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1. Introduction 

Video is fundamental component of a wide spectrum of the multimedia embedded systems. 

The great interest for digital as opposed to analog video is because it is easier to transmit 

access, store and manipulate visual information in a digital format. The key obstacle to 

using digital video is the enormous amount of data required to represent video in digital 

format. Compression of the digital video, therefore, is an inevitable solution to overcome 

this obstacle. Consequently, academia and industry have worked toward developing video 

compression algorithms [1]-[3], which like ITU-T H.261, H.263, ISO/IEC MPEG-1, MPEG-2 

and MPEG-4 emerged with a view to reduce the data rate to a manageable level by taking 

advantage of the redundancies present both spatial and temporal domains of the digital 

video. 

The ITU-T H.263 standard is an important standard for low bit rate video coding, enabling 

compression of video sequences to a bit rate below 64 kbps [4]. H.263 coding algorithm can 

be found in different application such as videoconferencing, videophone and video 

emailing. Due to the different profiles and levels of the H.263 standard, every application 

can have specific ratio between performance and quality. Since modern digital video 

communication applications increase both aspects of the H.263 compression, it is therefore 

necessary to achieve best performance in terms of real-time operation. 

The H.263 standard includes several blocks such as Motion Estimation (ME), Discrete 
Cosine Transform (DCT), quantization (Q) and variable length coding (VLC). It was shown 
that some of these parts can be optimized with parallel structures and efficiently 
implemented in hardware/software (HW/SW) partitioned system. However, there exists a 
trade-off between hardware and software implementation. Various factors such as 
flexibility, development cost, power consumption and processing speed requirement should 
be taken into account. Hardware implementation is generally better than software 
implementation in processing speed and power consumption. In contrast, software can give 
a more flexible design solution and also be more suitable for various video applications [5]. 
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Recently, several H.263 encoders have been developed either as software based applications 
[6]-[7] or hardware based VLSI custom chips [8].  
In [6], the H.263 implementation based on general purpose microprocessors, including PCs 
or workstations. All the efforts are focused on the optimization of the code that implements 
the encoder for the target microprocessor. In [7], an architecture based on a Digital Signal 
Processor (DSP) is described to implement a real-time H.263 encoder using fast algorithms 
to reduce the encoder computational complexity. Architecture based on a dedicated 
sequencer and a specialized processor is detailed in [8]. It is implemented on Xilinx FPGA 
and carrying out the basic core of H.263 without motion estimation. The depicted 
architectures lack flexibility because of their dedicated controller. 
In literature, we haven't found any description of combined HW/SW implementation of the 

H.263 encoder on a single chip. The reason is probably the lack of technology that provides 

efficient HW/SW implementation. With the recent advantages in technology from leading 

manufacturers of the programmable devices, such as Xilinx [9] and Altera [10], the proposed 

approach gains importance. In order to take advantages of both software and hardware 

implementation, each functional module of the H.263 video encoder is studied to determine 

a proper way for HW/SW partitioning. Based on this study, DCT and inverse DCT (IDCT) 

algorithm are implemented with fast parallel architectures directly in hardware. Also, the 

quantization and inverse quantization (IQ) are implemented in hardware using NIOS II 

custom instruction logic. These parts are described in VHDL (VHSIC Hardware Description 

language) language and implemented with the NIOS II softcore processor in a single Stratix 

II EP2S60 FPGA (Field Programmable Gate Array) device and the remaining parts are 

performed in software on NIOS II softcore processor and using μClinux , an embedded 

Linux flavour, as operating system. This partitioning has been chosen in order to achieve 

better timing results. 

This paper is organized as follows: section 2 describes the baseline H.263 video encoder. 

Section 3 presents the HW/SW codesign platform. Timing optimization of the H.263 

encoder using the HW/SW codesign is described in section 4. The design environment and 

FPFA implementation of the encoder is presented in section 5. The experiment results are 

shown in section 6. Finally, section 7 concludes the paper. 

2. Baseline H.263 video coding 

The coding structure of H.263 is based on H.261 [11]. In these standards, motion estimation 
and compensated are used to reduce temporal redundancies. DCT based algorithms are 
then used for encoding the motion compensated prediction difference frames. The 
quantized DCT coefficients, motion vector and side information are entropy coded using 
variable length codes. In this section, one describes first the picture formats used by H.263 
encoders and the organization of pictures into smaller structures. It then reviews the general 
coding principles used by this encoder and describes their different blocks. 

A. Picture format and organization 

H.263 supports five standardized picture formats: CIF (Common Intermediate Format), 
4CIF, 16CIF, QCIF (quarte-CIF) and sub-QCIF. Custom picture formats can also be 
negotiated by the encoder. However only the QCIF and sub-QCIF are mandatory for an 
H.263 decoder and the encoder only needs to support one of them.  

www.intechopen.com



An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding   

 

231 

The luminance component of the picture is sampled at these resolutions, while the 
chrominance components, Cb and Cr, are downsampled by two in both the horizontal and 
vertical directions. The picture structure is shown in Fig.1 for the QCIF resolution. Each 
picture in the input video sequence is divided into macroblocks (MB), consisting of four 
luminance blocks of 8 pixels x 8 lines followed by one Cb block and one Cr block, each 
consisting of 8 pixels x 8 lines. A group of blocks (GOB) is defined as an integer number of 
MB rows, a number that is dependent on picture resolution. For example, a GOB consists of 
a single MB row at QCIF resolution. 
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Fig. 1. H.263 picture structure for QCIF resolution 

B. Overview of the H.263 video coding standard 

The block diagram of an H.263 baseline video encoder is shown in Fig.2. The encoder 
operation is based on hybrid differential/transform coding, and is a combination of lossy 
and lossless coding. There are two fundamental modes which are jointly used for maximum 
compression efficiency: the intra and inter modes. Different types of frames correspond to 
these modes. 
In the intra mode, the contents of a video frame are first processed by a DCT. The resulting 
coefficients are quantized with a chosen quantizer step size, thus leading to a loss of 
information. The quantized DCT coefficients are entropy coded using VLC, scanned across 
the picture (often using a zig-zag strategy), and delivered to an encoder buffer. The intra 
mode produces intra frames (I-frames). This kind of frame is needed for the decoder to have 
a reference for prediction. However, I-frames use a large amount of bits, so that they should 
be used sparingly in low bit rate applications. In the inter mode, the same operations are 
applied to the motion-predicted difference between the current frame and the previous (or 
earlier) frame, instead of the frame itself. To this end a motion estimation algorithm is 
applied to the input frame, and the extracted motion information (in the form of motion 
vectors, MV) is used in predicting the following frames, through a motion-compensation 
bloc. In order to avoid a drift between the encoder and decoder due to motion prediction,  
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Fig. 2. Baseline H.263 video encoder block diagram 

the motion compensation bloc needs to use a locally reconstructed version of the 
compressed frame being sent: this explains the presence of an inverse quantizer and an 
inverse discrete cosine transform in the feedback loop. The MV is differentially coded in 
order to realize bit rate savings.  The inter mode produces prediction frames (P-frames) 
which can be predicted from I-frames or others P-frames. These in general use considerably 
less bits than I-frames, and are responsible for the large compression gain. 
1) Motion estimation and compensation: It is often the case that video frames that are close in 
time are also similar. Therefore, when coding a video frame, it would be judicious to make 
as much use as possible of the information presented in a previously coded frame. One 
approach to achieve this goal is to simply consider the difference between the current frame 
and a previous reference frame, as shown in Fig. 3, and code the difference or residual. 
When the two frames are very similar, the difference will be much more efficient to code 
than coding the original frame. In this case, the previous frame is used as an estimate of the 
current frame. 

 

Fig. 3. Block-matching algorithm 

A more sophisticated approach to increase coding efficiency is to work at the macroblock 
level in the current frame, instead of processing the whole frame all at once as described 
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above. The process is called motion compensated prediction, and is based on the 
assumption that most of the motion that the macroblocks undergo between frames is a 
translational motion. This approach attempts to find, for each 16x16 luminance block of a 
macroblock in the current frame, the best matching block in the previous frame. A search 
window is usually defined and bounds the area within which the encoder can perform the 
search for the best matching block. The motion of a macroblock is represented by a motion 
vector that has two components; the first indicating horizontal displacement, and the second 
indicating vertical displacement. Different criteria could be used to measure the closeness of 
two blocks [12]. The most popular measure is the Sum of Absolute Differences (SAD) 
defined by 
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Where , ( , )k lY i j  represents the ( , )i j th  pixel of a 16 x 16 MB from the current picture at the 

spatial location ( , )i j and , ( , )k u l vY i j− − represents the ( , )i j th  pixel of a candidate MB from a 

reference picture at the spatial location ( , )k l  displaced by the vector ( , )i j . To find the 

macroblock producing the minimum mismatch error, we need to compute SAD at several 

locations within a search window. This approach is called full search or exhaustive search, 

and is usually computationally expensive, but on the other hand yields good matching 

results. 
2) DCT Transform: The basic computation element in a DCT-based system is the 
transformation of an NxN image block from the spatial domain to the DCT domain. For the 
video compression standards, N is usually 8. The 8 x 8 DCT is simple, efficient and well 
suited for hardware and software implementations. The 8 x 8 DCT is used to decorrelate the 
8 x 8 blocks of original pixels or motion compensated difference pixels and to compact their 
energy into few coefficient as possible. The mathematical formulation for the (two-
dimensional) 2-D DCT is shown in equation (2) [13]. 
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The 2-D DCT in (2) transforms an 8 x 8 block of pictures samples xi,j into spatial frequency 
components yk,l for 0 ≤ k,   j ≤ l. The 2-D IDCT in (3) performs the inverse transform for 0 ≤ i, j 
≤ 7. 
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Although exact reconstruction can be theoretically achieved, it is often not possible using 
finite-precision arithmetic. While forward DCT errors can be tolerated, IDCT errors must 
meet the H.263 standard if compliance is to be achieved. 
3) Quantization: The quantization is a significant source of compression in the encoder bit 
stream. Quantization takes advantage of the low sensitivity of the eye to reconstruction 
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errors related to high spatial frequencies as opposed to those related to low frequencies [14]. 
Quick high frequency changes can often not be seen, and may be discarded. Slow linear 
changes in intensity or color are important to the eye. Therefore, the basic idea of the 
quantization is to eliminate as many of the nonzero DCT coefficients corresponding to high 
frequency components. 
Every element in the DCT output matrix is quantized using a corresponding quantization 
value in a quantization matrix. The quantizers consist of equally spaced reconstruction 
levels with a dead zone centered at zero. In baseline H.263, quantization is performed using 
the same step size within a macroblock by working with a uniform quantization matrix. 
Except for the first coefficient of INTRA blocks is nominally the transform DC value 
uniformly quantized with a step size of eight, even quantization levels in the range from 2 to 
62 are allowed. The quantized coefficients are then rounded to the nearest integer value. The 
net effect of the quantization is usually a reduced variance between the original DCT 
coefficients as compared to the variance between the original DCT coefficients. Another 
important effect is a reduction in the number of nonzero coefficients. 
4) Entropy coding: Entropy coding is performed by means of VLC, and is used to efficiently 
represent the estimated motion vectors and the quantized DCT coefficients. Motion vectors 
are first predicted by setting their component values to median values of those of 
neighboring motion vectors already transmitted: the motion vectors of the macroblocks to 
the left, above, and above right of the current macroblock. The difference motion vectors are 
then VLC coded. 

 

Fig. 4. Zig-zag positioning of quantized transform coefficients 

As for the quantized DCT coefficients, they are first converted into a one-dimensional array 
for entropy coding by an ordered zigzag scanning operation. The resulting array contains a 
number of nonzero entries and probably many zero entries. This rearrangement places the 
DC coefficient first in the array, and the remaining AC coefficients are ordered from low to 
high frequency. This scan pattern is illustrated in Fig. 4. The rearrangement array is coded 
using three parameters (LAST, RUN, LEVEL). The symbol RUN is defined as the distance 
between two nonzero coefficients in the array (i.e., the number of zeros in a segment). The 
symbol LEVEL is the nonzero value immediately following a sequence of zeros. The symbol 
LAST, when set to 1, is used to indicate the last segment in the array. This coding method 
produces a compact representation of the 8x8 DCT coefficients, as a large number of the 
coefficients are normally quantized to zero and the reordering results (ideally) in the 
grouping of long runs of consecutive zero values. Other information such as prediction 
types and quantizer indication is also entropy coded by means of VLC. 
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3. The HW/SW codesign platform 

A.  FPGA platform 

Field Programmable Devices are becoming increasingly popular for implementation of 
digital circuits. The case of FPGA is the most spectacular and is due to several advantages, 
such as their fast manufacturing turnaround time, low start-up costs and particularly ease of 
design. With increasing device densities, audacious challenges become feasible and the 
integration of embedded SoPC (System on Programmable Chip) systems is significantly 
improved [15]. 
Furthermore, reconfigurable systems on a chip became a reality with softcore processor, 
which are a microprocessor fully described in software, usually in a VHDL, and capable to 
be synthesized in programmable hardware, such as FPGA. Softcore processors can be easily 
customized to the needs of a specific target application (e.g. multimedia embedded 
systems). The two major FPGA manufacturers provide commercial softcore processors. 
Xilinx offers its MicroBlaze processor [16], while Altera has Nios and Nios II processors [17]. 
The benefit of a softcore processor is to add a micro-programmed logic that introduces more 
flexibility. A HW/SW codesign approach is then possible and a particular functionality can 
be developed in software for flexibility and upgrading completed with hardware IP blocks 
(Intellectual Property) for cost reduction and performances. 
 

 

Fig. 5. Stratix II Development Board 

B. The NIOS II development board - the HW/SW platform 

For SW implementation of image and video algorithms, the use of a microprocessor is 
required. The use of additional HW for optimization contributes to the overall performance 
of the algorithm. For the highest degree of HW/SW integration, customization and 
configurability, a softcore processor was used.  
For the main processing stage, the Altera NIOS II development board was chosen (Fig. 5) 
[18]. The core of the board is the Altera Stratix II EP2S60F672C3 FPGA. Several peripheral 
devices and connectors (UART, LCD, VGA, Ethernet etc) serve as interfaces between the 
Stratix II FPGA and the external environment. 8MByte FLASH, 16MByte SRAM and 1MByte 
SRAM allow implementation of complex FPGA video applications. For the video embedded 
systems, we are using flash memory, SRAM, SDRAM, UART, timer, Ethernet and Camera 
for frame acquisition.  
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Fig. 6. NIOS II embedded system 

Altera introduces the SOPC builder tool [19], for the quick creation and easy evaluation of 
embedded systems. The integration off-the-shelf intellectual property (IP) as well as 
reusable custom components is realized in a friendly way, reducing the required time to set 
up a SoPC and enabling to construct and designs in hours instead of weeks. Fig. 6 presents 
the Stratix II FPGA with some of the customizable peripherals and external memories, as an 
example of their applicability. 
1) NIOS II CPU: The Altera NIOS II softcore processor (FAST version) is a 32-bits scalar RISC 
with Harvard architecture, 6 stages pipeline, 1-way direct-mapped 64KB data cache, 1-way 
direct-mapped 64KB instruction cache and can execute up to 150 MIPS [17].  
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Fig. 7. NIOS II processor core block diagram 

The main interest of this softcore processor is its extensibility and adaptability. Indeed, users 
can incorporate custom logic directly into the NIOS II Arithmetic Logic Unit (ALU) [20]. 
Furthermore, users can connect into the FPGA the on-chip processor and custom 
peripherals to a dedicated bus (Avalon Bus). Thus, users can define their instructions and 
processor peripherals to optimize the system for a specific application. Fig.7 show the block 
diagram of the NIOS II softcore processor core which defines the following user-visible 
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functional units: register file, arithmetic logic unit, interface to custom instruction logic, 
interrupt controller, instruction and data bus, instruction and data cache memories and 
JTAG debug module. 
2) NIOS II custom instruction logic: With Nios II custom instructions [21], system designers 
are able to take full advantage of the flexibility of FPGA to meet system performance 
requirements. Custom instructions allow system designers to add up to 256 custom 
functionalities to the Nios II processor ALU. As shown in Fig.8, the custom instruction logic 
connects directly to the Nios II ALU (Arithmetic Logic Unit). There are different custom 
instruction architectures available to suit the application requirements. The architectures 
range from simple, single-cycle combinatorial architectures to extended variable-length, 
multi-cycle custom instruction architectures. The most common type of implementation is 
the single-cycle combinatorial architecture that allows for custom logic realizations with one 
or two inputs and one output operand. 
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Fig. 8. Custom Instruction Logic Connects to the Nios II ALU 

Using the custom instruction in an ANSI C program is straightforward. Two kinds of define 
macros are used as the instructions can have one or two input operands: 
- #define INSTR1(X) __builtin_custom_ini(Code_INSTR1,X) 
- #define INSTR2(X,Y) __builtin_custom_ini(Code_INSTR2,X,Y) 

C) The HW/SW codesign process 

The HW/SW codesign process for the implementation into the platform can be summarized 
in three main steps: 
- Algorithm implementation in SW. 
- Detecting critical software parts. 
- HW/SW optimization of the algorithm. 
The first step is implementing algorithm in SW. The ANSI C language and the assembly 
programming language are supported. Generally, the preferable choice is the 
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implementation of the SW code using ANSI C. In this way, instead of rewriting the code 
from scratch, the use of an already existing code for the algorithm shortens the design cycle. 
The portability of ANSI C allows also the code to be created and tested for functionality on 
other platforms. 
Once the SW code has been tested for functionality and implemented into the target 
platform, the performance analysis has to be applied. In order to reach the required 
constraints, critical software parts has to be detected and optimized.  To have precision on 
the time processing, a CPU timer can be used for the cycle-accurate time-frame estimation of 
a focused part of the SW code execution. 
The final step is the SW code refinement and optimization of critical SW parts using HW 
description. The general idea is to implement parallel structures in HW for fastest data 
processing. The SW and HW parts are dependent and, regarding the interface between 
them, can be incorporated into the algorithm as separate HW component (access register) or 
custom instruction (the custom instruction is integrated directly into CPU as an additional 
instruction). 
In the HW/SW codesign process, the designer iterates through the last two design steps 
until the desired performance is obtained. 

D) Using embedded linux with codesign 

The HW/SW codesign process uses different kinds of peripherals and memories. The basic 
idea is to use Linux in an embedded system context. Linux for embedded systems or 
embedded Linux gives us several benefits: 
- Linux is ported to most of processors with or without Memory Management Unit 

(MMU). A Linux port is for example available for the NIOS II softcore. 
- Most of classical peripherals are ported to Linux. 
- A file system is available for data storage. 
- A network connectivity based on Internet protocols is well suited for data recovering. 
- Open source Linux projects may be used. 
The embedded Linux environment is also a real advantage for the software development 
during the HW/SW codesign process. 

4. Timing optimisation of the H.263 encoder 

A) Timing optimisation 

In order to optimize and achieve best performance in terms of real-time operation of the 
H.263 video encoder, we have used the HW/SW codesign process. At first, the algorithms 
were coded in ANSI C programming language on a PC platform. The tested SW code was 
then rebuilt and transferred into the Nios II system. The execution times have been 
measured with the high_res_timer that provides the number of processor clock cycles for 
the execution time. Afterwards, the SW critical parts were implemented in HW in VHDL 
language. 
In our experiments of coding a general video clip in QCIF (Quarter Common Intermediate 
Format: Spatial resolution of 176x144 and temporal resolution 10 frames/s (fps)) format. The 
average frame rate achieved on a NIOS II system is only about 0.7 fps. For this reason, we 
investigated the resource distribution of the H.263 video encoder which uses full search 
motion estimation, search window size +/-7 and fixed quantization parameters QP=16. 
Fig.9 shows the distribution of the execution time of Miss America and Carphone sequences. 
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In this figure ME, DCT/IDCT and Q/IQ which utilize 23.1%-27.7%, 67.3-71.9% and 2%-2.2% 
of the total execution time respectively are the three primary computationally intensive 
components. Thus, main purpose is to improve these three components using HW/SW 
codesign 
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Fig. 9. Execution time distribution of (a) Miss America and (b) Carphone sequences at QCIF 
resolution 

B) Hardware/Software partitioning 

The main idea of our encoder is to exploit advantages of the parallel structures which can be 

efficiently implemented in hardware. Hardware implementation of 2-D DCT/IDCT and 

Q/IQ promise better results compared to software based algorithms. The key point of a 

parallel hardware structure is a reduced number of operation and ability to function 

parallel. However, there is still a good chance to reduce the complexity of the ME in 

software using fast motion estimation algorithms.   

1) Optimization in Motion estimation: Motion estimation (ME) removes temporal redundancy 

between successive frames in digital video. The most popular technique for motion 

estimation is the block-matching algorithm [11]. Among the block-matching algorithms, the 

full search or exhaustive search algorithm examines all search points inside the search area. 

Therefore, the amount of its computation is proportion to the size of the search window.  
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Although it finds the best possible match, it requires a very large computational complexity 
(600 MOPS “million operations per second” for QCIF@10 Hz and +/-15 search window). 
Hence, many fast algorithms are proposed in literature such as the hexagon-based search 
[22], the diamond search [23]-[24], the block-based gradient descent search [25] and the 
cross-diamond search [26], which allow to reduce the computational complexity at the price 
of slightly performance loss. The basic principle of these fast algorithms is dividing the 
search process into a few sequential steps and choosing the next search direction according 
to the current search result. 
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Comparison of ME Algorithm – Carphone @ QCIF, 10 fps 
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Fig. 10. Comparison of motion estimation algorithms of: (a) Miss America and (b) Carphone 
at QCIF resolution and 10fps 
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In order to reduce the encoder computational complexity, we analyze the performance and 
speed of the different fast algorithms. The average peak signal-to-noise ratio (PSNR) is used 
as a distortion measure, and is given by 

 
2

1

1 255
10log

( )

M

n nn

PSNR
M o r=

= −∑  (4) 

Where M is the number of samples and no  and nr  are the amplitudes of the original and 

reconstructed pictures, respectively. The average PSNR of all encoded pictures is here used 

as a measure of objective quality. 
Fig.10 illustrates the rate-distortion performance of several popular block-matching 
algorithms namely full search (FS), hexagon-based search (HEXBS), diamond search (DS), 
block-based gradient descent search (BBGDS) and cross-diamond search (CDS) algorithms. 
Fig.11 presents the clock number necessary to perform these fast motion estimation 
algorithms (HEXBS, DS, BBGDS and CDS). For Miss America and Carphone sequences, we 
can conclude, using the HEXBS method, a 12.5 to 13 fold speed increase on motion 
estimation is achieved compared to the FS method whilst the PSNR degradation is marginal. 
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Fig. 11. Cycles required to perform the fast motion estimation algorithms 

The HEXBS is the popular fast block-matching algorithms and it can reduce computational 
complexity. The HEXBS algorithm employs two search patterns as illustrated in Fig. 12. The 
first pattern, called large hexagon search pattern (LHSP), comprises seven checking points 
from which six points surround the center one to compose a hexagon shape. The second 
pattern consisting of five checking points forms a smaller hexagon shape, called small 
hexagon search pattern (SHSP). 
In the searching procedure of the HEXBS algorithm, LHSP is repeatedly used until the step 
in which the minimum block distortion (MBD) occurs at the center point. The search pattern 
is then switched from LHSP to SHSP as reaching to the final search stage. Among the five 
checking points in SHSP, the position yielding the MBD provides the motion vector of the 
best matching block. Fig. 13 shows an example of the search path strategy leading to the 
motion vector (-3, -1), where 20 (7+3+3+4) search points are evaluated in 4 steps 
sequentially. 
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(a) Large hexagonal search pattern (LHSP) (b) Small hexagonal search pattern (SHSP) 

Fig. 12. Two search patterns derieved are employed in the HS algorithm 

The procedure of the HEXBS is described below: 
Step 1. The initial LHSP is centered at the origin of the search window, and the 7 checking 

points of LHSP are tested. If the MBD point calculated is located at the center 
position, go to Step 3; otherwise, go to Step 2. 

Step 2. The MBD point found in the previous search step is repositioned as the center point 
to form a new LHSP. If the new MBD point obtained is located at the center 
position, go to Step 3; otherwise, recursively repeat this step. 

Step 3. Switch the search pattern from LHSP to SHSP. The MBD point found in this step is 
the final solution of the motion vector which points to the best matching-block. 
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Fig. 13. Search path example which leads to the motion vector (-3, -1) in four search steps 

2) Optimization in DCT and IDCT: Since the straightforward implementation of (2) and (3) are 
computationally expensive (with 4096 multiplications), many researches have been done to 
optimize the DCT/IDCT computational effort using the fast algorithms such as Lee [27], 
Chen [28] and Loeffler [29]. Most of the efforts have been devoted to reduce the number of 
operations, mainly multiplications and additions. In our DCT/IDCT hardware 
implementation, we use an 8-point one-dimensional (1-D) DCT/IDCT algorithm, proposed 
by van Eijdhoven and Sijstermans [30]. It was selected due the minimum required number 
of additions and multiplications (11 Multiplications and 29 additions). This algorithm is 
obtained by a slight modification of the original Loeffler algorithm [29], which provides one 
of the most computationally efficient 1-D DCT/IDCT calculation, as compared with other 
known algorithms [31]-[33]. The modified Loeffler algorithm for calculating 8-point 1-D 
DCT is illustrated in Fig.14. 
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Fig. 14. The 8-point DCT modified Loeffler algorithm 

The stages of the algorithm numbered 1 to 4 are parts that have to be executed in serial 
mode due to the data dependency. However, computation within the first stage can be 
parallelized. In stage 2, the algorithm splits in two parts: one for the even coefficients, the 
other for the odd ones. The even part is nothing else than a 4 points DCT, again separated in 
even and odd parts in stage3. The round block in figure 14 signifies a multiplication 

by 1 2 . In Fig.15, we present the butterfly block and the equations associated. 
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Fig. 15. The Butterfly block and its associated equations 

The rectangular block depicts a rotation, which transforms a pair of inputs [I0,I1] into 
outputs [O0,O1]. The symbol and associated equations are depicted in Fig. 16. 
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Fig. 16. The rotator block and its associated equations 

The rotator block operation can be calculated using only 3 multiplications and 3 additions 
instead of 4 multiplications and 2 additions. This can be done by using the equivalence 
showed in the following equations. 
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For the fast computation of two-dimensional (2-D) DCT/IDCT, there are two categories: 

row/column approach from 1-D DCT/IDCT [34]-[36] and direct 2-D DCT/IDCT [37]-[39]. 

However, the implementation of the direct 2-D DCT/IDCT requires much more effort and 

large area than that of the row/column approach [40]-[41] which is used to implement 2-D 

DCT/IDCT algorithms. 

For the row/column approach, the 1-D DCT/IDCT of each row of input data is taken, and 
these intermediate values are transposed. Then, the 1-D DCT/IDCT of each row of the 
transposed values results in the 2-D DCT/IDCT. The modified Loeffler algorithm requires 
only 11 multiplications for the 8-point 1-D DCT/IDCT and 176 multiplications for the 
row/column 2-D DCT/IDCT. 
3) Optimization in Quantization and Inverse Quantization:  the quantization equations are not 
standardized in H.263 the ITU has suggested two quantizers in their Test model 8 (TMN8) 
[42] corresponding to INTRA and INTER modes and are given in (6) 

 

,
2.

2 ,
2.

COF
INTRA

QP
LEVEL QP

COF
INTER

QP

⎧⎪⎪⎪= ⎨ −⎪⎪⎪⎩
 (6) 

The INTRA DC coefficient is uniformly quantized with a quantized step of 8. The 
quantization parameter QP may take integer value from 1 to 31. COF stands for a transform 
coefficient to be quantized. LEVEL stands for the absolute value of the quantized version of 
the transform coefficient. 
These equations are useful as a reference not only because they are commonly used as a 
reference model, but also because studies performed by the ITU during the standardization 
process [43] indicated that the quantization equations in (6) were nearly optimal subject to 
the constraints of uniform scalar quantization with a dead zone.  
The basic inverse quantization reconstruction rule for all non-zero quantized coefficients is 
defined in equation 7 which give the relationship between coefficient levels (LEVEL), 
quantization parameter (QP) and reconstructed coefficients (REC) 

 
( ). 2. 1 , " "

.(2. 1) 1, " "

QP LEVEL if QP odd
REC

QP LEVEL if QP even

⎧ + =⎪= ⎨ + − =⎪⎩
 (7) 

After calculation of |REC|, the sign is added to obtain REC:  

 ( ).REC sign LEVEL REC=  (8) 

The quantization and inverse quantization equations (6 and 7 respectively) are a regular 
formula and use multi-cycle to code data with NIOS II processor. To improve performance 
of our encoder, we can use single-cycle combinatorial NIOS II custom instruction logic to 
implement these equations. The custom instruction interface for quantization should be 
presented as in Fig. 17. As the processor need a 32-bit data interface. The defined interface 
are 32-bit input data (COF and QP which is fixed at 16 in our cas) and the output data 
(LEVEL). 
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Fig. 17. Custom instruction interface for quantization 

5. Design environment and FPGA implementation of H.263 encoder 

A. Overview of the STRATIX II FPGA architecture 

The Altera Stratix II EP2S60 FPGA is based on 1.2V, 90 nm technologies with a density that 

reaches 48352 Adaptive look-up tables (ALUTs), 310 KB of Embedded System Blocs (ESBs), 

288 DSP blocks and 493 Input/Output Blocks (IOBs) [44]-[45].  

 

 

Fig. 18. Overview of Stratix II Die 

An overview of the resources available in a Stratix II die is shown in Fig. 18. Three main 

advantages of this component led us to this choice. Firstly, Stratix II is optimized to 

maximize the performance benefits of SoPC integration based on NIOS II embedded 

processor. Secondly, Stratix II introduces DSP cores for signal processing applications. These 

embedded DSP Blocks have been optimized to implement several DSP functions with 

maximum performance and minimum logic resource utilization. The DSP blocks comprise a 

number of multipliers and adders. These can be configured in various widths to support 

multiply-add operations ranging from 9x9-bit to 36x36-bit, and including a wide range of 

operations from multiplication only, to sum of products, and complex arithmetic 

multiplication. Lastly, the Stratix II device incorporates a configurable internal memory 

called TriMatrix memory which is composed of three sizes of embedded RAM blocks. The 

Stratix II EP2S60 TriMatrix memory includes 329 M512 blocks (32x18-bit), 255 M4K blocks 

(128x36-bit) and 2 M-RAM (4Kx144-bit). Each of these blocks can be configured to support a 

wide range of features and to synthesize a wide variety of RAM (FIFO, double ports). With 

up to 310 KB of fast RAM, the TriMatrix memory structure is therefore appropriate for 

handling the bottlenecks arising in video embedded system. 

www.intechopen.com



 Effective Video Coding for Multimedia Applications 
 

 

246 

B. FPGA Implementation of H.263 Video Encoder  

The block diagram of the implemented H.263 encoder is shown in Fig.19. It is composed of 
three parts: a NIOS II softcore processor and 2-D DCT and 2-D IDCT hardware core. The 
main processing core of our system is the NIOS II CPU which is connected to hardware 
peripherals via a custom Altera’s Avalon bus. The bus is a configurable bus architecture that 
is auto generated to fit the interconnection needs of the designer peripherals. The Avalon 
bus consists of the control, data and address signals and arbitration logic that are connected 
to the peripheral components. 
 

 

Fig. 19. Block diagram of the implemented H.263 encoder 

Our system can receive frames from camera. For this purpose, we have developed a Camera 
interface for video acquisition [46]. The H.263 generated bit-stream has been downloaded 
through Ethernet Interface (FTP server) to PC platform in order to visualize the coded frames. 
Every hardware core is described in VHDL. Using Altera SOPC builder, the system was 
designed according to the block schematic diagram. The VHDL files were generated and the 
system was routed, compiled and downloaded into the FPGA using Altera Quartus II 
software. We have used the ModelsimTM simulator from Model Technology for circuit 
simulation. 
1) System Environment: When the hardware is designed and fitted into a FPGA, there are two 
options how to port software applications on the board. The first is to use Linux operating 

system. μClinux is a port of the Linux operating system for embedded processors lacking a 
Memory Management Units (MMUs) [47]. Originally targeting the Motorola’s 68K processor 

series, it now supports several architectures including NIOS II. The port of μClinux on the 

NIOS II core is licensed under the terms of the GNU General Public License (GPL) [48]. 

The second option is to use the monitor program which is loaded into the RAM of the NIOS 
II controller. This method is used during the development cycle. When the application 
meets the requirements, it is compiled for the Linux operating system. 
2) 2-D DCT/IDCT coprocessor core: The 2-D DCT/IDCT transformation is implemented using 
the row/column approach which requires three steps: 8-point 1-D DCT/IDCT along the 
rows, a memory transposition and another 8-point DCT/IDCT along the transposed 
columns. Fig. 20 is a block diagram of the 2-D DCT/IDCT coprocessor core, showing the 
main interfaces and functional blocks. 
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Fig. 20. 2-D DCT/IDCT coprocessor core  

The controller is the control unit for the DCT/IDCT transformation. It receives input control 
signals (Reset, Start) and generates all the internal control signals for each stage and the output 
control signals for Avalon Bus communication (Dataavailable, Readyfordata, Waitrequest). 
When the Start signal is activated, the controller enables input of the first data row through 
Data_in signal. It then activates the 1-D DCT/IDCT unit for row data treatment. The first row 
of the transpose memory stores the results in an intermediate memory. This process repeats 
for the remaining seven rows of the input block. Next, the 1-D DCT/IDCT unit receives input 
data from the columns of the transpose memory under the MUX. The results of the column-
wise 1-D DCT/IDCT are available through the Data_out signal.  
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Fig. 21. Overview of the data path of a DMA with 2-D DCT/IDCT coprocessor and SDRAM 

Data_in and Data_out signals are connected to the Avalon Bus. The 2-D DCT/IDCT 
coprocessor read/store the data from/to SDRAM through this Bus. Using processor to 
move data between SDRAM and 2-D DCT/IDCT coprocessor is less efficient. The system 
performance is greatly improved when the data are passed to the coprocessor with 
hardware. This is based on the concept of minimizing the interaction between the NIOS II 
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processor and the 2-D DCT/IDCT coprocessor. For better performance, data is handled by 
Direct Memory Access (DMA) as shown in Fig.21.  
The 1-D DCT/IDCT unit based modified Loeffler algorithm which use 11 multipliers and 29 
adders. In order to optimize speed and area of the 1-D DCT/IDCT implementation, we use 
Altera embedded DSP blocks to implement multipliers [49]. To conform to IEEE 1180-1990 
accuracy specifications [50], the multiplier constants in Loeffler algorithm require a 12-bit 
representation. The DCT/IDCT use 24 internal registers to store intermediate values. The 
arithmetic units and registers use multiplexers to select inputs from internal and external 
registers. With these resources, a 1-D DCT/IDCT operation completes in 12 clock cycles and 
overall 2-D DCT/IDCT process concludes in 97 clock cycles. 
The transpose memory is an internal memory of 64 words that holds the intermediate values 
from the first eight 1-D DCT/IDCT. The transpose memory receives input in a row-wise 
fashion and provides outputs in a column-wise fashion, thus performing a matrix 
transposition. Each row of the transposition memory is enabled for input from the 1-D 
DCT/IDCT unit after the first eight 1-D DCT/IDCT. For the next eight 1-D DCT/IDCT the 
column of the transposition memory output their data to the 1-D DCT/IDCT unit. 

C. Implementation results 
In table 1, implementation results of the H.263 encoder in Stratix II EP2S60 FPGA are shown. 
 

 
NIOS II
(FAST) 

2-D DCT 
coprocessor

2-D IDCT 
coprocessor

ALUTs 11% 3% 3% 
ESBs 44% 1% 1% 
DSPs 3% 8% 8% 
IOBs 41% 15% 15% 

Fmax (MHz) 227 133 139 

Table 1. The implementation results in Stratix II FPGA 

Results in the Table 1 have been obtained with separate implementation of the particular 
modules (NIOS II softcore processor, 2-D DCT and 2-D IDCT coprocessor core). The HW 
custom instruction for quantization and inverse quantization use only 1% of the ALUTs. The 
entire H.263 encoder utilizes 23% of the ALUTs, 44% of the ESBs, 18% of the DSP blocks and 
41% of the IOBs. We can see that there is sufficient free space for other applications. The 
whole design works with a 120 MHz system clock. The implementation of H.263 encoder on 
the FPGA allows us to obtain a SoPC system.  

6. Experimental results 

The results discussed in this section are based on our HW/SW implementation of the H.263 
which is tested on the Altera NIOS II development board. The results illustrate the tradeoffs 
among compression performance and coding speed. For all experiments the QCIF test 
sequences coded at 10frames/s with fixed quantization parameter QP=16. We focus on the 
following video test sequences: “Carphone”, “News”, “Claire”, and “Miss America”. These 
test sequences have different movement and camera operations. Carphone has frequent 
motion and camera movement. News has a combination of fast and slow motion which 
includes rotation movement and slow motion. Claire and Miss America have little motion 
with a stable camera. 
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 Software Hardware Speed up

2-D DCT 159881 720 222 

2-D IDCT 159881 720 222 

Q 4736 64 74 

IQ 2560 64 40 

Table 2. Clock cycles to code 8x8 block 

Once the whole design are described in VHDL at the RTL level and fitted into the FPGA, we 
have determined coding time of H.263 encoder before and after timing optimization. The 
processor core clock and system clock are set to 120 MHz, thus 8.33 ns delay for each coded 
data is required. Table 2 shows a comparison of the clock cycles necessary to code an 8x8 
block by software and hardware using the 2-D DCT, 2-D IDCT, Q and IQ.  
Fig.22 presents a breakdown of the execution time before and after optimization of the 
H.263 encoder. The percentage distribution was very similar for all four sequences, so only 
the results for the Carphone and Miss America sequences are shown here. However, we can 
note that The HW/SW implementation of the H.263 provides a 15.8-16.5 times improvement 
in coding speed compared to software based solution.  
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Fig. 22. CPU time percentage according to the processing before and after optimization of (a) 
Carphone and (b) Miss America sequences 

The whole project was made under μClinux and performed on the NIOS II softcore 
processor. The H.263 generated bit-stream is send to the PC through Ethernet to analyse the 
results. The Fig.23 presents the original and the two reconstructed (one from SW, the other 
from HW/SW) of the 12th frame of the test video sequences. Also, Table 3 shows 
measurements of the PSNR of the luminance signal, Bit rate and coding speed. 
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Claire sequence PSNR-Y = 33.67 dB PSNR-Y = 33.44 dB 

 

Miss America sequence PSNR-Y = 35.2 dB PSNR-Y = 34.95 dB 

 

News sequence PSNR-Y = 29.72 dB PSNR-Y = 29.66 dB 

 

Carphone sequence PSNR-Y = 30.19 dB PSNR-Y = 30.08 dB 

(a) (b) (c) 

Fig. 23. (a) Original, (b) Reconstructed from SW and (c) Reconstructed from HW/SW of the 
12th frame of the test video sequences 
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Sequence 

PSNR-Y
(dB) 

Bit Rate
(Kbps) 

Coding speed
(fps) 

Software Encoder 

Claire 33.67 8.22 0.78 

Miss America 35.2 8.5 0.76 

News 29.72 21.13 0.7 

Carphone 30.19 29.82 0.63 

HW/SW Encoder 

Claire 33.44 8.1 11.47 

Miss America 34.95 8.44 12.6 

News 29.66 21.35 10.94 

Carphone 30.08 30.25 10 

Table 3. Experimental results for HW/SW implementation of the H.263 video encoder 

The quantities in Table 3 show the subjective visual impression that the image quality of the 
decompressed bit stream of the HW/SW encoder is nearly as good as it is with the output of 
the software encoder. 
These results prove that after optimization our H.263 encoder can process 10-12.6 frames 
QCIF/sec which depend on the CPU clock frequency.  

7. Conclusions 

In this paper, we have described an efficient HW/SW codesign architecture of the H.263 
video encoder into an embedded Linux environment. We have proposed timing 
optimization of the encoder. We have shown that a 15.8-16.5 times improvement in coding 
speed compared to software based solution can be obtained using the HW/SW 
implementation. We have presented a modern implementation method where the complex 
embedded system (H.263 encoder) can be efficiently HW/SW partitioned and optimized. 
Our architecture codes QCIF at 10-12.6 frames/sec with a 120 MHz system clock and can be 
improved with another FPGA platform having higher operating frequency.  
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