypts and decrypts 128-bit input data via
a key of 128, 192, or 256 bits in length. The Serpent algo-
rithm consists of three main components [15]:

o [nitial Permutation IP

e Thirty-two rounds consisting of a Round Function that
performs Key Masking, S-Box Substitution, and (in all
but the last round) data mizing via a Linear Transfor-
mation

e Final Permutation FP

A block diagram for the Serpent algorithm is shown in
Figure 1.

Most block ciphers require an inverted key schedule as the
only modification needed to perform decryption. Typically,
these ciphers are based on Feistel networks as opposed to
SP-networks [16] [17]. This results in the Serpent decryp-
tion process requiring inverse operations for the S-Boxes (im-
plemented in reverse order) and the Linear Transformation
in addition to a reverse ordering of the key schedule [15].

Note that the implemented version of the Serpent algorithm
performs encryption but not decryption — this will be dis-
cussed in Section 6. Additionally, key scheduling was not
considered as part of the design and only 256-bit keys were
considered. The assumption was made that key scheduling is
to be performed external to the implementation as it is only
required before the encryption or decryption process begins.
Note also that it is perceivable that the FPGA is initially
configured to generate the subkeys which would be stored
externally. The FPGA would then be reconfigured with the
actual Serpent architectures described in this article.

The Serpent algorithm employs one round function com-
prised of three operations occurring in sequence:

e Bit-wise XOR with the 128-bit Round Key K,

e Substitution via thirty-two copies of one of eight S-
Bozes

e Data mixing via a Linear Transformation

These operations are performed in each of the thirty-two
rounds with the exception of the last round. In the last
round, the Linear Transformation is replaced with a bit-wise
XOR with a final 128-bit key.

One of a total of eight different S-Boxes is used per round,
where each S-Box performs a 4-bit to 4-bit substitution op-
eration. The S-Box used is the round number modulo eight:
round 9 uses S-Box 1, round 18 uses S-Box 2, etc. Each
round requires thirty-two copies of the appropriate S-Box
to operate on the 128-bit input data. The thirty-two 4-bit
S-Box outputs form the 128-bit data that is input to the
Linear Transformation.

The Linear Transformation mixes the four 32-bit blocks
of data, denoted by Xo, X1, X2, and X3, based on the equa-
tions below. Note that <<< denotes a left rotation and <<
denotes a left shift [15].

Input = Xo,X1,X2,X3

Xo = Xo<<<13
X2 = Xa<<<3
X: = X190 Xod X2
Xz = X380 X2 (Xo<<3)
X1 = Xi<«1
X3 = X1 <<<7
Xo = Xo®X1DX3
Xo = Xo® X3P (X1 <<7)
Xo = Xo<<<5
Xo = Xa<<<22

Output Xo, X1, X2, X3

4 FPGA Architectural Requirements

When examining the Serpent algorithm for hardware imple-
mentation within an FPGA, a number of key aspects emerge.
First, it is obvious that the implementation will require a
large amount of I/O pins to fully support the 128-bit data
stream and the thirty-three 128-bit round keys. It is impor-
tant to decouple the 128-bit input and output data streams
to allow for a fully pipelined architecture. Since the round
keys cannot change during the encryption or decryption pro-
cess, they may be loaded via a separate key input bus prior to

the start of encryption or decryption, requiring thirty-three
clock cycles to load they entire key schedule.

The round function of the Serpent algorithm is comprised
of three basic operations — bit-wise XOR, substitution via
S-Boxes, and the linear transformation. Each output bit
of the linear transformation is computed as the parity of a
subset of the input bits [15]. The parity function and the
bit-wise XOR function are of little hardware complexity to
implement and impose no special architectural requirements.
However, note that the S-Boxes required for the Serpent al-
gorithm are extremely small. This allows for an implemen-
tation via asynchronous logic as opposed to using an internal
clocked memory array containing 4-bit to 4-bit S-Box RAM
tables. Asynchronous logic is typically implemented within
FPGAs in the form of look-up-tables. Therefore, it is de-
sireable that the targeted FPGA have 4-bit look-up-tables
to easily configure the S-Boxes as asynchronous logic.

Additionally, to implement a fully pipelined architecture
requires 128-bit wide pipeline stages, resulting in the need
for a register-rich architecture to achieve a fast, synchronous
implementation. Moreover, it is desireable to have as many
register bits as possible per each of the FPGA’s configurable
units to allow for a regular layout of design elements as well
as to minimize the routing required between configurable
units. Finally, note that the Serpent algorithm employs no
arithmetic operations in any part of the cipher. This feature
minimizes the need for fast carry-chaining that is needed
to maximize the performance of other AES candidate algo-
rithms [13] [14].

Based on the aforementioned considerations, the Xilinx
Virtex XCV1000BG560-4 FPGA was chosen as the target
device. The XCV1000 has 128K bits of embedded RAM di-
vided among thirty-two RAM blocks that are separate from
the main body of the FPGA. The 560-pin ball grid array
package provides 512 usable I/O pins and over one million
usable gates. The XCV1000 is comprised of a 64 x 96 array
of look-up-table based Configurable Logic Blocks (CLBs),
each of which acts as a 4-bit element comprised of two 2-bit
slices for a total of 12288 CLB slices. This type of configura-
tion results in a highly flexible architecture that will accom-
modate the round functions’ use of wide operand functions
[18].

5 Implementations of the Serpent Algo-
rithm

When examining the Serpent algorithm, a number of archi-
tecture options were investigated and implemented:

e Iterative Looping

e [terative Looping With Partial Loop Unrolling
e Full Loop Unrolling

e Full (32-Stage) Pipelining

All versions of the Serpent algorithm were implemented
entirely in VHDL using a bottom-up design and test method-
ology. The S-Boxes, Linear Transformation, Initial Permu-
tation, and Final Permutation were implemented and tested
as stand-alone units. These core functions were integrated
to form the nine possible versions of the round function.
Eight versions of the round function, one for each possible
S-Box grouping, are required to implement the first thirty-
one rounds which follow the equation:

Bui = IT(S mon (B & K)

The final version of the round function is required to im-
plement the final round which follows the equation:

B3y = S7(B31 @ Ka1) ® K32

The same hardware interface was used for each of the im-
plementations of the Serpent algorithm. Round keys are
loaded into registers and a go signal is used to initiate the
encryption process. Note that all thirty-three keys must be
loaded for the go signal to be recognized. The go signal is
asserted on the falling edge of the system clock. Simulta-
neously, the first 128-bit block of plaintext is placed on the
input data bus, and future data transitions on the falling
edge of the system clock. When the go signal is asserted,
the system is enabled and the key loading process is dis-
abled. The assertion of the walid signal indicates that a
valid 128-bit block of ciphertext has been placed on the out-
put data bus. If the go signal is de-asserted, the valid signal
is de-asserted after the last valid 128-bit block of ciphertext
has been placed on the output data bus and the key loading
process is re-enabled. Additionally, in the case of the fully
pipelined implementation, the pipeline is flushed.

The VHDL implementations of the Serpent algorithm
were simulated for functional correctness using the test vec-
tors provided in the AES submission package [15]. After ver-
ifying the functionality of the implementations, the VHDL
was synthesized and then placed and routed. The function-
ality of the placed and routed implementations was then re-
simulated with annotated timing using the same test vectors,
verifying that the implementations of the Serpent algorithm
were successful.

5.1 Architecture 1: Iterative Looping

By only implementing a single round of the Serpent al-
gorithm, a looping architecture with thirty-two iterations
would seem to provide the greatest area-optimized solution.
However, a significant drawback to this architecture is that
the Serpent algorithm requires a different set of S-Box group-
ings for each round. This results in the need for additional 8-
to-1 multiplexing hardware to switch between S-Box group-
ings based on the current round. Additionally, 32-to-1 mul-
tiplexing hardware is also required to switch between keys
based on the current round. These multiplexers result in an
increase in both the hardware resources required and the de-
lay for computing the result of the current round. Embedded
RAM may be used to replace the multiplexing hardware. By
storing the keys within the RAM blocks, the appropriate key
may be addressed based on the current round. However, due
to the limited number of RAM blocks, as well as their bit
width, this methodology is not feasible for a fully pipelined
implementation. A pipelined approach requires more RAM
blocks than are typically available. Therefore, the use of
embedded RAM is not considered for this study to maintain
consistency between architectural implementations.

In the iterative looping architecture, a single round is
implemented via multiplexing of unique components. A
single copy of each S-Box grouping as well as the round
keys are multiplexed based on the round in progress
and are followed by a single instantiation of the Linear
Transformation. The output of each round is stored in

a shared register that is used also used as the input to
the following round, requiring a total of thirty-two loop
iterations. The system is controlled via a state machine
that allows for feedback of the ciphertext as required for
Cipertext Feedback (CFB) mode at no throughput cost and
follows the format described in Section 5. A block diagram
for the Iterative Looping Architecture is shown in Figure 2.
Note that PT represents the plain-text and CT represents
the cipher-text.

KEY
REGISTERS

‘ S-Boxes

32 Iterations

|

LINEAR
TRANSFORM

Figure 2: Iterative looping architecture block diagram

5.2 Architecture 2: lterative Looping With Partial
Loop Unrolling

Partial loop unrolling is an effective method for minimizing
the multiplexing hardware required when implementing
an iterative architecture. In the iterative looping with
partial loop unrolling architecture, eight individual rounds
are implemented and chained together with no registers
between the rounds. This unrolling removes the need for
the multiplexing of the S-Box groupings as each round
contains one of the eight possible groupings. The data is
passed through this structure in four iterations. This results
in a decrease in both hardware resources and a the overall
delay in computing the eight round grouping as compared
to the iterative looping architecture. @ While the round
keys must still be multiplexed, the multiplexing is done in
groups of four to form the thirty-two round structure and
resulting in a total of four loop iterations. The output of
each iteration is stored in a shared register that is used also
used as the input to the following iteration. The system is
controlled via a state machine that allows for feedback of
the ciphertext as required for CFB mode at no throughput
cost and follows the format described in Section 5. A
block diagram for the Iterative Looping with Partial Loop
Unrolling Architecture is shown in Figure 3.

5.3 Architecture 3: Full Loop Unrolling

A fully unrolled architecture presents a more area-optimized
solution for the implementation of the Serpent algorithm as
compared to a fully pipelined architecture (to be discussed
in Section 5.4). Surrounding the thirty-two rounds of the
algorithm with two 128-bit registers, a single-stage pipeline
is formed. The advantage of this architecture is the removal

KEY

4 Iterations REGISTERS

Figure 3: Iterative looping with partial loop unrolling archi-
tecture block diagram

of thirty-one 128-bit registers that would be required for a
fully pipelined architecture, resulting in a reduction of the
area required for the implementation. However, implement-
ing the thirty-two rounds of the algorithm in asynchronous
logic severly hampers the overall clock frequency of the sys-
tem.

In the full loop unrolling architecture, all of the el-
ements of all of the round functions are implemented
as asynchronous logic. The input plaintext and output
ciphertext are registered separately, allowing for feedback
of the ciphertext as required for CFB mode with no
associated throughput pentalty. FEach of the thirty-two
rounds is instantiated and chained together to form the
implementation with the appropriate key being assigned to
a given round. The pipeline itself is controlled via a state
machine which follows the format described in Section 5. A
block diagram for the Full Loop Unrolling Architecture is
shown in Figure 4.

KEY
REGISTERS

Figure 4: Full loop unrolling architecture block diagram

5.4 Architecture 4: Full Pipelining

A fully pipelined architecture offers the advantage of ex-
tremely high throughput rates — once the latency of the
pipeline has been met, the system will output a 128-bit block
of ciphertext at each clock cycle. However, an architecture
of this form requires significantly more hardware resources
as compared to the other potential architectures. In a fully
pipelined architecture, each round is implemented an indi-
vidual element separated by 128-bit registers that form the
actual pipeline.

In the fully pipelined architecture, all of the elements of a
given round function are implemented as asynchronous logic.
Some of the other AES candidates cannot be implemented
using a pipelined architecture due to the large size of the
S-Boxes. However, due to the small size of the Serpent S-
Boxes (4-bit look-up-tables), the cost of S-Box replication is
minimal in terms of the required hardware. It is important
to note that due to the small amount of resources required to
implement the round structure, the Serpent algorithm read-
ily lends itself to a pipelined architecture within the targeted
FPGA. However, the pipelined architecture can be fully ex-
ploited only in modes of operations which do not require
feedback of the encrypted data, such as Electronic Code-
Book (ECB) or counter mode. When operating in CFB
mode, the resultant ciphertext must be XORed with the next
block of incoming plaintext before encryption occurs, greatly
reducing the speed-up gained via the use of a pipelined ar-
chitecture (see Section 5 for further discussion of ECB vs.
CFB mode).

The Serpent algorithm is implemented by instantiating
components for each round based on the associated S-Box
grouping. The output of each round is registered, becoming
the input to the following round. The pipeline itself is
controlled via a state machine which follows the hardware
interface format described in Section 5. A block diagram
for the Full Pipeline Architecture is shown in Figure 5.

KEY
REGISTERS

Figure 5: Full pipeline architecture block diagram

6 Performance Evaluation

A number of parameters must be considered when evaluat-
ing the performance of the Serpent implementations. These
parameters may be divided into two main classes — resource
utilization characteristics and timing characteristics. Table
1 details the resource utilization characteristics for each of
the Serpent implementations.

Architecture | CLB Slices | Utilization
1 5511 44.85 %
2 7964 64.81 %
3 8103 65.94 %
4 9004 73.27 %
Table 1: Resource utilization characteristics on the

XCV1000

From Table 1 it is evident that the Serpent implemen-
tation is quite large, ranging from 45% to 73% utilization
of the XCV1000 FPGA, allowing for a moderate amount of
future expansion. Additionally, we see that the Serpent im-
plementations may be targeted to a smaller FPGA such as
the XCV800 [19]. However, a decrease in the size of the
FPGA may result in increased routing congestion which in
turn may lead to a decrease in performance via a decrease
in the maximum operating frequency of the implementations
and is therefore not recommended. Also note that it would
be impossible to implement a second copy of the Serpent
algorithm to perform decryption within the same chip for
Architectures 2, 3, and 4. Decryption requires inverse S-
Boxes and an inverse Linear Transformation. Because the
S-Boxes and the Linear Transformation form the bulk of the
round function, it is fair to estimate the decryption imple-
mentation as requiring more space within the FPGA than
the amount available for Architectures 2, 3, and 4. However,
an interesting alternative which explores the specific capa-
bilities of FPGAs is to reconfigure the target device with a
decryption architecture on-the-fly.

Table 2 details the timing characteristics for the Serpent
algorithm for both the hardware implementations and a typ-
ical software implementation. The software implementation
of the Serpent algorithm was coded in C and executed on a
200 MHz PentiumPro PC [6].

Architecture | Cycles/ | Frequency | Throughput
Enc
Block

1 32 15.48 MHz 61.92 Mbit /s

2 4 13.88 MHz | 444.16 Mbit/s

3 1 2.44 MHz 312.32 Mbit/s

4 - ECB Mode 1 37.97 MHz 4.86 Gbit/s
Software [6] 952 200.00 MHz | 26.90 Mbit/s

Table 2: Timing characteristics on the XCV1000

From Table 2 it is evident that the hardware implemen-
tations outperform the software implementation in terms of
efficiency by a factor ranging from 30 to 952 when com-
paring the number of clock cycles required to encrypt one
128-bit block of data. Additionally, the hardware implemen-
tations outperform the software implementation in terms of
encryption throughput by a factor ranging from 2 to 180.
Especially impressive is the throughput of Architecture 4.

The throughput of 4.86 Gbit/s is within a factor 2 of the
fastest reported DES implementation on an ASIC fabricated
with static 0.6 micron CMOS technology [20]. The achieved
throughputs for Architectures 2, 3, and 4 seem sufficient for
current and next generation network applications.

Overall, the hardware implementations outperform the
software implementation in every aspect of the timing char-
acteristic measurements. This superior performance is
mainly attributable to the parallelism exploited by the hard-
ware implementations. Examples of exploited parallelism in-
clude the simultaneous computation of thirty-two copies of
a given round function’s S-Box as well as the ability to com-
pute an entire round function in one clock cycle. While the
software implementation operates at a significantly higher
clock frequency, this gain is greatly outweighed by the in-
creased number of clock cycles required to perform a round
function. By minimizing the number of clock cycles per en-
cryption, the hardware implementations achieve greater effi-
ciency than their software counterpart. Moreover, additional
parallelism may be exploited through the use of hardware
pipelining, allowing for the encryption of one 128-bit block
of data per clock cycle once the pipeline latency has been
met. Through the use of these methods, the hardware im-
plementations achieve far superior throughput results when
compared to a software implementation.

It is of interest to note that when comparing Architec-
tures 2 and 3, we see that partial loop unrolling outperforms
full loop unrolling in both area and speed, leading to the
conclusion that Architecture 3 is not worthwhile. Addition-
ally, it is important to note that we see an increase in area
by a factor of only 1.6 when comparing the iterative looping
and fully pipelined architectures (1 and 4). While the round
structure is decreased by a factor of 32, this decrease in size
is proportional to the overhead incurred when storing the
thirty-three 128-bit keys for each implementation. Because
of this large amount of overhead, the decrease in the num-
ber of rounds has a much more limited affect on the overall
decrease in area when comparing Architectures 1 and 4.

Although our fully pipelined design can support modes
of operation such as the ECB or counter mode, it cannot
be used for a straightforward CFB mode application. The
cipher feedback (CFB) mode requires an XOR operation of
the previous ciphertext with the current plaintext before the
latter can be encrypted. One solution in this situation is to
apply an interleaved CFB mode, with blocks 1, 33, 65, ...,
and 2, 34, 66, ..., etc. forming chained blocks.

Another less efficient alternative is to encrypt one block
and wait thirty-two clock cycles until the next block of plain-
text is fed into the cipher and XOR-ed with the previous
output. Although the encryption rate achieved by this im-
plementation is a factor of 32 smaller than the 4.86 Gbit/s
achieved by the pipelined implementation, it is still 151.88
Mbit/s. This throughput is still sufficient for ATM OC-
3 payload encryption, which requires a data throughput of
140.85 Mbit /s, as only 48 of the 53 bytes in each cell require
encryption.

Finally, when comparing the hardware implementations
of the Serpent algorithm, it is of interest to examine the
area vs. throughput trade-off. In an effort to create a viable
measurement metric for comparison purposes, we examine
the throughput per CLB slices achieved for each implemen-
tation, the results of which are shown in Table 3. Note that
this metric behaves inversely to the classical time-area (TA)
product.

From Table 3 it is evident that Architecture 4 operating in
ECB mode is by far the most efficient one. When operating

Architecture | Throughput/ Relative
CLB Slice Throughput/
x 10° CLB Slice
1 11.24 1.00
2 55.77 4.96
3 38.54 3.43
4 - ECB Mode 539.76 48.02

Table 3: Area vs. throughput on the XCV1000

in CFB mode, Architecture 2 exhibits the most favorable
performance results. This is a result of the minimization
of the hardware multiplexing and the low number of itera-
tions. While Architecture 3 requires no iterations and has
no pipeline latency, its low operating frequency results in a
lesser performance as compared to Architecture 2. Architec-
ture 1 displays even worse performance due to its multiple
loop iterations and large amount of hardware multiplexing
for both the keys and the S-Box groupings.

7 Conclusions

The importance of the Advanced Encryption Standard and
the significance of a hardware implementation of the Ser-
pent algorithm, an AES candidate, has been examined and
the nature of the algorithm’s underlying elements has been
investigated. This investigation led to the architectural re-
quirements for a target FPGA that optimized the perfor-
mance of the Serpent implementation. Multiple architecture
options of the Serpent algorithm were discussed, elaborat-
ing on key design choices that impacted the performance
of the system. The performance of four Serpent hardware
architectures were evaluated against the performance of a
typical software implementation. From this evaluation the
conclusion was reached that the nature of the Serpent al-
gorithm coupled with the register-rich architecture of the
chosen Xilinx XCV1000 FPGA result in a fast, synchronous,
pipelined implementation which operates at encryption rates
well beyond 4 Gbit/s. This data rate is sufficient for next-
generation networks. When operating in CFB mode, it has
been shown that an iterative looping implementation with
partial loop unrolling results in the best performance when
evaluating the area vs. speed trade-off. All of the hardware
implementations of the Serpent algorithm resulted in a re-
duction in the number of clock cycles required to perform
encryption of a 128-bit block of plaintext by a factor of at
least 30 and an overall increase in throughput by a factor of
over at least 2 and as much as 180 when compared to the
software implementation. Should even greater performance
be required, the hardware implementations may be further
optimized through the use of hardware floorplanning.

References

[1] D. Stinson, Cryptography, Theory and Practice. Boca
Raton, FL: CRC Press, 1995.

[2] National Institute of Standards and Technology
(NIST), First Advanced Encryption Standard (AES)
Conference, (Ventura, CA), 1998.

[3] National Institute of Standards and Technology
(NIST), Second Advanced Encryption Standard (AES)
Conference, (Rome, Italy), March 1999.

[4] B. Schneier, Applied Cryptography. John Wiley & Sons
Inc., 2nd ed., 1995.

[5] R. Doud, “Hardware Crypto Solutions Boost VPN,”
Electronic Engineering Times, pp. 57-64, April 1999.

[6] B. Gladman, “Implementation Experience with AES
Candidate Algorithms,” in Proceedings: Second AES
Candidate Conference (AES2), (Rome, Italy), March
1999.

[7] J. Kaps and C. Paar, “Fast DES Implementations for
FPGAs and its Application to a Universal Key-Search
Machine,” in 5th Annual Workshop on Selected Areas
in Cryptography (SAC ’98) (S. Tavares and H. Meijer,
eds.), vol. LNCS 1556, (Queen’s University, Kingston,
Ontario, Canada), Springer-Verlag, August 1998.

[8] E. Biham, “A Fast New DES Implementation in Soft-
ware,” Technical Report, Computer Science Depart-
ment, Technion - Israel Institute of Technology, Haifa,
Israel, 1997.

[9] A.Pfitzmann and R. Assman, “More Efficient Software
Implementations of (Generalized) DES,” Computers &
Security, vol. 12, no. 5, pp. 477-500, 1993.

[10] J. Hughes, “Implementation of NBS/DES Encryption
Algorithm in Software,” in Collogquium on Techniques
and Implications of Digital Privacy and Authentication
Systems, 1981.

[11] D. Runje and M. Kovac, “Universal Strong Encryption
FPGA Core Implementation,” in Proceedings of De-
sign, Automation, and Test in FEurope, (Paris, France),
pp- 923-924, February 1998.

[12] O. Mencer, M. Morf, and M. Flynn, “Hardware Soft-
ware Tri-Design of Encryption for Mobile Communica-
tion Units,” in Proceedings of International Conference

on Acoustics, Speech, and Signal Processing, (Seattle,
WA), May 1998.

[13] M. Riaz and H. Heys, “The FPGA Implementation
of RC6 and CAST-256 Encryption Algorithms,” in
Proceedings of IEEE Canadian Conference on FElectri-
cal and Computer Engineering CCECE’99, (Edmonton,
Alberta, Canada), May 1999.

[14] A. Elbirt, “An FPGA Implementation and Performance
Evaluation of the CAST-256 Block Cipher,” Techni-
cal Report, Cryptography and Information Security
Group, Electrical and Computer Engineering Depart-
ment, Worcester Polytechnic Institute, Worcester, MA,
May 1999.

[15] R. Anderson, E. Biham, and L. Knudsen, “Serpent:
A Proposal for the Advanced Encryption Standard,”
in First Advanced Encryption Standard (AES) Confer-
ence, (Ventura, CA), 1998.

[16] H. Feistel, “Cryptography and Computer Privacy,” Sci-
entific American, no. 228, pp. 15-23, 1973.

[17] B. Schneier and J. Kelsey, “Unbalanced Feistel Net-
works and Block Cipher Design,” in International
Workshop on Fast Software Encryption (D. Gollmann,
ed.), vol. LNCS 1039, (Cambridge, UK), Springer-
Verlag, 1996.

(18]

(19]

20]

A. Elbirt and C. Paar, “Towards an FPGA Architecture
Optimized for Public-Key Algorithms,” in The SPIE’s
Symposium on Voice, Video, and Data Communica-
tions, (Boston, MA), September 19-22 1999.

Xilinx Inc., Virtex 2.5V Field Programmable Gate Ar-
rays, 1998.

D. Wilcox, L. Pierson, P. Robertson, E. Witzke, and
K. Gass, “A DES ASIC Suitable for Network Encryp-
tion at 10 Gbps and Beyond,” in Workshop on Crypto-
graphic Hardware and Embedded Systems - CHES 99
(C. Kog and C. Paar, eds.), vol. LNCS 1717, (Worces-
ter, MA), Springer-Verlag, 1999.

