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Abstract— To achieve speedup for multi-node, 

multi-GPU computing platforms, it is necessary to 

overcome performance bottlenecks in networks 

based on Ethernet or Infiniband. This paper 

describes an FPGA implementation of a custom 

network interface for an optical link between PCIe 

buses of compute nodes. The implementation uses 

an Altera Stratix IV chip with integrated PCIe 

interface logic and high-speed input/output for 

connecting optical fiber interfaces. The interface is 

designed with control and buffering for concurrent 

data transfers. A software driver enables 

application programs on the host computer to use 

the high-speed link. A bandwidth of 8.5 Gbit/s was 

achieved between software applications, exceeding 

bandwidth reported in recent work [7]. 

I. INTRODUCTION 

There are a variety of applications where 

performance demands are such that high-performance 

computation (HPC) in a parallel or distributed manner is 

necessary. Commodity chips that integrate up to 10 

sophisticated processor cores now support low-cost, 

small-scale parallel processing in a general-purpose 

computer. To achieve higher performance, more 

expensive computers with many multicore chips can be 

used. Alternatively, parallel computation could be 

performed using commodity graphical processing units 

(GPUs) that contain hundreds of simpler cores and 

provide excellent performance relative to their cost. For 

even higher performance, computer nodes that combine 

multicore and GPU chips can be interconnected with 

high-speed communication links for a large aggregate 

computing capacity. Attaining the potential performance 

of such systems requires partitioning the computation in 

a manner that balances the workload across 

heterogeneous processing units, and limiting the 

adverse impact of communication on performance by 

reducing its volume and by overlapping it with 

computation. 

The physical links for high-speed communication 

between compute nodes need to provide high bandwidth 

to feasibly achieve good speedups. Current networking 

devices used in HPC, such as Ethernet and Infiniband, 

provide the physical interconnection and protocols for 

communication using optical links, and custom chips 

based on these standards are available for system 

implementation. It is also possible to develop custom 

protocols for commodity physical links based, for 

example, on the Small Form-factor Pluggable (SFP) 

optical interface standard. Because of the high cost for 

full-custom implementation, the use of a prefabricated 

field-programmable gate-array (FPGA) is now an 

economically viable alternative for implementing the 

hardware support for a custom protocol. 

This paper describes the system architecture and 

logic implementation details for a high-speed optical 

communication link employing a custom protocol. The 

communication support is implemented in an Altera 

Stratix IV FPGA that incorporates high-speed electronic 

physical interfaces for SFP-based connection to optical 

fiber, as well as an integrated PCIe interface to convey 

data to and from an associated computer node. The 

programmable logic and memory within the FPGA is 

configured with control and buffering for concurrent 

bidirectional data transfers with the attached computer 

node. A software driver supports an application 

programming interface for a program executing on the 

attached computer to use this communication support 

for a high-speed optical link connected to another 

computer with the same communication support. For a 

transfer size of 512 Kbits, a bandwidth of 8.5 Gbit/s is 

achievable with software involved in the communication. 

The remainder of this paper is organized as follows. 

Section II presents related work. Section III describes 

the system architecture. Section IV explains 

implementation details. Section V presents results from 

an assessment of performance for the implementation. 

Finally, Section VI concludes the paper. 

II. RELATED WORK 

Due to their high attenuation and susceptibility to 

interference, conventional copper-based links cannot 

satisfy the demands for networks with increasingly 



higher speeds. As a consequence, they are being 

replaced with optical fiber implementations, as is the 

case for the most recent generations of Ethernet, the 

traditional link of choice for local area network (LAN) 

communications. Reflecting this transition, Altera is 

pursuing the development of FPGAs that integrate 

interfaces for direct connections to optical fibers [1]. 

This evolution in interconnect bandwidth capabilities 

must also be accompanied by improvements to the I/O 

interface with the computer's memory. To address this 

need, the widely-used PCIe interface standard provides 

increased bandwidth with every new generation while 

maintaining backward compatibility and transparency to 

the underlying implementation. The benefit of the latter 

feature is exemplified by the use of PCIe links in the IBM 

Roadrunner supercomputer where a customization of 

the PCIe channel variables improves performance with 

no modifications to the overall system architecture [2]. 

Prior work has considered an FPGA-based 

implementation to support optical communication links in 

a data acquisition system [7]. In that work, the 

architecture and communication protocol are based on a 

master-slave system where a PCIe interface links a 

computer to a master FPGA controlling a scalable 

number of FPGA-based slave front-end cards connected 

to the master through fiber optic links. This system is 

used to support a new accelerator at the Facility for 

Antiproton and Ion Research (FAIR). The authors report 

reliable operation with data rates of 1.6Gbit/s with PCIe 

Gen1, whereas our implementation has twice the link 

speed with PCIe Gen2. 

Furthermore, our implementation takes the approach 

of using PCIe as a link between the host and an I/O 

subsystem, accompanied by a custom optical fiber link 

for host-to-host communication. Indeed, PCIe is not 

deemed efficient for directly linking two hosts and a 

dedicated cluster is usually used in such interfaces. 

Nevertheless, other approaches have been explored. 

For example, the Dolphin Express [8] tries to address 

the shortcomings of PCIe when directly used for host-to-

host communication. PCIe 1.0 is used in that work, 

where a PCIe-only link is shown to outperform a 10 

Gigabit Ethernet one. In our work, PCIe 2.0 is used, thus 

achieving double the bandwidth. 

III. SYSTEM ARCHITECTURE 

For the implementation presented in this paper, the 

system consists of two computers connected as shown 

in Figure 1. Each computer has an Altera DE4 board 

with a ×4 PCIe Gen2 interface to the computer. Each 

DE4 board has a Stratix IV FPGA with on-chip memory 

that can buffer data being sent and received. Each DE4 

board also has a High Speed Mezzanine Connector 

(HSMC) where a small daughterboard with Small Form-

factor Pluggable (SFP) slots is attached. Four two-way 

optical fiber cables are connected to the SFP slots to 

complete the connection between the two computers. 

 
Figure 1.  Overview of the system setup 

For the implementation of the logic, the system 

consists of a PCIe module communicating with the 

computer, and an optical fiber module communicating 

with the other board, as shown in Figure 2. The two 

modules are instantiated in the top-level entity of the 

design and linked to each other with a custom 

communication protocol. An on-chip memory buffers the 

data being exchanged between the two modules in order 

to support the communication between the two 

computers. 

Altera's PCIe Compiler was used to configure a hard 

IP block in the Stratix IV FPGA with the transaction, data 

link, and physical layer features of the PCIe 

specification. The software support for this interface 

relied on the altpciechdma (ALTera PCIE CHaining 

Direct Memory Access) driver available in the Linux 

kernel. Programs in the C language were written to 

perform basic communication tests and performance 

measurements using this driver. The driver and the PCIe 

interfaces both required important modifications in order 

to allow for faster speed, more flexible communication 

with the FPGA's internal memory, and more convenient 

use at the software level. 

 

Figure 2.  High-level view of the design structure 
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 The optical fiber interface was based on the source 

code of the loopback demonstration provided by Terasic 

for its SFP HSMC daughter card. The optical 

communication was enhanced with internally 

controllable reset, channel bonding, channel alignment, 

and start/end of transmission signals. The data is 

encoded using the 8b/10b line code in order to provide 

DC-balanced transmission and allow for proper clock 

recovery by a receiver. A custom synchronization 

mechanism between the two FPGAs was implemented 

in order to signal ready, start, and end of transmission 

states and thus synchronize the two physically separate 

nodes. 

The implementation consumes under 22,000 logic 

elements in the FPGA. The PCIe interface logic 

operates at 100 MHz and the optical interface logic 

operates at 125 MHz. 

IV. ELEMENTS OF THE IMPLEMENTATION 

A.  Memory structure 

Each one of the four PCIe lanes is quoted at a 

maximum physical throughput of 5 Gbit/s, thus forming a 

20-Gbit/s link. Each one of the four optical fiber channels 

runs at 6.25 Gbit/s, thus forming a 25-Gbit/s link. When 

taking into account protocol, encoding, and software 

overhead, the available raw bitrate for the payload is 

reduced. Nevertheless, the optical fiber link remains 

faster than the PCIe, which can be considered the 

bottleneck of the system. 

This difference in the relative data rates for optical 

fiber and for PCIe motivated a structure where the 

FPGA's memory is divided into three buffers so that 

when a PCIe DMA operation to fill one buffer is 

completed, the interface does not wait for the buffered 

data to be transmitted to the other node. Instead, 

another PCIe DMA operation is initiated to fill a different 

buffer, while the data in the first buffer is transmitted to 

the other node through the optical fiber link. With this 

approach, the PCIe link is always busy with DMA 

operations. Meanwhile, the optical interface logic waits 

for the next full buffer for data transmission. As a result, 

the overall system speed does not drop lower than that 

of the PCIe link. This also works using only two buffers, 

but a third one gives more time to potentially process the 

stored data before the next transfer, together with 

providing an additional margin to counter a potential 

transient slowdown in optical fiber communication. 

For this approach, each FPGA needs three memory 

areas for the three buffers used in the design, and 

because both links allow for two-way communication, 

the buffers are further divided into two subparts, each 

storing the data for one of the two directions.  

 

Figure 3.  Structure of the FPGA's internal memory 

Furthermore, because of the different clock domains, 

each FPGA actually needs two RAM blocks instead of 

one. The first RAM is written by the optical fiber logic at 

the receiver’s clock speed and read by the PC at the 

PCIe clock speed, whereas the second RAM is written 

by the PC at the PCIe clock speed and read by the 

optical fiber logic at the transmitter’s clock speed. The 

PCIe accesses the data in 64-bit words, whereas the 

optical fiber logic sends 32 bits of data per channel each 

clock cycle, thus accessing one 128-bit word on every 

clock cycle with all four optical channels involved. 

The RAM structures must therefore provide different 

sizes for the input and output data, with different input 

and output clocks, as illustrated in Figure 3. The size of 

each buffer is chosen to be 512 Kbits as justified by the 

results in Section V. Hence, the PCIe logic deals with 

the RAM as a group of 24,576  64-bit words accessed 

with a 15-bit address, whereas the optical fiber interface 

logic deals with it as a group of 12,288 128-bit words 

accessed with a 14-bit address. 

B. Interface between PCIe and Optical Fiber 

After the system is reset, the transmit logic at each 

endpoint of the optical link immediately begins sending 

synchronization data. The receive logic at each endpoint 

performs comma detection, which involves identifying 

sequences of five consecutive 1s and 0s in the 8b/10b 

control codes. After successful detection, the four 

channels are bonded and ready for exchange of data. At 

this point, dummy data is continuously sent in order to 

maintain a synchronized state. When the PCIe logic 

indicates that user data is available to be transmitted to 

the other node, the optical logic will send ready control 

codes (chosen to be K28.0 in 8b/10b) to the other node. 

The receiver provides an acknowledgement by sending 

start control codes (K28.2). The transmitter then sends 

the user data, terminated by an end control code 

Dual-Ported RAM 1 
Read Port B Write Port A 

64b 64b 

12,288 x 

64b 128b 

14b 

Rx clock 

Rx data 

RAM Addr 

FPGA 

15b 

PCIe clk 

Data 

Addr 

PC Node 

#2 

Dual-Ported RAM 2 
Write Port A 

64b 64b 

12,288 x 

64b 

15b 

PCIe clk 

Data 

Addr 

Read Port B 

128b 

14b 

Tx clock 

Tx data 

RAM Addr 



(K28.4). If there is more user data to be transmitted, the 

ready/start/data/end sequence is repeated. Otherwise, 

dummy data is sent continuously to maintain 

synchronization until the next PCIe DMA is completed. 

The PCIe logic and the software driver together 

control the start and end of DMA transactions by setting 

three flag bits in the PCIe Base Address Register (BAR), 

corresponding to the three available memory buffers. 

When the driver has data available to be sent, it polls the 

flag for the current buffer. If the flag is 0, a DMA 

transaction is initiated, and the driver sets the flag to 1 

upon completion. Otherwise, the driver has to wait for 

the buffer to become available after the current data is 

transmitted by the optical logic. Setting the flag to 1 

informs the optical fiber logic that the buffer contains 

data to be transmitted. The driver then moves to the next 

buffer. The PCIe logic responds to the setting of the flag 

by asserting the corresponding flagAssertedOut signal. 

Each buffer has its own flag bit and flagAssertedOut 

signal. 

As shown in Figure 4, the flagAssertedOut signal is 

connected to a flagger module that conveys control 

signals to the optical fiber logic. A 3-bit signal 

SFPtransfer indicates which buffer is ready. After 

completing transmission for a buffer, the optical logic 

sets one of 3 SFPflag signals. This signal is conveyed to 

the PCIe logic through one of three flagAssertedIn 

signals. When flagAssertedIn is 1, the flag in the BAR is 

set back to 0, so that a subsequent PCIe DMA 

transaction can use the corresponding buffer. 

 
Figure 4.  Synchronization between PCIe and optical fiber logic 

V. PERFORMANCE EVALUATION 

The system has been developed and tested between 

two Linux computers running Ubuntu 10.04 with Kernel 

version 2.6.32-33. Each computer has a quad-core AMD 

Phenom™ II X4 955 processor and 8 Gbytes of 

memory. An Altera DE4 board connected through a 

PCIe interface in each computer has a Stratix IV 

EP4SGX530KH40C2N. Altera Quartus II was used for 

synthesis of the FPGA design. The SFP transceiver 

modules for the optical fiber interface are Finisar’s 

FTLF8524P2BNV 1000Base-X model that emit 850-nm 

light using Vertical-Cavity Surface-Emitting Lasers. Each 

optical fiber cable has a length of 50 cm. The Lucent 

Connectors (LC) at the ends of the cables are inserted in 

the SFP modules. 

The specification for the SFP modules [3] indicates a 

reliable operation on optical cables with lengths up to 70 

m over an extended range of conditions. Furthermore, 

for a supply voltage of 3.3V, the stressed receiver 

sensitivity is 0.55mW for the four channels. This is the 

minimum optical power required at the receiver to 

recover the signal with a Bit Error Rate (BER) of at most 

1012
. 

The SFP HSMC daughter card supports multiple 

clock rates: 61.44, 125, 155.52 and 156.25 MHz. It also 

offers eight SFP connectors: four LVDS (low-voltage 

differential signaling) and four transceiver based ones 

[4]. The later four are used in this work. 

The handshaking protocol of the PCIe link requires 

nearly constant time relative to the variation in the 

amount of data being transmitted. Large transfers 

therefore reduce protocol overhead at the expense of 

increased latency. Figure 5 shows plots of the PCIe 

DMA bandwidth and latency versus the DMA transfer 

size. The PCIe link capacity is more effectively utilized 

for large transfers, but there are diminishing returns in 

performance beyond a certain size at the expense of 

increased FPGA resource utilization and latency. For 

example, doubling the transfer size 512 Kbits to 1 Mbit 

results in only a marginal improvement in bandwith with 

double the latency. The transfer size was therefore set 

to 512 Kbits, for which a bandwidth of 8.5 Gbit/s can be 

achieved. 

The optical fiber link bandwidth is 20 Gbit/s. This 

level of performance lies between the 16-Gbit/s double 

data rate (DDR) and 32-Gbit/s quad data rate (QDR) of 

InfiniBand. The 20-Gbit/s performance is also 

comparable to the bandwidth achievable with two 10-

Gbit/s Ethernet links. The optical link described in this 

paper is therefore appropriate for high-performance 

applications. Together with latency information, these 

bandwidth comparisons are shown in Table I. 

TABLE I.  COMPARISON OF THE OPTICAL LINK TO OTHER STANDARDS 
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Figure 5.  Bandwidth and latency measurements 

The intended application of the optical link described 

in this paper is for high-performance distributed 

simulation on computers equipped with several graphics 

processing units (GPUs) to accelerate parallel logic 

simulation. Latency is especially critical in such an 

application because the transmission delay for 

messages between computing nodes must be 

minimized in order to reduce the frequency of rollbacks, 

avoid deadlocks, and mitigate adverse performance 

effects of other events during the execution of a parallel 

simulation. For the optical link alone, the measured 

latency is approximately 0.73 µs, reflecting line encoding 

and the overhead due to the 160-bit packet size. This 

latency compares favorably with the 1-µs and 10µs 

nominal latencies for Infiniband and 10 Gigabit Ethernet 

[5], respectively. 

The final application latency for the optical link in this 

paper is at most 260 µs when the effects of software 

overhead, the PCIe link, and the buffering within the 

FPGA are considered. A transfer size less than 512 kbits 

would reduce this system-level latency, but would also 

reduce the achievable bandwidth.  In comparison, Koop 

et al. [6] consider the performance of PCIe 2.0 with QDR 

InfiniBand and also observe that the throughput 

stagnates around its maximum value for transfer sizes of 

512 Kbits and larger, whereas the latency consistently 

increases with increasing message sizes larger than 64 

bytes. 

VI. CONCLUSIONS AND FUTURE WORK 

For utilizing commodity compute nodes in high-

performance computing applications, the interconnects 

play a critical role in ensuring the efficient execution of 

parallel computation algorithms. These interconnects 

must provide high throughput and low latency, which is 

presently achieved through optical fiber based links such 

as 10 Gigabit Ethernet and InfiniBand. The high-speed 

interface described here links the compute nodes 

together with four optical fiber channels (25 Gbit/s total), 

and can provide significantly better performance than 

Ethernet and InfiniBand counterparts. More importantly, 

our implementation eases the programming task while 

also avoiding link bottlenecks.  

We built a networking interface directly on standard 

PCIe, that provides good performance, reliability, 

scalability, and avoids latencies associated with 

traditional networking interfaces. On each node, the data 

can be stored in the FPGA's internal memory. The node 

communicates by DMA transfers with the FPGA. Our 

software driver allows its use from a high-level language 

user program. Due to the triple buffering structure, the 

overall link speed is as fast as the PCIe interface, and 

the FPGA can conveniently process the data as it 

transits through it. Including protocol and software 

overhead, the data rate of the design from one C 

program to another was measured to be 8.5 Gbit/s.  

In future, we plan to extend the same concept to 

large-scale cache-coherent heterogeneous multipro-

cessors using FPGAs, similar to NUMAchine [9].  
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