2011 8th International Symposium on Wireless Communication Systems, Aachen

An FPGA Implementation Architecture for

Decoding of

Polar Codes

Alptekin Pamuk

Department of Electrical-Electronics Engineering
Bilkent University
Ankara, TR-06800, Turkey
apamuk @bilkent.edu.tr

Abstract P olar codes are a class of codes versatile enough
to achieve the Shannon bound in a large array of source and
channel coding problems. For that reason it is important to
have ef cient implementation architectures for polar codes in
hardware. Motivated by this fact we propose a belief propagation
(BP) decoder architecture for an increasingly popular hardware
platform; Field Programmable Gate Array (FPGA). The pro-
posed architecture supports any code rate and is quite exible in
terms of hardware complexity and throughput. The architecture
can also be extended to support multiple block lengths without
increasing the hardware complexity a lot. Moreover various
schedulers can be adapted into the proposed architecture so that
list decoding techniques can be used with a single block. Finally
the proposed architecture is compared with a convolutional turbo
code (CTC) decoder for WiMAX taken from a Xilinx Product
Speci cation and seen that polar codes are superior to CTC codes
both in hardware complexity and throughput.

Index Terms P olar codes, belief propagation decoding, bp
decoder, hardware implementation, FPGA.

I. INTRODUCTION

Polar coding is a type of error-correction coding method
that has been introduced recently in [1]. The main motivation
for the introduction of polar coding was theoretical, namely,
to give an explicit code construction that is provably capacity-
achieving and implementable with low-complexity. Other code
families that are practically implementable and known to
have capacity-achieving performance, most notably, turbo and
LDPC codes, still lack exact mathematical proofs that they
do indeed achieve capacity except for some special cases. In
contrast polar codes yield to precise mathematical analysis.
Polar coding has also proven to be a versatile coding method
capable of achieving the information-theoretic limits in a
wide range of source and channel coding problems; for a
representative list of such work, we cite [2], [3], [4], [5], [6],
[7].

Although polar codes were initially introduced as a theoret-
ical device, it was recognized from the start that they might
be useful for practical purposes, too. In terms of the code
block-length N, the encoding and decoding complexities of
polar coding are approximately N log, N [1]; and, for any
rate below channel capacity, the probability of frame error for
polar codes goes to zero roughly as (’)(2‘”) [81, [9], [107],
[11]. It is noteworthy that the error probability for polar codes
does not suffer from an error- oor effect.

978-1-61284-402-2/11/$26.00 ©2011 IEEE 437

Experimental studies on polar coding for source and channel
coding have been reported in [12], [2], [13], [14]. For channel
coding applications, polar codes have not yet been shown to
perform nearly as good as the current state-of-the-art codes.
Improving the performance of polar codes by techniques such
as list-decoding or as part of an ARQ (automatic repeat
request) scheme are current research areas. For source coding
and rate-distortion coding problems, polar codes have been
shown to be competitive with the state-of-the-art methods [2],
[3].

Whether polar coding will eventually have a practical im-
pact is an open question at this time; the answer may depend
on a better understanding of the complexity vs. performance
offered by polar codes. Polar codes have a recursive structure
that makes low-complexity implementations possible. An ini-
tial discussion of implementation options for polar codes were
given in [1]. This work was continued in [15] which discussed
a more speci c hardware implementation option suitable for
pipelining. The present paper extends the ideas in [15] and
presents actual hardware implementations on specic FPGA
platforms. Other work on this subject includes [16] which
discusses VLSI implementation options for polar codes.

In this paper, we focus on the implementation of a BP
decoder for polar codes. We omit discussion of encoder
implementations due to space limitations. We also omit the
discussion of how to implement a successive cancellation (SC)
decoder. These will be the subject of an extended version of
this work. The main contribution of the paper is to give an
actual hardware implementation of polar codes and provide
complexity gures derived from them. We also give a brief
comparison of polar codes with CTC used in the 802.16e
standard, which indicate clearly an advantage for polar codes.
These results show that a more comprehensive comparison of
polar codes with CTC and other state-of-the-art codes in terms
of complexity and performance is warranted.

The rest of the paper is organized as follows. Section II
describes brie y polar encoding and decoding algorithms. Sec-
tion III-C presents the FPGA implementation architecture for
a BP decoder for polar codes. Section IV presents comparisons
between polar coding and CTC codes. The paper concludes
with some remarks in Section V.

Notation: The codes considered are over the binary eld

Fy. All vectors and matrices and operations on them are
over [F5 unless otherwise indicated. We use boldface upper-
case(lowercase) are used to denote matrices(vectors). I,, stands
for n x n identity matrix for any n > 1. For any two matrices
A and B, A®B denotes their Kronecker product, A®"™ denotes
the nth Kronecker power of A.

II. POLAR CODES
Polar coding a linear block coding method where the code
block-length N can be any power of two and the code rate
can be adjusted to any number K /N with 0 < K < N. For a
given n > 1, a polar code with block-length N = 2" and rate
K/N is obtained by the linear mapping

x=uGy, Gy =F®", F—[l 0})

11
where u and x are row vectors of length NV and Gy is an N-
by-N matrix, all over F5. We regard u as the data vector and x
as the codeword that gets sent over a binary-input channel. For
a rate K/N polar code, N — K of the coordinates of u need
to be frozen and the remaining K are to be left free (to take
on any one of the 2% possible values). Thus, a polar code
of rate K/N is specied by specifying a K-element subset
A C{1,..., N} which designates the free coordinates. Given

such a subset .4, the subvector u 4 = (u; : i € A) carries the
user data that is free to change in each round of transmission,
while the complementary subvector u 4e = (u; + i € A°),
where A° denotes complement of A in {1,..., N}, stays x ed
throughout the session and is known to the decoder. In [1]
a method is described for determining the set A for a given
channel. For the purposes of this paper, the way A is computed
is not important. The implementations described take A as a
given parameter.

Decoders for polar codes can be implemented by using
factor graph representations of the equation (1) as described
in [1], [12]. There exist many factor graph representations that
are simple permutations of each other. Some representations
that are especially suitable for reuse of hardware modules in
a pipelined architecture were described in [15]. To be more
precise, we seek representations of the generator matrix in the
form G = M"™ which allows reuse of the module represented
by M. We have found six such choices for M, namely,

M1 = S(IN/2 ® F)7 M2 = (IN/Q Y F)57
M; = S(F ® Iy)s), M, = (Iyj2 @ F)ST,
My = ST(Iy @ F), Mg — (FoLyp)s”.

In these equations S and S” correspond to the shufe and
reverse-shuf e permutation operations as described in [15]. In
the remainder of the paper we consider implementations based
on M = M;.

We will describe the factor graph representations of Gy =
M7 with reference to the small example shown in Fig. 1 for
n = 3. The factor contains N(n + 1) nodes with each node
labeled with a pair of integers (i,7), 1 <i<mn,1<j < N/2.
The rst element of (7, j) designates the layer and the second

438

Fig. 1.

Uniform factor graph representation for Gsg.

element the index of the node within that level. The nodes at
layer 1 are associated with the source vector u, the nodes at
layer (n+1) are associated with the codeword x. Nodes in the
factor graph appear in groups of four, as forming the ports of
2-by-2 basic computational blocks (BCB) as shown in Fig. 2.

%)) R; ; Rit1,2j—1 (i+1,2j-1)
o —= Oy | amet TR
L; ; \I/ Lit1,25-1
(i,5+ N/2) Rijiny2 Rit1,25 (i +1,25)
[— _ — ®
L; jiny2 Lit1,2;

Fig. 2. Basic Computational block of BP decoder. The node labels are
assigned according to the uniform factor graph representation which is
depicted in Fig. 1.

The decoders we consider are message-passing decoders
where we assign BCBs the task of computing the messages
and the nodes simply relay the messages between neighboring
BCBs. A message that crosses a node (i,7) from right to
left (left to right) is designated by L;; (R; ;) as depicted
in Fig. 2. The messages represent the log-likelihood ratios
(LLRs) and are computed as (see [1] and [15] for details)
using the formulas

= 9(Li+1,25-1, Liv1,25 + Ri jiny2)
Lijiny2 = 9(Rij, Livi25-1) + Liy1,2; 2
Riv12j-1=9g(Rij, Lit125 + Rijyny2)
Riy125 = 9(Rij, Liz12j-1) + Ri jyn)2

where g(z,y) = In((1 + zy)/(z + y)). We approximated
this function by g¢(z,y) sign(z) sign(y) min(|z|, |y|) in
implementations. The messages R;;, 1 < j < N, that

~
~

emanate from the source are x ed throughout as
0 ifjed

if je Aand u; =0

if j€ A°and u; =1

Rlyj = o0

—00

The messages L, 11, 1 < j < N, that originate from the
channel block are given by

P(yjlz; = 0)
P(yjlz; =1)

where P(y;|z;) denotes the probability that the channel output
y; is received when codeword element x; is sent.

Ln+1,j =In

III. FPGA IMPLEMENTATION

L;,; Memory R; ; Memory
Address Port 1 Address Address Port 1
Address Port 2 Generator Address Port 2
R/W Port 1 R/W R/W Port 1
R/W Port 2 Controller R/W Port 2
Data Port | |<€>>| Permutation |<=€>>| Data Port 1
Data Port 2 |[<<>> Block <«>>| Data Port 2

Processing Processing
Unit 1 Unit P

Fig. 3. A top level block diagram of the proposed BP decoder architecture.

The main blocks of the proposed decoder architecture are
shown in Fig. 3. Introductory information about the blocks
will be given rst.

o Processing Units (PU) are the functional blocks of the
decoder that implement the mathematical expressions
given in (2). The number of PU’s are denoted by P
which is assumed to be a power of 2 throughout the paper.
One can make a compromise between the complexity and
throughput by playing with P. The PU’s are pipelined
blocks and their latency in clock cycles (CC) is denoted
by D.

o There are two independent and dual-port memory blocks
each of which stores the left or right propagating mes-
sages at all layers.

o Address Generator (AG) controls the scheduling of the
decoder.

e R/W Controller (RWC) controls the data o w between
the memories and the BCB’s, because in each memory
access either a read or a write operation is performed.

o Permutation Block (PB) adapts the order of messages in
the memory cells to the PU’s inputs and outputs.

439

A. Decoder Parallelization by Message Grouping

Considering the factor graph representation in Fig. 1 there
are (n + 1)N left propagating (LP) and (n + 1)N right
propagating (RP) messages in the decoder. If there is only one
PU, then one iteration will require at least nN CC’s which
is not practical. Therefore we propose a method such that
more than one PU’s can work in parallel without any memory
con icts.

First divide N LP (RP) messages at a layer into N/P sets
each of which consists of P LP (RP) messages. Let LK)
(RU-%)) denote the set for LP (RP) messages where ¢ is the
layer index and k is the set index within that layer (1 < k <
N/P). Also let the elements of £(**) and R(*) to be

E(l,k) = {Li,(kfl)P%*j | 1< < P} 3)
ROK) ={R; _1ypyj | L<j < P}

With this background it can be easily seen that the elements
of the sets R(i,k)’ R(i,k+N/(2P)), [’(i+1,2k71) and L(i+1,2k)
form the inputs of a group of P BCB’s. Likewise the elements
of the sets £(i,k), ﬁ(i,k+N/(2P))’ R(i+1’2k71) and R(iJrl,QIc)
form the outputs of the same group. As a result if a memory
cell contains a set, then P PU’s can work in parallel without
any memory con icts.

Note that this method does not put any restriction on the
storage addresses of the sets. We suggest to store the set
LEF)REF) at the memory address (i — 1)N/P + (k — 1)
because this provides simpli cation in the hardware.

B. Decoding Process

We showed a sample decoding process in Fig. 4 to form a
basis for the general decoding procedure. The column labels
R and W indicate whether the messages in that column are
read from the memory or written to the memory. The row
label PU-1(PU-2) indicates that the messages in this row are
related with the rst PU(second PU). The outputs appear four
CC’s after their corresponding inputs because D is assumed
to be 4 in this example. At the 11** and 12!* CC’s there
are no R/W operations, because there is no message left to
be processed for that iteration. However these idle CC’s will
be lled if the decoding continues with the next iteration. It
is worth to note here that we obtained good performance by
processing the trellis from right to left in the odd iterations
(as in Fig. 4) and from left to right in the even iterations.

In general 4sets/CC are read from the memories until the
rst outputs are ready at the PU’s. This is called the memory
read cycle and continues D CC’s. When the rst outputs are
ready, memory write cycle begins. In this cycle 4sets/CC are
written to memories and this cycle is completed again in D
CC’s. As a result 4P D messages are computed in 2D CC'’s.
There are a total of 2Nn messages to be computed for each
iteration. Hence one iteration is completed in Nn/P CC’s.

Memory read and memory write cycles are controlled by
RWC whose time utilization is drawn in Fig. 5.

CCl| 1 2 3 4 5 6 7 8 9 |10 |11 |12 |13 |14
R/WI|| R | R R R|W|W|W| W|R]|R LWAR
R |R33|Ro1 |Ros|Ls |Lss| Loy |Los |Ri|Bas Ly |L1s

PU-1 Rs5|R37|Ros |Royr|Lss |Lsr|Los |La7 |Ris | Bar Lys (L7
Laj |Las |Lsa |Lss [Rajn |Ras|Rs1 |Ras | Lo | Lo Ry |Ros

Ly |Lag|Ls2 |Lse |[Ra2|Rae|Rs2|Rae|L22|L2e Ry 2|Ro
R32|R34|Ro2|Roa|Laa|Laa|Loo|Lay|Ri2|Ria Lia|L1g

PU2 R36|Ras|R26|R2s|Lse |Las|Las|Las|Rie|R1s Lie|L1s
| Laa|Lay7|L3s|Lay7 |Raz|Ra7|Raz|R37|Las|Lay7 Ra3|Ra 7
Ly |Lag|Lsa|Lss |Raa|Ras|Rsa|Rss|Loa|Las Ry a|Ras

< .

Fig. 4. A sample decoding process is shown for N =8, P =2 and D = 4.
The column labels R and W indicate whether the messages in that column are
read from the memory or written to the memory. The row label PU-1(PU-2)
indicates that the messages in this row are related to the rs t PU(second PU).

memory read cycle memory write cycle

WRITE | [READ READ || WRITE WRITE | [READ
cee 4P 4P cee 4P 4P s 4P 4P LR
Messages | [Messages M M M M
1 1 1 1
1 1 1 1
1 1 1 1 time
t t+D—-1 t+D t+2D -1 (inCC’s)
Fig. 5. Time utilization of RWC. Memory read and memory write cycles

follow each other till the end of decoding.

C. Salient Features of the Proposed Decoder Architecture

The salient features of the decoder can be listed as:

« Flexibility: By changing the number of PU’s the designer
can make compromise between the hardware complexity
and throughput.

« Multiple code rate support: The code rate can be changed
at the run time and this feature does not bring any
additional hardware complexity.

e Multiple code length support: The codewords whose
length is a power of 2 and smaller than N can also be
decoded with the same decoder by adding an extra AG for
each code length. The hardware cost of adding an extra
AG is very small compared to the overall complexity.

o Multiple scheduler support: It is known that the perfor-
mance of BP decoding heavily depends on the scheduling
[3]. We did not put any restriction on the scheduling once
the sets are selected appropriately. Therefore the proposed
architecture has the e xibility to support various sched-
ulers by simply adding an extra AG for each scheduling.
This feature enables list decoding with a single hardware.

D. Synthesis Results

The main resources of our FPGA’s will introduced before

the synthesis results.

o Look-up Table (LUT): The function generator of our
FPGA which can implement any function with 4-binary-
inputs and 1-binary-output or 6-binary-inputs and 1-
binary-output depending on the FPGA.

e Flip- op (FF): FF is the well known synchronous D-type
registers with ’set/reset’ inputs.

o Block-RAM (BRAM): The dedicated memory blocks of
the FPGA. Their size and number of ports may vary
depending on the FPGA.

440

The hardware complexity of the decoder heavily depends
on the number of PU’s. There are also multiplexers inside the
PB whose complexities are proportional to P. Therefore LUT
and FF usage is proportional to P.

The width of BRAM cells are 32 or 64 bits at max-
imum depending on the the FPGA. Therefore if (P x
message size in bits) is larger than the width of a single
BRAM, then the synthesis tool concatenates multiple BRAM’s
to produce a memory with larger cell width. Likewise if
(n 4+ 1)N/P is larger than the number of cells of a single
BRAM, then the synthesis tool cascades multiple BRAM’s to
implement this memory. In conclusion P and N both affect
the number of utilized BRAM’s, however as we will see from
the synthesis results N is more effective.

The proposed decoder is implemented on a Xilinx Virtex-
4 FPGA. Messages are represented by 6 bits. The synthesis
results are listed in Table I'. In the rst part of the table P
is kept constant and N is increased. In the second part N is
kept constant and P is increased.

TABLE I
RESOURCE UTILIZATION FOR VARIOUS BLOCK SIZES: XC4VSX25
Block Size [P “ LUT [FF [BRAM
256 16 2779 | 1592 6
512 16 2809 | 1596 6
1024 16 2794 | 1600 12
2048 16 2797 | 1604 22
4096 16 2805 | 1605 48
8192 16 2808 | 1612 96
2048 1 300 179 24
2048 2 462 271 24
2048 4 792 459 24
2048 8 1459 839 24
20438 16 2797 | 1605 22
2048 32 5479 | 3144 22

IV. COMPARISONS WITH CTC

In this section, we compare FPGA implementation of our
polar decoder with a CTC decoder for WiMAX which is
taken from a Xilinx Product Speci cation for CTC Decoders
[17]. The CTC decoder supports all the CTC con gurations
in WiMAX whose block sizes are smaller than 960 bits.
Therefore its hardware complexity is independent from block
size and code rate. The polar decoder used in the comparisons
has 16 PU’s and supports a single block size with any coding
rate. Both decoders use 6 bit messages.

Table II compares the throughput attainable by the two
decoders, where each decoder is set to operate at 5 iterations.
The FPGA clock is set to 160 MHz. We see a clear advantage
for polar codes.

Table III compares the resource utilization for the above
two decoders for the Xilinx XC5VLX85 FPGA. The resource
utilization for the polar code is much lower.

The above results show that the BP decoder for polar coding
has a remarkably lower complexity and high throughput com-
pared to the CTC decoder. This combined with the universal

IThe synthesis is done using Xilinx-ISE version 12.2.

TABLE I

THROUGHPUT COMPARISON: 160 MHZ, 5 ITERATIONS.

Code [[Data rate (Mbps)
CTC (960,480) 30.59
Polar (1024,512) 27.83
CTC (576,480) 30.59
Polar (512,426) 52.03
CTC (288,144) 27.73
Polar (256,128) 35.56
CTC (192,144) 27.73
Polar (256,192) 53.33

additional cost. The decoder can also be extended to support
multiple code lengths and different schedulers with a little
extra hardware utilization.

The FPGA utilization of the proposed decoder is compared
with a CTC decoder taken from a Xilinx Product Speci cation.
It is shown that polar codes are superior to CTC codes both
in hardware complexity and throughput. Even though PER
performance of the polar codes under BP decoding is a few
dB’s behind the CTC codes, polar coding is still a promising

TABLE III
RESOURCE UTILIZATION: XC5VLX85

Code [LUT | FF | BRAM | DSP48
CTC (960,480)]| 6611 | 6767 9 4
Polar (1024,512) || 2324 | 1502 6 0
CTC (576,480) || 6611 | 6767 9)
Polar (512,426) || 2316 | 1498 6 0
CTC (288,144) || 6611 | 6767 9 4
Polar (256,128) || 2309 | 1494 6 0
CTC (192,144) || 6611 | 6767 9 4
Polar (256,192) || 2309 | 1494 6 0

nature of the polar coding scheme offers distinct advantages
for polar codes.

On the other hand performance of CTC codes is better
than polar codes as seen in Fig. 6. Even though maximum
iteration count is set to 5 for CTC and 50 for polar code in
the simulations, there is 1-2dB gap between their performances
at 1E-3 PER. There are studies to close this gap, however their
hardware complexities should also be studied.

Polar codes vs CTC

10
CTC(960,480)
— — — Polar(1024,512)
—4&— CTC(576,480)
4 — v — Polar(512,426)
10 —&— CTC(288,144)
—=&— Polar(256,128)
—%— CTC(192,144)
— © — Polar(256,192)
o 2
w 10 A 4
o N
\
X
\
s \
10 e E
10 4 i i i i i i i
0 1 2 3 4 5 6 7

Eb/No (dB)

Fig. 6. PER comparison of polar codes under BP decoding and CTC codes.

V. CONCLUSION

In this paper we proposed a belief propagation decoder
architecture which is optimized for FPGA’s. The proposed
architecture is quite e xible in the sense of hardware uti-
lization and can support multiple coding rates without any

441

technique because of aforementioned advantages.

ACKNOWLEDGMENT

This work was supported in part by The Scientic and
Technological Research Council of Turkey (TUBITAK) under
contract no. 110E243.

(1]

(21

(3]
(41

[5]

(6]

(71

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

E. Arkan, Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels, /EEE
Trans. Inform. Theory, vol. 55, pp. 3051 3073, July 2009.

N. Hussami, S. B. Korada, and R. Urbanke, Performance of polar codes
for channel and source coding, in Proc. 2009 IEEE Int. Symp. Inform.
Theory, (Seoul, South Korea), pp. 1488 1492, 28 June - 3 July 2009.
S. B. Korada, Polar codes for channel and source coding. PhD thesis,
EPFL, Lausanne, 2009.

E. Sasoglu, E. Telatar and E. Yeh, Polar codes for the two-user multiple-
access channel, Proceedings of the 2010 IEEE Information Theory
Workshop, Cairo, Egypt, January 6-8, 2010.

E. Abbe and E. Telatar, MA C polar codes and matroids, Information
Theory and Applications Workshop, ITA 2010 , pp.1-8, Jan. 31 - Feb.
5, 2010.

E. Hof, I. Sason and S. Shamai, Polar coding for reliable communica-
tions over parallel channels, Proceedings of the 2010 IEEE Information
Theory Workshop, Dublin, Ireland, Aug. 30 - Sept. 3, 2010.

H. Mahdavifar and A. Vardy, Achieving the secrecy capacity of wiretap
channels using polar codes, to appear in the IEEE Trans. Inform.
Theory, vol. 57, 2011. (Also available on arXiv:1007.3568.)

E. Arkan and E. Telatar, On the rate of channel polarization, 2009
IEEE Int. Symp. Inform. Theory, Seoul, Korea, 28 June - 3 July 2009.
S. H. Hassani, R. Urbanke, On the scaling of polar codes: 1. The
behavior of polarized channels, 15 Jan 2010, arXiv:1001.2766v2 [cs.IT]
T. Tanaka and R. Mori, Rened rate of channel polarization, 13 Jan
2010, arXiv:1001.2067v1 [cs.IT]

T. Tanaka, On speed of channel polarization, Proc. 201 IEEE Inform.
Theory Workshop (ITW 2010 Dublin), Dublin, Ireland, Aug. 30 - Sept.
3, 2010.

E. Arkan, A performance comparison of polar codes and Reed-Muller
codes, IEEE Comm. Lettrs., vol. 12, no. 6, pp. 447-449, June 2008.
E. Arkan and H. Kim and G. Markarian and U. Ozgur and E. Poyraz,
Performance of short polar codes under ML decoding, ICT Mobile
Summit, Santander, Spain, June 2009.

E. Arkan and G. Markarian, T wo-dimensional polar coding, Interna-
tional Symposium on Coding Theory and Applications (ISCTA 2009),
Ambleside, UK, Jul. 2009.

E. Arkan, Polar codes: A pipelined implementation, Proc. 4th Int.
Symp. Broadband Communications (ISBC2010), Melaka, Malaysia, 11-
14 July 2010.

C. Leroux, I. Tal, A. Vardy, W. J. Gross, Hardw are architectures for
successive cancellation decoding of polar codes, The 36th International
Conference on Acoustics, Speech and Signal Processing (ICASSP,
2011), Prague, May 22-27, 2011.

XILINX, IEEE 802.16e CTC Decoder v4.0, 2009.

