
AN FPGA IMPLEMENTATION
FOR A HIGH-SPEED OPTICAL LINK WITH A PCIE INTERFACE

Edin Kadric
Dept. of Electrical and Comp. Eng.

McGill University
Montreal, Quebec, Canada

Naraig Manjikian
Dept. of Electrical and Comp.Eng.

Queen’s University
Kingston, Ontario, Canada

Zeljko Zilic
Dept. of Electrical and Comp. Eng.

McGill University
Montreal, Quebec, Canada

Abstract— To achieve speedup for multi-node,

multi-GPU computing platforms, it is necessary to

overcome performance bottlenecks in networks

based on Ethernet or Infiniband. This paper

describes an FPGA implementation of a custom

network interface for an optical link between PCIe

buses of compute nodes. The implementation uses

an Altera Stratix IV chip with integrated PCIe

interface logic and high-speed input/output for

connecting optical fiber interfaces. The interface is

designed with control and buffering for concurrent

data transfers. A software driver enables

application programs on the host computer to use

the high-speed link. A bandwidth of 8.5 Gbit/s was

achieved between software applications, exceeding

bandwidth reported in recent work [7].

I. INTRODUCTION

There are a variety of applications where

performance demands are such that high-performance

computation (HPC) in a parallel or distributed manner is

necessary. Commodity chips that integrate up to 10

sophisticated processor cores now support low-cost,

small-scale parallel processing in a general-purpose

computer. To achieve higher performance, more

expensive computers with many multicore chips can be

used. Alternatively, parallel computation could be

performed using commodity graphical processing units

(GPUs) that contain hundreds of simpler cores and

provide excellent performance relative to their cost. For

even higher performance, computer nodes that combine

multicore and GPU chips can be interconnected with

high-speed communication links for a large aggregate

computing capacity. Attaining the potential performance

of such systems requires partitioning the computation in

a manner that balances the workload across

heterogeneous processing units, and limiting the

adverse impact of communication on performance by

reducing its volume and by overlapping it with

computation.

The physical links for high-speed communication

between compute nodes need to provide high bandwidth

to feasibly achieve good speedups. Current networking

devices used in HPC, such as Ethernet and Infiniband,

provide the physical interconnection and protocols for

communication using optical links, and custom chips

based on these standards are available for system

implementation. It is also possible to develop custom

protocols for commodity physical links based, for

example, on the Small Form-factor Pluggable (SFP)

optical interface standard. Because of the high cost for

full-custom implementation, the use of a prefabricated

field-programmable gate-array (FPGA) is now an

economically viable alternative for implementing the

hardware support for a custom protocol.

This paper describes the system architecture and

logic implementation details for a high-speed optical

communication link employing a custom protocol. The

communication support is implemented in an Altera

Stratix IV FPGA that incorporates high-speed electronic

physical interfaces for SFP-based connection to optical

fiber, as well as an integrated PCIe interface to convey

data to and from an associated computer node. The

programmable logic and memory within the FPGA is

configured with control and buffering for concurrent

bidirectional data transfers with the attached computer

node. A software driver supports an application

programming interface for a program executing on the

attached computer to use this communication support

for a high-speed optical link connected to another

computer with the same communication support. For a

transfer size of 512 Kbits, a bandwidth of 8.5 Gbit/s is

achievable with software involved in the communication.

The remainder of this paper is organized as follows.

Section II presents related work. Section III describes

the system architecture. Section IV explains

implementation details. Section V presents results from

an assessment of performance for the implementation.

Finally, Section VI concludes the paper.

II. RELATED WORK

Due to their high attenuation and susceptibility to

interference, conventional copper-based links cannot

satisfy the demands for networks with increasingly

higher speeds. As a consequence, they are being

replaced with optical fiber implementations, as is the

case for the most recent generations of Ethernet, the

traditional link of choice for local area network (LAN)

communications. Reflecting this transition, Altera is

pursuing the development of FPGAs that integrate

interfaces for direct connections to optical fibers [1].

This evolution in interconnect bandwidth capabilities

must also be accompanied by improvements to the I/O

interface with the computer's memory. To address this

need, the widely-used PCIe interface standard provides

increased bandwidth with every new generation while

maintaining backward compatibility and transparency to

the underlying implementation. The benefit of the latter

feature is exemplified by the use of PCIe links in the IBM

Roadrunner supercomputer where a customization of

the PCIe channel variables improves performance with

no modifications to the overall system architecture [2].

Prior work has considered an FPGA-based

implementation to support optical communication links in

a data acquisition system [7]. In that work, the

architecture and communication protocol are based on a

master-slave system where a PCIe interface links a

computer to a master FPGA controlling a scalable

number of FPGA-based slave front-end cards connected

to the master through fiber optic links. This system is

used to support a new accelerator at the Facility for

Antiproton and Ion Research (FAIR). The authors report

reliable operation with data rates of 1.6Gbit/s with PCIe

Gen1, whereas our implementation has twice the link

speed with PCIe Gen2.

Furthermore, our implementation takes the approach

of using PCIe as a link between the host and an I/O

subsystem, accompanied by a custom optical fiber link

for host-to-host communication. Indeed, PCIe is not

deemed efficient for directly linking two hosts and a

dedicated cluster is usually used in such interfaces.

Nevertheless, other approaches have been explored.

For example, the Dolphin Express [8] tries to address

the shortcomings of PCIe when directly used for host-to-

host communication. PCIe 1.0 is used in that work,

where a PCIe-only link is shown to outperform a 10

Gigabit Ethernet one. In our work, PCIe 2.0 is used, thus

achieving double the bandwidth.

III. SYSTEM ARCHITECTURE

For the implementation presented in this paper, the

system consists of two computers connected as shown

in Figure 1. Each computer has an Altera DE4 board

with a ×4 PCIe Gen2 interface to the computer. Each

DE4 board has a Stratix IV FPGA with on-chip memory

that can buffer data being sent and received. Each DE4

board also has a High Speed Mezzanine Connector

(HSMC) where a small daughterboard with Small Form-

factor Pluggable (SFP) slots is attached. Four two-way

optical fiber cables are connected to the SFP slots to

complete the connection between the two computers.

Figure 1. Overview of the system setup

For the implementation of the logic, the system

consists of a PCIe module communicating with the

computer, and an optical fiber module communicating

with the other board, as shown in Figure 2. The two

modules are instantiated in the top-level entity of the

design and linked to each other with a custom

communication protocol. An on-chip memory buffers the

data being exchanged between the two modules in order

to support the communication between the two

computers.

Altera's PCIe Compiler was used to configure a hard

IP block in the Stratix IV FPGA with the transaction, data

link, and physical layer features of the PCIe

specification. The software support for this interface

relied on the altpciechdma (ALTera PCIE CHaining

Direct Memory Access) driver available in the Linux

kernel. Programs in the C language were written to

perform basic communication tests and performance

measurements using this driver. The driver and the PCIe

interfaces both required important modifications in order

to allow for faster speed, more flexible communication

with the FPGA's internal memory, and more convenient

use at the software level.

Figure 2. High-level view of the design structure

PCIe Logic

Arbiter

Memory

FPGA

Top Level

Optical Logic

on Board #2 Optical

Fiber Logic

Stratix IV

FPGA

Stratix IV

FPGA

SFP

board

PCIe Gen2

x4 lanes
HSMC

4x Two-way

optical fibers

SFP

board

 The optical fiber interface was based on the source

code of the loopback demonstration provided by Terasic

for its SFP HSMC daughter card. The optical

communication was enhanced with internally

controllable reset, channel bonding, channel alignment,

and start/end of transmission signals. The data is

encoded using the 8b/10b line code in order to provide

DC-balanced transmission and allow for proper clock

recovery by a receiver. A custom synchronization

mechanism between the two FPGAs was implemented

in order to signal ready, start, and end of transmission

states and thus synchronize the two physically separate

nodes.

The implementation consumes under 22,000 logic

elements in the FPGA. The PCIe interface logic

operates at 100 MHz and the optical interface logic

operates at 125 MHz.

IV. ELEMENTS OF THE IMPLEMENTATION

A. Memory structure

Each one of the four PCIe lanes is quoted at a

maximum physical throughput of 5 Gbit/s, thus forming a

20-Gbit/s link. Each one of the four optical fiber channels

runs at 6.25 Gbit/s, thus forming a 25-Gbit/s link. When

taking into account protocol, encoding, and software

overhead, the available raw bitrate for the payload is

reduced. Nevertheless, the optical fiber link remains

faster than the PCIe, which can be considered the

bottleneck of the system.

This difference in the relative data rates for optical

fiber and for PCIe motivated a structure where the

FPGA's memory is divided into three buffers so that

when a PCIe DMA operation to fill one buffer is

completed, the interface does not wait for the buffered

data to be transmitted to the other node. Instead,

another PCIe DMA operation is initiated to fill a different

buffer, while the data in the first buffer is transmitted to

the other node through the optical fiber link. With this

approach, the PCIe link is always busy with DMA

operations. Meanwhile, the optical interface logic waits

for the next full buffer for data transmission. As a result,

the overall system speed does not drop lower than that

of the PCIe link. This also works using only two buffers,

but a third one gives more time to potentially process the

stored data before the next transfer, together with

providing an additional margin to counter a potential

transient slowdown in optical fiber communication.

For this approach, each FPGA needs three memory

areas for the three buffers used in the design, and

because both links allow for two-way communication,

the buffers are further divided into two subparts, each

storing the data for one of the two directions.

Figure 3. Structure of the FPGA's internal memory

Furthermore, because of the different clock domains,

each FPGA actually needs two RAM blocks instead of

one. The first RAM is written by the optical fiber logic at

the receiver’s clock speed and read by the PC at the

PCIe clock speed, whereas the second RAM is written

by the PC at the PCIe clock speed and read by the

optical fiber logic at the transmitter’s clock speed. The

PCIe accesses the data in 64-bit words, whereas the

optical fiber logic sends 32 bits of data per channel each

clock cycle, thus accessing one 128-bit word on every

clock cycle with all four optical channels involved.

The RAM structures must therefore provide different

sizes for the input and output data, with different input

and output clocks, as illustrated in Figure 3. The size of

each buffer is chosen to be 512 Kbits as justified by the

results in Section V. Hence, the PCIe logic deals with

the RAM as a group of 24,576 64-bit words accessed

with a 15-bit address, whereas the optical fiber interface

logic deals with it as a group of 12,288 128-bit words

accessed with a 14-bit address.

B. Interface between PCIe and Optical Fiber

After the system is reset, the transmit logic at each

endpoint of the optical link immediately begins sending

synchronization data. The receive logic at each endpoint

performs comma detection, which involves identifying

sequences of five consecutive 1s and 0s in the 8b/10b

control codes. After successful detection, the four

channels are bonded and ready for exchange of data. At

this point, dummy data is continuously sent in order to

maintain a synchronized state. When the PCIe logic

indicates that user data is available to be transmitted to

the other node, the optical logic will send ready control

codes (chosen to be K28.0 in 8b/10b) to the other node.

The receiver provides an acknowledgement by sending

start control codes (K28.2). The transmitter then sends

the user data, terminated by an end control code

Dual-Ported RAM 1
Read Port B Write Port A

64b 64b

12,288 x

64b 128b

14b

Rx clock

Rx data

RAM Addr

FPGA

15b

PCIe clk

Data

Addr

PC Node

#2

Dual-Ported RAM 2
Write Port A

64b 64b

12,288 x

64b

15b

PCIe clk

Data

Addr

Read Port B

128b

14b

Tx clock

Tx data

RAM Addr

(K28.4). If there is more user data to be transmitted, the

ready/start/data/end sequence is repeated. Otherwise,

dummy data is sent continuously to maintain

synchronization until the next PCIe DMA is completed.

The PCIe logic and the software driver together

control the start and end of DMA transactions by setting

three flag bits in the PCIe Base Address Register (BAR),

corresponding to the three available memory buffers.

When the driver has data available to be sent, it polls the

flag for the current buffer. If the flag is 0, a DMA

transaction is initiated, and the driver sets the flag to 1

upon completion. Otherwise, the driver has to wait for

the buffer to become available after the current data is

transmitted by the optical logic. Setting the flag to 1

informs the optical fiber logic that the buffer contains

data to be transmitted. The driver then moves to the next

buffer. The PCIe logic responds to the setting of the flag

by asserting the corresponding flagAssertedOut signal.

Each buffer has its own flag bit and flagAssertedOut

signal.

As shown in Figure 4, the flagAssertedOut signal is

connected to a flagger module that conveys control

signals to the optical fiber logic. A 3-bit signal

SFPtransfer indicates which buffer is ready. After

completing transmission for a buffer, the optical logic

sets one of 3 SFPflag signals. This signal is conveyed to

the PCIe logic through one of three flagAssertedIn

signals. When flagAssertedIn is 1, the flag in the BAR is

set back to 0, so that a subsequent PCIe DMA

transaction can use the corresponding buffer.

Figure 4. Synchronization between PCIe and optical fiber logic

V. PERFORMANCE EVALUATION

The system has been developed and tested between

two Linux computers running Ubuntu 10.04 with Kernel

version 2.6.32-33. Each computer has a quad-core AMD

Phenom™ II X4 955 processor and 8 Gbytes of

memory. An Altera DE4 board connected through a

PCIe interface in each computer has a Stratix IV

EP4SGX530KH40C2N. Altera Quartus II was used for

synthesis of the FPGA design. The SFP transceiver

modules for the optical fiber interface are Finisar’s

FTLF8524P2BNV 1000Base-X model that emit 850-nm

light using Vertical-Cavity Surface-Emitting Lasers. Each

optical fiber cable has a length of 50 cm. The Lucent

Connectors (LC) at the ends of the cables are inserted in

the SFP modules.

The specification for the SFP modules [3] indicates a

reliable operation on optical cables with lengths up to 70

m over an extended range of conditions. Furthermore,

for a supply voltage of 3.3V, the stressed receiver

sensitivity is 0.55mW for the four channels. This is the

minimum optical power required at the receiver to

recover the signal with a Bit Error Rate (BER) of at most

1012
.

The SFP HSMC daughter card supports multiple

clock rates: 61.44, 125, 155.52 and 156.25 MHz. It also

offers eight SFP connectors: four LVDS (low-voltage

differential signaling) and four transceiver based ones

[4]. The later four are used in this work.

The handshaking protocol of the PCIe link requires

nearly constant time relative to the variation in the

amount of data being transmitted. Large transfers

therefore reduce protocol overhead at the expense of

increased latency. Figure 5 shows plots of the PCIe

DMA bandwidth and latency versus the DMA transfer

size. The PCIe link capacity is more effectively utilized

for large transfers, but there are diminishing returns in

performance beyond a certain size at the expense of

increased FPGA resource utilization and latency. For

example, doubling the transfer size 512 Kbits to 1 Mbit

results in only a marginal improvement in bandwith with

double the latency. The transfer size was therefore set

to 512 Kbits, for which a bandwidth of 8.5 Gbit/s can be

achieved.

The optical fiber link bandwidth is 20 Gbit/s. This

level of performance lies between the 16-Gbit/s double

data rate (DDR) and 32-Gbit/s quad data rate (QDR) of

InfiniBand. The 20-Gbit/s performance is also

comparable to the bandwidth achievable with two 10-

Gbit/s Ethernet links. The optical link described in this

paper is therefore appropriate for high-performance

applications. Together with latency information, these

bandwidth comparisons are shown in Table I.

TABLE I. COMPARISON OF THE OPTICAL LINK TO OTHER STANDARDS

PCIe logic
Optical

logic
PCIe

registers

3-bit

flags

flagger

The Driver reads

and sets flags

flagAssertedOut

flagAssertedIn

SFPtransfer

SFPflag

FPGA Top Level

Control and data

transfer to board #2

Figure 5. Bandwidth and latency measurements

The intended application of the optical link described

in this paper is for high-performance distributed

simulation on computers equipped with several graphics

processing units (GPUs) to accelerate parallel logic

simulation. Latency is especially critical in such an

application because the transmission delay for

messages between computing nodes must be

minimized in order to reduce the frequency of rollbacks,

avoid deadlocks, and mitigate adverse performance

effects of other events during the execution of a parallel

simulation. For the optical link alone, the measured

latency is approximately 0.73 µs, reflecting line encoding

and the overhead due to the 160-bit packet size. This

latency compares favorably with the 1-µs and 10µs

nominal latencies for Infiniband and 10 Gigabit Ethernet

[5], respectively.

The final application latency for the optical link in this

paper is at most 260 µs when the effects of software

overhead, the PCIe link, and the buffering within the

FPGA are considered. A transfer size less than 512 kbits

would reduce this system-level latency, but would also

reduce the achievable bandwidth. In comparison, Koop

et al. [6] consider the performance of PCIe 2.0 with QDR

InfiniBand and also observe that the throughput

stagnates around its maximum value for transfer sizes of

512 Kbits and larger, whereas the latency consistently

increases with increasing message sizes larger than 64

bytes.

VI. CONCLUSIONS AND FUTURE WORK

For utilizing commodity compute nodes in high-

performance computing applications, the interconnects

play a critical role in ensuring the efficient execution of

parallel computation algorithms. These interconnects

must provide high throughput and low latency, which is

presently achieved through optical fiber based links such

as 10 Gigabit Ethernet and InfiniBand. The high-speed

interface described here links the compute nodes

together with four optical fiber channels (25 Gbit/s total),

and can provide significantly better performance than

Ethernet and InfiniBand counterparts. More importantly,

our implementation eases the programming task while

also avoiding link bottlenecks.

We built a networking interface directly on standard

PCIe, that provides good performance, reliability,

scalability, and avoids latencies associated with

traditional networking interfaces. On each node, the data

can be stored in the FPGA's internal memory. The node

communicates by DMA transfers with the FPGA. Our

software driver allows its use from a high-level language

user program. Due to the triple buffering structure, the

overall link speed is as fast as the PCIe interface, and

the FPGA can conveniently process the data as it

transits through it. Including protocol and software

overhead, the data rate of the design from one C

program to another was measured to be 8.5 Gbit/s.

In future, we plan to extend the same concept to

large-scale cache-coherent heterogeneous multipro-

cessors using FPGAs, similar to NUMAchine [9].

REFERENCES

[1] Altera Corporation. “Overcome Copper Limits with Optical

Interfaces.” Internet: http://www.altera.com/literature/wp/wp-

01161-optical-fpga.pdf, April 2011 [accessed February 2012].

[2] P. Germann, M. Doyle, R. Ericson, S. Lewis, J. Dangler, A.

Patel, “Pushing the limits of PCI-express: A PCIe application

within an IBM supercomputing environment,” Electronic

Components and Technology Conference, pp. 495-501, 2008.

[3] Finisar Corporation. “Product Specification - 4.25Gb/s RoHS

Compliant SFP Transceiver - FTLF8524P2xNy.”

Internet:http://www.finisar.com/sites/default/files/FTLF8524P2xN

y%20Spec%20RevJ.pdf [accessed February 2012].

[4] Terasic technologies. "SFP HSMC User Manual." Internet:

www.terasic.com.tw/cgi-bin/page/archive_download.pl?Languag

e=English&No=342&FID=c4b7d99c26cb60c9e3bdb4f2ecdf10dd,

[accessed February 2012].

[5] HPC Advisory Council. “Interconnect Analysis: 10GigE and

InfiniBand in High Performance Computing.” Internet:

http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC

.pdf 2009 [accessed February 2012].

[6] M.J. Koop, Huang Wei, K. Gopalakrishnan, D.K. Panda,

"Performance Analysis and Evaluation of PCIe 2.0 and Quad-

Data Rate InfiniBand," IEEE Symp. High Performance

Interconnects, pp.85-92, August 2008.

[7] S. Minami, J. Hoffmann, N. Kurz and W. Ott, "Design and

Implementation of a Data Transfer Protocol Via Optical Fiber,"

IEEE Transactions on Nuclear Science, vol. 58, no. 1, pp. 1816-

1819, 2011.

[8] V. Krishnan, “Towards an integrated IO and clustering solution

using PCI express,” IEEE International Conference on Cluster

Computing 9th, pp. 259-266, September 2007.

[9] A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G.

Lemieux, K. Loveless, N. Manjikian, S. Srbljic, M. Stumm, Z.

Vranesic, and Z. Zilic, "Design and Implementation of the

NUMAchine Multiprocessor," Proceedings of the 35th IEEE

Design Automation Conference, San Francisco, June 1998.

3

5

7

9

0 500 1000 1500

Bandwidth (Gbit/s)

D

0

50

100

150

0 500 1000 1500

Latency (μs)

D

