
12

An FPGA Implementation of HW/SW Codesign
Architecture for H.263 Video Coding

A. Ben Atitallah1,2, P. Kadionik2, F. Ghozzi1, P.Nouel2,
N. Masmoudi1 and H. Levi2

1Laboratory of Electronics and Information Technology National Engineers School of Sfax
(E.N.I.S.), BP W 3038 Sfax

2IXL laboratory –ENSEIRB - University Bordeaux 1 - CNRS UMR 5818,
351 Cours de la Libération, 33 405 Talence Cedex,

1Tunisia
2France

1. Introduction

Video is fundamental component of a wide spectrum of the multimedia embedded systems.

The great interest for digital as opposed to analog video is because it is easier to transmit

access, store and manipulate visual information in a digital format. The key obstacle to

using digital video is the enormous amount of data required to represent video in digital

format. Compression of the digital video, therefore, is an inevitable solution to overcome

this obstacle. Consequently, academia and industry have worked toward developing video

compression algorithms [1]-[3], which like ITU-T H.261, H.263, ISO/IEC MPEG-1, MPEG-2

and MPEG-4 emerged with a view to reduce the data rate to a manageable level by taking

advantage of the redundancies present both spatial and temporal domains of the digital

video.

The ITU-T H.263 standard is an important standard for low bit rate video coding, enabling

compression of video sequences to a bit rate below 64 kbps [4]. H.263 coding algorithm can

be found in different application such as videoconferencing, videophone and video

emailing. Due to the different profiles and levels of the H.263 standard, every application

can have specific ratio between performance and quality. Since modern digital video

communication applications increase both aspects of the H.263 compression, it is therefore

necessary to achieve best performance in terms of real-time operation.

The H.263 standard includes several blocks such as Motion Estimation (ME), Discrete
Cosine Transform (DCT), quantization (Q) and variable length coding (VLC). It was shown
that some of these parts can be optimized with parallel structures and efficiently
implemented in hardware/software (HW/SW) partitioned system. However, there exists a
trade-off between hardware and software implementation. Various factors such as
flexibility, development cost, power consumption and processing speed requirement should
be taken into account. Hardware implementation is generally better than software
implementation in processing speed and power consumption. In contrast, software can give
a more flexible design solution and also be more suitable for various video applications [5].

www.intechopen.com

 Effective Video Coding for Multimedia Applications

230

Recently, several H.263 encoders have been developed either as software based applications
[6]-[7] or hardware based VLSI custom chips [8].
In [6], the H.263 implementation based on general purpose microprocessors, including PCs
or workstations. All the efforts are focused on the optimization of the code that implements
the encoder for the target microprocessor. In [7], an architecture based on a Digital Signal
Processor (DSP) is described to implement a real-time H.263 encoder using fast algorithms
to reduce the encoder computational complexity. Architecture based on a dedicated
sequencer and a specialized processor is detailed in [8]. It is implemented on Xilinx FPGA
and carrying out the basic core of H.263 without motion estimation. The depicted
architectures lack flexibility because of their dedicated controller.
In literature, we haven't found any description of combined HW/SW implementation of the

H.263 encoder on a single chip. The reason is probably the lack of technology that provides

efficient HW/SW implementation. With the recent advantages in technology from leading

manufacturers of the programmable devices, such as Xilinx [9] and Altera [10], the proposed

approach gains importance. In order to take advantages of both software and hardware

implementation, each functional module of the H.263 video encoder is studied to determine

a proper way for HW/SW partitioning. Based on this study, DCT and inverse DCT (IDCT)

algorithm are implemented with fast parallel architectures directly in hardware. Also, the

quantization and inverse quantization (IQ) are implemented in hardware using NIOS II

custom instruction logic. These parts are described in VHDL (VHSIC Hardware Description

language) language and implemented with the NIOS II softcore processor in a single Stratix

II EP2S60 FPGA (Field Programmable Gate Array) device and the remaining parts are

performed in software on NIOS II softcore processor and using μClinux , an embedded

Linux flavour, as operating system. This partitioning has been chosen in order to achieve

better timing results.

This paper is organized as follows: section 2 describes the baseline H.263 video encoder.

Section 3 presents the HW/SW codesign platform. Timing optimization of the H.263

encoder using the HW/SW codesign is described in section 4. The design environment and

FPFA implementation of the encoder is presented in section 5. The experiment results are

shown in section 6. Finally, section 7 concludes the paper.

2. Baseline H.263 video coding

The coding structure of H.263 is based on H.261 [11]. In these standards, motion estimation
and compensated are used to reduce temporal redundancies. DCT based algorithms are
then used for encoding the motion compensated prediction difference frames. The
quantized DCT coefficients, motion vector and side information are entropy coded using
variable length codes. In this section, one describes first the picture formats used by H.263
encoders and the organization of pictures into smaller structures. It then reviews the general
coding principles used by this encoder and describes their different blocks.

A. Picture format and organization

H.263 supports five standardized picture formats: CIF (Common Intermediate Format),
4CIF, 16CIF, QCIF (quarte-CIF) and sub-QCIF. Custom picture formats can also be
negotiated by the encoder. However only the QCIF and sub-QCIF are mandatory for an
H.263 decoder and the encoder only needs to support one of them.

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

231

The luminance component of the picture is sampled at these resolutions, while the
chrominance components, Cb and Cr, are downsampled by two in both the horizontal and
vertical directions. The picture structure is shown in Fig.1 for the QCIF resolution. Each
picture in the input video sequence is divided into macroblocks (MB), consisting of four
luminance blocks of 8 pixels x 8 lines followed by one Cb block and one Cr block, each
consisting of 8 pixels x 8 lines. A group of blocks (GOB) is defined as an integer number of
MB rows, a number that is dependent on picture resolution. For example, a GOB consists of
a single MB row at QCIF resolution.

GOB9

GOB8

GOB7

GOB6

GOB5

GOB4

GOB3

GOB2

GOB1

MB2 MB3 MB11 MB10MB9 MB8 MB7 MB6 MB5 MB4

144
lines

Cr Cb Y4 Y3

Y2 Y1

1 8

57 64

Picture
Format

Group of
Blocks (GOB)

Macroblock (MB)

Block

8

8

MB1

176 pels

Fig. 1. H.263 picture structure for QCIF resolution

B. Overview of the H.263 video coding standard

The block diagram of an H.263 baseline video encoder is shown in Fig.2. The encoder
operation is based on hybrid differential/transform coding, and is a combination of lossy
and lossless coding. There are two fundamental modes which are jointly used for maximum
compression efficiency: the intra and inter modes. Different types of frames correspond to
these modes.
In the intra mode, the contents of a video frame are first processed by a DCT. The resulting
coefficients are quantized with a chosen quantizer step size, thus leading to a loss of
information. The quantized DCT coefficients are entropy coded using VLC, scanned across
the picture (often using a zig-zag strategy), and delivered to an encoder buffer. The intra
mode produces intra frames (I-frames). This kind of frame is needed for the decoder to have
a reference for prediction. However, I-frames use a large amount of bits, so that they should
be used sparingly in low bit rate applications. In the inter mode, the same operations are
applied to the motion-predicted difference between the current frame and the previous (or
earlier) frame, instead of the frame itself. To this end a motion estimation algorithm is
applied to the input frame, and the extracted motion information (in the form of motion
vectors, MV) is used in predicting the following frames, through a motion-compensation
bloc. In order to avoid a drift between the encoder and decoder due to motion prediction,

www.intechopen.com

 Effective Video Coding for Multimedia Applications

232

Fig. 2. Baseline H.263 video encoder block diagram

the motion compensation bloc needs to use a locally reconstructed version of the
compressed frame being sent: this explains the presence of an inverse quantizer and an
inverse discrete cosine transform in the feedback loop. The MV is differentially coded in
order to realize bit rate savings. The inter mode produces prediction frames (P-frames)
which can be predicted from I-frames or others P-frames. These in general use considerably
less bits than I-frames, and are responsible for the large compression gain.
1) Motion estimation and compensation: It is often the case that video frames that are close in
time are also similar. Therefore, when coding a video frame, it would be judicious to make
as much use as possible of the information presented in a previously coded frame. One
approach to achieve this goal is to simply consider the difference between the current frame
and a previous reference frame, as shown in Fig. 3, and code the difference or residual.
When the two frames are very similar, the difference will be much more efficient to code
than coding the original frame. In this case, the previous frame is used as an estimate of the
current frame.

Fig. 3. Block-matching algorithm

A more sophisticated approach to increase coding efficiency is to work at the macroblock
level in the current frame, instead of processing the whole frame all at once as described

Current MB

Current FramePrevious Reference Frame

Search Window

Best MB Match Motion Vector

DCT Quantizer

Inverse

Quantizer

Inverse

DCT

-

+
Picture

Memory

Input

Frame

Coding Control M

U

L

T

I

P

L

E

X

I

N

G

Entropy

Coding

Inter/Intra decision flag

Quantizer indication

Quantizer index for

transform coefficient

Motion Vectors

Compressed

Frame

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

233

above. The process is called motion compensated prediction, and is based on the
assumption that most of the motion that the macroblocks undergo between frames is a
translational motion. This approach attempts to find, for each 16x16 luminance block of a
macroblock in the current frame, the best matching block in the previous frame. A search
window is usually defined and bounds the area within which the encoder can perform the
search for the best matching block. The motion of a macroblock is represented by a motion
vector that has two components; the first indicating horizontal displacement, and the second
indicating vertical displacement. Different criteria could be used to measure the closeness of
two blocks [12]. The most popular measure is the Sum of Absolute Differences (SAD)
defined by

15 15

, ,
0 0

(,) (,)k l k u l v
i j

SAD Y i j Y i j− −= =
= −∑∑ (1)

Where , (,)k lY i j represents the (,)i j th pixel of a 16 x 16 MB from the current picture at the

spatial location (,)i j and , (,)k u l vY i j− − represents the (,)i j th pixel of a candidate MB from a

reference picture at the spatial location (,)k l displaced by the vector (,)i j . To find the

macroblock producing the minimum mismatch error, we need to compute SAD at several

locations within a search window. This approach is called full search or exhaustive search,

and is usually computationally expensive, but on the other hand yields good matching

results.
2) DCT Transform: The basic computation element in a DCT-based system is the
transformation of an NxN image block from the spatial domain to the DCT domain. For the
video compression standards, N is usually 8. The 8 x 8 DCT is simple, efficient and well
suited for hardware and software implementations. The 8 x 8 DCT is used to decorrelate the
8 x 8 blocks of original pixels or motion compensated difference pixels and to compact their
energy into few coefficient as possible. The mathematical formulation for the (two-
dimensional) 2-D DCT is shown in equation (2) [13].

() () 7 7

,,
0 0

(2 1)(2 1)
cos cos

4 16 16

1
(), () (, 0)... 1

2

i jk l
i j

c k c l j li k
y x

with c k c l k l otherwise

ππ
= =

++ ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
= =
∑∑

 (2)

The 2-D DCT in (2) transforms an 8 x 8 block of pictures samples xi,j into spatial frequency
components yk,l for 0 ≤ k, j ≤ l. The 2-D IDCT in (3) performs the inverse transform for 0 ≤ i, j
≤ 7.

7 7

, ,
0 0

(2 1)1 (2 1)
() ()cos cos

4 16 16
i j k l

k l

l jk i
y c k c lx

ππ
= =

++ ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠∑∑ (3)

Although exact reconstruction can be theoretically achieved, it is often not possible using
finite-precision arithmetic. While forward DCT errors can be tolerated, IDCT errors must
meet the H.263 standard if compliance is to be achieved.
3) Quantization: The quantization is a significant source of compression in the encoder bit
stream. Quantization takes advantage of the low sensitivity of the eye to reconstruction

www.intechopen.com

 Effective Video Coding for Multimedia Applications

234

errors related to high spatial frequencies as opposed to those related to low frequencies [14].
Quick high frequency changes can often not be seen, and may be discarded. Slow linear
changes in intensity or color are important to the eye. Therefore, the basic idea of the
quantization is to eliminate as many of the nonzero DCT coefficients corresponding to high
frequency components.
Every element in the DCT output matrix is quantized using a corresponding quantization
value in a quantization matrix. The quantizers consist of equally spaced reconstruction
levels with a dead zone centered at zero. In baseline H.263, quantization is performed using
the same step size within a macroblock by working with a uniform quantization matrix.
Except for the first coefficient of INTRA blocks is nominally the transform DC value
uniformly quantized with a step size of eight, even quantization levels in the range from 2 to
62 are allowed. The quantized coefficients are then rounded to the nearest integer value. The
net effect of the quantization is usually a reduced variance between the original DCT
coefficients as compared to the variance between the original DCT coefficients. Another
important effect is a reduction in the number of nonzero coefficients.
4) Entropy coding: Entropy coding is performed by means of VLC, and is used to efficiently
represent the estimated motion vectors and the quantized DCT coefficients. Motion vectors
are first predicted by setting their component values to median values of those of
neighboring motion vectors already transmitted: the motion vectors of the macroblocks to
the left, above, and above right of the current macroblock. The difference motion vectors are
then VLC coded.

Fig. 4. Zig-zag positioning of quantized transform coefficients

As for the quantized DCT coefficients, they are first converted into a one-dimensional array
for entropy coding by an ordered zigzag scanning operation. The resulting array contains a
number of nonzero entries and probably many zero entries. This rearrangement places the
DC coefficient first in the array, and the remaining AC coefficients are ordered from low to
high frequency. This scan pattern is illustrated in Fig. 4. The rearrangement array is coded
using three parameters (LAST, RUN, LEVEL). The symbol RUN is defined as the distance
between two nonzero coefficients in the array (i.e., the number of zeros in a segment). The
symbol LEVEL is the nonzero value immediately following a sequence of zeros. The symbol
LAST, when set to 1, is used to indicate the last segment in the array. This coding method
produces a compact representation of the 8x8 DCT coefficients, as a large number of the
coefficients are normally quantized to zero and the reordering results (ideally) in the
grouping of long runs of consecutive zero values. Other information such as prediction
types and quantizer indication is also entropy coded by means of VLC.

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

235

3. The HW/SW codesign platform

A. FPGA platform

Field Programmable Devices are becoming increasingly popular for implementation of
digital circuits. The case of FPGA is the most spectacular and is due to several advantages,
such as their fast manufacturing turnaround time, low start-up costs and particularly ease of
design. With increasing device densities, audacious challenges become feasible and the
integration of embedded SoPC (System on Programmable Chip) systems is significantly
improved [15].
Furthermore, reconfigurable systems on a chip became a reality with softcore processor,
which are a microprocessor fully described in software, usually in a VHDL, and capable to
be synthesized in programmable hardware, such as FPGA. Softcore processors can be easily
customized to the needs of a specific target application (e.g. multimedia embedded
systems). The two major FPGA manufacturers provide commercial softcore processors.
Xilinx offers its MicroBlaze processor [16], while Altera has Nios and Nios II processors [17].
The benefit of a softcore processor is to add a micro-programmed logic that introduces more
flexibility. A HW/SW codesign approach is then possible and a particular functionality can
be developed in software for flexibility and upgrading completed with hardware IP blocks
(Intellectual Property) for cost reduction and performances.

Fig. 5. Stratix II Development Board

B. The NIOS II development board - the HW/SW platform

For SW implementation of image and video algorithms, the use of a microprocessor is
required. The use of additional HW for optimization contributes to the overall performance
of the algorithm. For the highest degree of HW/SW integration, customization and
configurability, a softcore processor was used.
For the main processing stage, the Altera NIOS II development board was chosen (Fig. 5)
[18]. The core of the board is the Altera Stratix II EP2S60F672C3 FPGA. Several peripheral
devices and connectors (UART, LCD, VGA, Ethernet etc) serve as interfaces between the
Stratix II FPGA and the external environment. 8MByte FLASH, 16MByte SRAM and 1MByte
SRAM allow implementation of complex FPGA video applications. For the video embedded
systems, we are using flash memory, SRAM, SDRAM, UART, timer, Ethernet and Camera
for frame acquisition.

www.intechopen.com

 Effective Video Coding for Multimedia Applications

236

Ethernet
Custom

Logic
DDR

NIOS II processor Custom Logic

AvalonTM Switch Fabric

I/O Flash UART

FlashDDR Memory

Fig. 6. NIOS II embedded system

Altera introduces the SOPC builder tool [19], for the quick creation and easy evaluation of
embedded systems. The integration off-the-shelf intellectual property (IP) as well as
reusable custom components is realized in a friendly way, reducing the required time to set
up a SoPC and enabling to construct and designs in hours instead of weeks. Fig. 6 presents
the Stratix II FPGA with some of the customizable peripherals and external memories, as an
example of their applicability.
1) NIOS II CPU: The Altera NIOS II softcore processor (FAST version) is a 32-bits scalar RISC
with Harvard architecture, 6 stages pipeline, 1-way direct-mapped 64KB data cache, 1-way
direct-mapped 64KB instruction cache and can execute up to 150 MIPS [17].

Program
Controller

&
Address

Generation Instruction
Cache

clock

reset

irq[31..0]

Control
Registers
ctl0 to ctl4

Arithmetic
Logic Unit

Interrupt
Controller

JTAG interface
to Software
Debugger

Exception
Controller

Instruction
Master

Port

Data
Cache

Data
Master
Port

General
Purpose

Registers
r0 to r31

Custom
I/O Signals

Nios II Processor Core

Hardware-
Assisted

Debug Module

Custom
Instruction

Logic

NIOS II Processor Core

Program
Controller

&
Address

Generation Instruction
Cache

clock

reset

irq[31..0]

Control
Registers
ctl0 to ctl4

Arithmetic
Logic Unit

Interrupt
Controller

JTAG interface
to Software
Debugger

Exception
Controller

Instruction
Master

Port

Data
Cache

Data
Master
Port

General
Purpose

Registers
r0 to r31

Custom
I/O Signals

Nios II Processor Core

Hardware-
Assisted

Debug Module

Custom
Instruction

Logic

NIOS II Processor Core

Fig. 7. NIOS II processor core block diagram

The main interest of this softcore processor is its extensibility and adaptability. Indeed, users
can incorporate custom logic directly into the NIOS II Arithmetic Logic Unit (ALU) [20].
Furthermore, users can connect into the FPGA the on-chip processor and custom
peripherals to a dedicated bus (Avalon Bus). Thus, users can define their instructions and
processor peripherals to optimize the system for a specific application. Fig.7 show the block
diagram of the NIOS II softcore processor core which defines the following user-visible

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

237

functional units: register file, arithmetic logic unit, interface to custom instruction logic,
interrupt controller, instruction and data bus, instruction and data cache memories and
JTAG debug module.
2) NIOS II custom instruction logic: With Nios II custom instructions [21], system designers
are able to take full advantage of the flexibility of FPGA to meet system performance
requirements. Custom instructions allow system designers to add up to 256 custom
functionalities to the Nios II processor ALU. As shown in Fig.8, the custom instruction logic
connects directly to the Nios II ALU (Arithmetic Logic Unit). There are different custom
instruction architectures available to suit the application requirements. The architectures
range from simple, single-cycle combinatorial architectures to extended variable-length,
multi-cycle custom instruction architectures. The most common type of implementation is
the single-cycle combinatorial architecture that allows for custom logic realizations with one
or two inputs and one output operand.

+
-

<<
>>

&
|

dataa

datab
result

out

A

B

Custom

Logic

NIOS II Embedded System

Optional Interface to FIFO, Memory, Other Logic

Internal

Register File

a

5

b 5

5

c

readra

readrb

writerc

n

8

Extended

clk

clk_en

reset

start

Multi-Cycle done

dataa

32datab

32

Combinatorial
result

32

Optional Interface to FIFO, Memory, Other Logic

Internal

Register File

a

5

b 5

5

c

readra

readrb

writerc

Internal

Register File

a

5

b 5

5

c

readra

readrb

writerc

n

8

Extended
n

8

n

88

Extended

clk

clk_en

reset

start

Multi-Cycle done

clk

clk_en

reset

start

clk

clk_en

reset

start

Multi-Cycle done

dataa

32datab

32

Combinatorial
result

32

dataa

32datab

32

Combinatorial
result

32

Nios II

ALU

Fig. 8. Custom Instruction Logic Connects to the Nios II ALU

Using the custom instruction in an ANSI C program is straightforward. Two kinds of define
macros are used as the instructions can have one or two input operands:
- #define INSTR1(X) __builtin_custom_ini(Code_INSTR1,X)
- #define INSTR2(X,Y) __builtin_custom_ini(Code_INSTR2,X,Y)

C) The HW/SW codesign process

The HW/SW codesign process for the implementation into the platform can be summarized
in three main steps:
- Algorithm implementation in SW.
- Detecting critical software parts.
- HW/SW optimization of the algorithm.
The first step is implementing algorithm in SW. The ANSI C language and the assembly
programming language are supported. Generally, the preferable choice is the

www.intechopen.com

 Effective Video Coding for Multimedia Applications

238

implementation of the SW code using ANSI C. In this way, instead of rewriting the code
from scratch, the use of an already existing code for the algorithm shortens the design cycle.
The portability of ANSI C allows also the code to be created and tested for functionality on
other platforms.
Once the SW code has been tested for functionality and implemented into the target
platform, the performance analysis has to be applied. In order to reach the required
constraints, critical software parts has to be detected and optimized. To have precision on
the time processing, a CPU timer can be used for the cycle-accurate time-frame estimation of
a focused part of the SW code execution.
The final step is the SW code refinement and optimization of critical SW parts using HW
description. The general idea is to implement parallel structures in HW for fastest data
processing. The SW and HW parts are dependent and, regarding the interface between
them, can be incorporated into the algorithm as separate HW component (access register) or
custom instruction (the custom instruction is integrated directly into CPU as an additional
instruction).
In the HW/SW codesign process, the designer iterates through the last two design steps
until the desired performance is obtained.

D) Using embedded linux with codesign

The HW/SW codesign process uses different kinds of peripherals and memories. The basic
idea is to use Linux in an embedded system context. Linux for embedded systems or
embedded Linux gives us several benefits:
- Linux is ported to most of processors with or without Memory Management Unit

(MMU). A Linux port is for example available for the NIOS II softcore.
- Most of classical peripherals are ported to Linux.
- A file system is available for data storage.
- A network connectivity based on Internet protocols is well suited for data recovering.
- Open source Linux projects may be used.
The embedded Linux environment is also a real advantage for the software development
during the HW/SW codesign process.

4. Timing optimisation of the H.263 encoder

A) Timing optimisation

In order to optimize and achieve best performance in terms of real-time operation of the
H.263 video encoder, we have used the HW/SW codesign process. At first, the algorithms
were coded in ANSI C programming language on a PC platform. The tested SW code was
then rebuilt and transferred into the Nios II system. The execution times have been
measured with the high_res_timer that provides the number of processor clock cycles for
the execution time. Afterwards, the SW critical parts were implemented in HW in VHDL
language.
In our experiments of coding a general video clip in QCIF (Quarter Common Intermediate
Format: Spatial resolution of 176x144 and temporal resolution 10 frames/s (fps)) format. The
average frame rate achieved on a NIOS II system is only about 0.7 fps. For this reason, we
investigated the resource distribution of the H.263 video encoder which uses full search
motion estimation, search window size +/-7 and fixed quantization parameters QP=16.
Fig.9 shows the distribution of the execution time of Miss America and Carphone sequences.

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

239

In this figure ME, DCT/IDCT and Q/IQ which utilize 23.1%-27.7%, 67.3-71.9% and 2%-2.2%
of the total execution time respectively are the three primary computationally intensive
components. Thus, main purpose is to improve these three components using HW/SW
codesign

0.1%

2.2%
2.7%

67.3%

27.7%

ME

DCT/IDCT

Q/IQ

VLC

Other

(a)

2.6%

23.1%

71.9%

2%

0.4%

ME

DCT/IDCT

Q/IQ

VLC

Other

(b)

Fig. 9. Execution time distribution of (a) Miss America and (b) Carphone sequences at QCIF
resolution

B) Hardware/Software partitioning

The main idea of our encoder is to exploit advantages of the parallel structures which can be

efficiently implemented in hardware. Hardware implementation of 2-D DCT/IDCT and

Q/IQ promise better results compared to software based algorithms. The key point of a

parallel hardware structure is a reduced number of operation and ability to function

parallel. However, there is still a good chance to reduce the complexity of the ME in

software using fast motion estimation algorithms.

1) Optimization in Motion estimation: Motion estimation (ME) removes temporal redundancy

between successive frames in digital video. The most popular technique for motion

estimation is the block-matching algorithm [11]. Among the block-matching algorithms, the

full search or exhaustive search algorithm examines all search points inside the search area.

Therefore, the amount of its computation is proportion to the size of the search window.

www.intechopen.com

 Effective Video Coding for Multimedia Applications

240

Although it finds the best possible match, it requires a very large computational complexity
(600 MOPS “million operations per second” for QCIF@10 Hz and +/-15 search window).
Hence, many fast algorithms are proposed in literature such as the hexagon-based search
[22], the diamond search [23]-[24], the block-based gradient descent search [25] and the
cross-diamond search [26], which allow to reduce the computational complexity at the price
of slightly performance loss. The basic principle of these fast algorithms is dividing the
search process into a few sequential steps and choosing the next search direction according
to the current search result.

Comparison of ME Algorithm – Miss America @ QCIF, 10 fps

32

33

34

35

36

37

38

39

4 6 8 10 12 14 16 18 20

Bit Rate (kbps)

Y
 P

S
N

R
 (

d
B

)

FS

HEXBS

DS

BBGDS

CDS

(a)

Comparison of ME Algorithm – Carphone @ QCIF, 10 fps

26,5

27,5

28,5

29,5

30,5

31,5

32,5

33,5

34,5

10 20 30 40 50 60 70 80

Bit Rate (kbps)

Y
 P

S
N

R
 (

d
B

)

FS

HEXBS

DS

BBGDS

CDS

(b)

Fig. 10. Comparison of motion estimation algorithms of: (a) Miss America and (b) Carphone
at QCIF resolution and 10fps

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

241

In order to reduce the encoder computational complexity, we analyze the performance and
speed of the different fast algorithms. The average peak signal-to-noise ratio (PSNR) is used
as a distortion measure, and is given by

2

1

1 255
10log

()

M

n nn

PSNR
M o r=

= −∑ (4)

Where M is the number of samples and no and nr are the amplitudes of the original and

reconstructed pictures, respectively. The average PSNR of all encoded pictures is here used

as a measure of objective quality.
Fig.10 illustrates the rate-distortion performance of several popular block-matching
algorithms namely full search (FS), hexagon-based search (HEXBS), diamond search (DS),
block-based gradient descent search (BBGDS) and cross-diamond search (CDS) algorithms.
Fig.11 presents the clock number necessary to perform these fast motion estimation
algorithms (HEXBS, DS, BBGDS and CDS). For Miss America and Carphone sequences, we
can conclude, using the HEXBS method, a 12.5 to 13 fold speed increase on motion
estimation is achieved compared to the FS method whilst the PSNR degradation is marginal.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

C
lo

c
k
 C

y
c
le

s

Carphone Miss America

HEXBS

DS

BBGDS

CDS

Fig. 11. Cycles required to perform the fast motion estimation algorithms

The HEXBS is the popular fast block-matching algorithms and it can reduce computational
complexity. The HEXBS algorithm employs two search patterns as illustrated in Fig. 12. The
first pattern, called large hexagon search pattern (LHSP), comprises seven checking points
from which six points surround the center one to compose a hexagon shape. The second
pattern consisting of five checking points forms a smaller hexagon shape, called small
hexagon search pattern (SHSP).
In the searching procedure of the HEXBS algorithm, LHSP is repeatedly used until the step
in which the minimum block distortion (MBD) occurs at the center point. The search pattern
is then switched from LHSP to SHSP as reaching to the final search stage. Among the five
checking points in SHSP, the position yielding the MBD provides the motion vector of the
best matching block. Fig. 13 shows an example of the search path strategy leading to the
motion vector (-3, -1), where 20 (7+3+3+4) search points are evaluated in 4 steps
sequentially.

www.intechopen.com

 Effective Video Coding for Multimedia Applications

242

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(a) Large hexagonal search pattern (LHSP) (b) Small hexagonal search pattern (SHSP)

Fig. 12. Two search patterns derieved are employed in the HS algorithm

The procedure of the HEXBS is described below:
Step 1. The initial LHSP is centered at the origin of the search window, and the 7 checking

points of LHSP are tested. If the MBD point calculated is located at the center
position, go to Step 3; otherwise, go to Step 2.

Step 2. The MBD point found in the previous search step is repositioned as the center point
to form a new LHSP. If the new MBD point obtained is located at the center
position, go to Step 3; otherwise, recursively repeat this step.

Step 3. Switch the search pattern from LHSP to SHSP. The MBD point found in this step is
the final solution of the motion vector which points to the best matching-block.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Fig. 13. Search path example which leads to the motion vector (-3, -1) in four search steps

2) Optimization in DCT and IDCT: Since the straightforward implementation of (2) and (3) are
computationally expensive (with 4096 multiplications), many researches have been done to
optimize the DCT/IDCT computational effort using the fast algorithms such as Lee [27],
Chen [28] and Loeffler [29]. Most of the efforts have been devoted to reduce the number of
operations, mainly multiplications and additions. In our DCT/IDCT hardware
implementation, we use an 8-point one-dimensional (1-D) DCT/IDCT algorithm, proposed
by van Eijdhoven and Sijstermans [30]. It was selected due the minimum required number
of additions and multiplications (11 Multiplications and 29 additions). This algorithm is
obtained by a slight modification of the original Loeffler algorithm [29], which provides one
of the most computationally efficient 1-D DCT/IDCT calculation, as compared with other
known algorithms [31]-[33]. The modified Loeffler algorithm for calculating 8-point 1-D
DCT is illustrated in Fig.14.

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

243

Fig. 14. The 8-point DCT modified Loeffler algorithm

The stages of the algorithm numbered 1 to 4 are parts that have to be executed in serial
mode due to the data dependency. However, computation within the first stage can be
parallelized. In stage 2, the algorithm splits in two parts: one for the even coefficients, the
other for the odd ones. The even part is nothing else than a 4 points DCT, again separated in
even and odd parts in stage3. The round block in figure 14 signifies a multiplication

by 1 2 . In Fig.15, we present the butterfly block and the equations associated.

I

0

I
1

O
0

O
1

0 0 1

1 0 1

O I I

O I I

= +
= −

Fig. 15. The Butterfly block and its associated equations

The rectangular block depicts a rotation, which transforms a pair of inputs [I0,I1] into
outputs [O0,O1]. The symbol and associated equations are depicted in Fig. 16.

I
0

I
1

O
0

O
1

kxC
n

0 0 1

1 0 1

cos sin
16 16

sin cos
16 16

n n
O I k I k

n n
O I k I k

π π
π π

⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Fig. 16. The rotator block and its associated equations

The rotator block operation can be calculated using only 3 multiplications and 3 additions
instead of 4 multiplications and 2 additions. This can be done by using the equivalence
showed in the following equations.

 0 0 1 1 0 1

1 0 1 0 0 1

. . (). .()

. . (). .()

O a I b I b a I a I I

O b I a I b a I a I I

= + = − + +
= − + = − + + + (5)

STAGE 1 STAGE 2 STAGE 3 STAGE 4

C3

C1

C6

0

1

2

3

4

5

6

7

0

4

2

6

7

3

5

1

2
1

2
1

2

2

2

www.intechopen.com

 Effective Video Coding for Multimedia Applications

244

For the fast computation of two-dimensional (2-D) DCT/IDCT, there are two categories:

row/column approach from 1-D DCT/IDCT [34]-[36] and direct 2-D DCT/IDCT [37]-[39].

However, the implementation of the direct 2-D DCT/IDCT requires much more effort and

large area than that of the row/column approach [40]-[41] which is used to implement 2-D

DCT/IDCT algorithms.

For the row/column approach, the 1-D DCT/IDCT of each row of input data is taken, and
these intermediate values are transposed. Then, the 1-D DCT/IDCT of each row of the
transposed values results in the 2-D DCT/IDCT. The modified Loeffler algorithm requires
only 11 multiplications for the 8-point 1-D DCT/IDCT and 176 multiplications for the
row/column 2-D DCT/IDCT.
3) Optimization in Quantization and Inverse Quantization: the quantization equations are not
standardized in H.263 the ITU has suggested two quantizers in their Test model 8 (TMN8)
[42] corresponding to INTRA and INTER modes and are given in (6)

,
2.

2 ,
2.

COF
INTRA

QP
LEVEL QP

COF
INTER

QP

⎧⎪⎪⎪= ⎨ −⎪⎪⎪⎩
 (6)

The INTRA DC coefficient is uniformly quantized with a quantized step of 8. The
quantization parameter QP may take integer value from 1 to 31. COF stands for a transform
coefficient to be quantized. LEVEL stands for the absolute value of the quantized version of
the transform coefficient.
These equations are useful as a reference not only because they are commonly used as a
reference model, but also because studies performed by the ITU during the standardization
process [43] indicated that the quantization equations in (6) were nearly optimal subject to
the constraints of uniform scalar quantization with a dead zone.
The basic inverse quantization reconstruction rule for all non-zero quantized coefficients is
defined in equation 7 which give the relationship between coefficient levels (LEVEL),
quantization parameter (QP) and reconstructed coefficients (REC)

(). 2. 1 , " "

.(2. 1) 1, " "

QP LEVEL if QP odd
REC

QP LEVEL if QP even

⎧ + =⎪= ⎨ + − =⎪⎩
 (7)

After calculation of |REC|, the sign is added to obtain REC:

 ().REC sign LEVEL REC= (8)

The quantization and inverse quantization equations (6 and 7 respectively) are a regular
formula and use multi-cycle to code data with NIOS II processor. To improve performance
of our encoder, we can use single-cycle combinatorial NIOS II custom instruction logic to
implement these equations. The custom instruction interface for quantization should be
presented as in Fig. 17. As the processor need a 32-bit data interface. The defined interface
are 32-bit input data (COF and QP which is fixed at 16 in our cas) and the output data
(LEVEL).

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

245

CombinatorialQP

COF
LEVEL

Fig. 17. Custom instruction interface for quantization

5. Design environment and FPGA implementation of H.263 encoder

A. Overview of the STRATIX II FPGA architecture

The Altera Stratix II EP2S60 FPGA is based on 1.2V, 90 nm technologies with a density that

reaches 48352 Adaptive look-up tables (ALUTs), 310 KB of Embedded System Blocs (ESBs),

288 DSP blocks and 493 Input/Output Blocks (IOBs) [44]-[45].

Fig. 18. Overview of Stratix II Die

An overview of the resources available in a Stratix II die is shown in Fig. 18. Three main

advantages of this component led us to this choice. Firstly, Stratix II is optimized to

maximize the performance benefits of SoPC integration based on NIOS II embedded

processor. Secondly, Stratix II introduces DSP cores for signal processing applications. These

embedded DSP Blocks have been optimized to implement several DSP functions with

maximum performance and minimum logic resource utilization. The DSP blocks comprise a

number of multipliers and adders. These can be configured in various widths to support

multiply-add operations ranging from 9x9-bit to 36x36-bit, and including a wide range of

operations from multiplication only, to sum of products, and complex arithmetic

multiplication. Lastly, the Stratix II device incorporates a configurable internal memory

called TriMatrix memory which is composed of three sizes of embedded RAM blocks. The

Stratix II EP2S60 TriMatrix memory includes 329 M512 blocks (32x18-bit), 255 M4K blocks

(128x36-bit) and 2 M-RAM (4Kx144-bit). Each of these blocks can be configured to support a

wide range of features and to synthesize a wide variety of RAM (FIFO, double ports). With

up to 310 KB of fast RAM, the TriMatrix memory structure is therefore appropriate for

handling the bottlenecks arising in video embedded system.

www.intechopen.com

 Effective Video Coding for Multimedia Applications

246

B. FPGA Implementation of H.263 Video Encoder

The block diagram of the implemented H.263 encoder is shown in Fig.19. It is composed of
three parts: a NIOS II softcore processor and 2-D DCT and 2-D IDCT hardware core. The
main processing core of our system is the NIOS II CPU which is connected to hardware
peripherals via a custom Altera’s Avalon bus. The bus is a configurable bus architecture that
is auto generated to fit the interconnection needs of the designer peripherals. The Avalon
bus consists of the control, data and address signals and arbitration logic that are connected
to the peripheral components.

Fig. 19. Block diagram of the implemented H.263 encoder

Our system can receive frames from camera. For this purpose, we have developed a Camera
interface for video acquisition [46]. The H.263 generated bit-stream has been downloaded
through Ethernet Interface (FTP server) to PC platform in order to visualize the coded frames.
Every hardware core is described in VHDL. Using Altera SOPC builder, the system was
designed according to the block schematic diagram. The VHDL files were generated and the
system was routed, compiled and downloaded into the FPGA using Altera Quartus II
software. We have used the ModelsimTM simulator from Model Technology for circuit
simulation.
1) System Environment: When the hardware is designed and fitted into a FPGA, there are two
options how to port software applications on the board. The first is to use Linux operating

system. μClinux is a port of the Linux operating system for embedded processors lacking a
Memory Management Units (MMUs) [47]. Originally targeting the Motorola’s 68K processor

series, it now supports several architectures including NIOS II. The port of μClinux on the

NIOS II core is licensed under the terms of the GNU General Public License (GPL) [48].

The second option is to use the monitor program which is loaded into the RAM of the NIOS
II controller. This method is used during the development cycle. When the application
meets the requirements, it is compiled for the Linux operating system.
2) 2-D DCT/IDCT coprocessor core: The 2-D DCT/IDCT transformation is implemented using
the row/column approach which requires three steps: 8-point 1-D DCT/IDCT along the
rows, a memory transposition and another 8-point DCT/IDCT along the transposed
columns. Fig. 20 is a block diagram of the 2-D DCT/IDCT coprocessor core, showing the
main interfaces and functional blocks.

NIOS II

CPU

A
V

A
L

O
N

IRQ

Timer

UARTUSB

Ethernet Interface Camera Interface

3

2-D DCT

H.263 encoder

RAM Interface

FLASH,SRAM,SDRAM ETHERNET CAMERA

µClinux

3

2-D IDCT

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

247

Fig. 20. 2-D DCT/IDCT coprocessor core

The controller is the control unit for the DCT/IDCT transformation. It receives input control
signals (Reset, Start) and generates all the internal control signals for each stage and the output
control signals for Avalon Bus communication (Dataavailable, Readyfordata, Waitrequest).
When the Start signal is activated, the controller enables input of the first data row through
Data_in signal. It then activates the 1-D DCT/IDCT unit for row data treatment. The first row
of the transpose memory stores the results in an intermediate memory. This process repeats
for the remaining seven rows of the input block. Next, the 1-D DCT/IDCT unit receives input
data from the columns of the transpose memory under the MUX. The results of the column-
wise 1-D DCT/IDCT are available through the Data_out signal.

I/O

NIOS II

CPU

SDRAM

Arbiter

2-D DCT/IDCT

Coprocessor

Arbiter

Avalon

Switch

Fabric

DMA

I/OI/O

NIOS II

CPU

SDRAM

Arbiter

2-D DCT/IDCT

Coprocessor

Arbiter

Avalon

Switch

Fabric

DMA

Fig. 21. Overview of the data path of a DMA with 2-D DCT/IDCT coprocessor and SDRAM

Data_in and Data_out signals are connected to the Avalon Bus. The 2-D DCT/IDCT
coprocessor read/store the data from/to SDRAM through this Bus. Using processor to
move data between SDRAM and 2-D DCT/IDCT coprocessor is less efficient. The system
performance is greatly improved when the data are passed to the coprocessor with
hardware. This is based on the concept of minimizing the interaction between the NIOS II

Transpose Memory

Data_in Data_out

Clk

Dataavailable

Readyfordata

Waitrequest

Reset

Control Signals

1-D

DCT/IDCT

Start

Controller

M
U

X

www.intechopen.com

 Effective Video Coding for Multimedia Applications

248

processor and the 2-D DCT/IDCT coprocessor. For better performance, data is handled by
Direct Memory Access (DMA) as shown in Fig.21.
The 1-D DCT/IDCT unit based modified Loeffler algorithm which use 11 multipliers and 29
adders. In order to optimize speed and area of the 1-D DCT/IDCT implementation, we use
Altera embedded DSP blocks to implement multipliers [49]. To conform to IEEE 1180-1990
accuracy specifications [50], the multiplier constants in Loeffler algorithm require a 12-bit
representation. The DCT/IDCT use 24 internal registers to store intermediate values. The
arithmetic units and registers use multiplexers to select inputs from internal and external
registers. With these resources, a 1-D DCT/IDCT operation completes in 12 clock cycles and
overall 2-D DCT/IDCT process concludes in 97 clock cycles.
The transpose memory is an internal memory of 64 words that holds the intermediate values
from the first eight 1-D DCT/IDCT. The transpose memory receives input in a row-wise
fashion and provides outputs in a column-wise fashion, thus performing a matrix
transposition. Each row of the transposition memory is enabled for input from the 1-D
DCT/IDCT unit after the first eight 1-D DCT/IDCT. For the next eight 1-D DCT/IDCT the
column of the transposition memory output their data to the 1-D DCT/IDCT unit.

C. Implementation results
In table 1, implementation results of the H.263 encoder in Stratix II EP2S60 FPGA are shown.

NIOS II
(FAST)

2-D DCT
coprocessor

2-D IDCT
coprocessor

ALUTs 11% 3% 3%
ESBs 44% 1% 1%
DSPs 3% 8% 8%
IOBs 41% 15% 15%

Fmax (MHz) 227 133 139

Table 1. The implementation results in Stratix II FPGA

Results in the Table 1 have been obtained with separate implementation of the particular
modules (NIOS II softcore processor, 2-D DCT and 2-D IDCT coprocessor core). The HW
custom instruction for quantization and inverse quantization use only 1% of the ALUTs. The
entire H.263 encoder utilizes 23% of the ALUTs, 44% of the ESBs, 18% of the DSP blocks and
41% of the IOBs. We can see that there is sufficient free space for other applications. The
whole design works with a 120 MHz system clock. The implementation of H.263 encoder on
the FPGA allows us to obtain a SoPC system.

6. Experimental results

The results discussed in this section are based on our HW/SW implementation of the H.263
which is tested on the Altera NIOS II development board. The results illustrate the tradeoffs
among compression performance and coding speed. For all experiments the QCIF test
sequences coded at 10frames/s with fixed quantization parameter QP=16. We focus on the
following video test sequences: “Carphone”, “News”, “Claire”, and “Miss America”. These
test sequences have different movement and camera operations. Carphone has frequent
motion and camera movement. News has a combination of fast and slow motion which
includes rotation movement and slow motion. Claire and Miss America have little motion
with a stable camera.

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

249

 Software Hardware Speed up

2-D DCT 159881 720 222

2-D IDCT 159881 720 222

Q 4736 64 74

IQ 2560 64 40

Table 2. Clock cycles to code 8x8 block

Once the whole design are described in VHDL at the RTL level and fitted into the FPGA, we
have determined coding time of H.263 encoder before and after timing optimization. The
processor core clock and system clock are set to 120 MHz, thus 8.33 ns delay for each coded
data is required. Table 2 shows a comparison of the clock cycles necessary to code an 8x8
block by software and hardware using the 2-D DCT, 2-D IDCT, Q and IQ.
Fig.22 presents a breakdown of the execution time before and after optimization of the
H.263 encoder. The percentage distribution was very similar for all four sequences, so only
the results for the Carphone and Miss America sequences are shown here. However, we can
note that The HW/SW implementation of the H.263 provides a 15.8-16.5 times improvement
in coding speed compared to software based solution.

Average coding time for one frame before
optimization (1584.95 ms)

2-D DCT/IDCT

(71.9%)

EM

(23.1)%

remaining

 time

(3%)Q/IQ

(2%)

Average coding time for one frame after
optimization (100 ms)

ME

(29.4%)

2-D DCT/IDCT

(5.5%)
Q/IQ

(12.3%)

emaining

time

(52.8%)

(a)

Average coding time for one frame before
optimization (1311.35 ms)

2-D DCT/IDCT

(67.3%)

ME

(27.7%)

remaining

time

(2.8%)Q/IQ

(2.2%)

Average coding time for one frame after
optimization (79.37 ms)

ME

(31.8%)

2-D DCT/IDCT

(5.1%)
Q/IQ

(11.4%)

remaining

time

(51.7%)

(b)

Fig. 22. CPU time percentage according to the processing before and after optimization of (a)
Carphone and (b) Miss America sequences

The whole project was made under μClinux and performed on the NIOS II softcore
processor. The H.263 generated bit-stream is send to the PC through Ethernet to analyse the
results. The Fig.23 presents the original and the two reconstructed (one from SW, the other
from HW/SW) of the 12th frame of the test video sequences. Also, Table 3 shows
measurements of the PSNR of the luminance signal, Bit rate and coding speed.

www.intechopen.com

 Effective Video Coding for Multimedia Applications

250

Claire sequence PSNR-Y = 33.67 dB PSNR-Y = 33.44 dB

Miss America sequence PSNR-Y = 35.2 dB PSNR-Y = 34.95 dB

News sequence PSNR-Y = 29.72 dB PSNR-Y = 29.66 dB

Carphone sequence PSNR-Y = 30.19 dB PSNR-Y = 30.08 dB

(a) (b) (c)

Fig. 23. (a) Original, (b) Reconstructed from SW and (c) Reconstructed from HW/SW of the
12th frame of the test video sequences

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

251

Sequence

PSNR-Y
(dB)

Bit Rate
(Kbps)

Coding speed
(fps)

Software Encoder

Claire 33.67 8.22 0.78

Miss America 35.2 8.5 0.76

News 29.72 21.13 0.7

Carphone 30.19 29.82 0.63

HW/SW Encoder

Claire 33.44 8.1 11.47

Miss America 34.95 8.44 12.6

News 29.66 21.35 10.94

Carphone 30.08 30.25 10

Table 3. Experimental results for HW/SW implementation of the H.263 video encoder

The quantities in Table 3 show the subjective visual impression that the image quality of the
decompressed bit stream of the HW/SW encoder is nearly as good as it is with the output of
the software encoder.
These results prove that after optimization our H.263 encoder can process 10-12.6 frames
QCIF/sec which depend on the CPU clock frequency.

7. Conclusions

In this paper, we have described an efficient HW/SW codesign architecture of the H.263
video encoder into an embedded Linux environment. We have proposed timing
optimization of the encoder. We have shown that a 15.8-16.5 times improvement in coding
speed compared to software based solution can be obtained using the HW/SW
implementation. We have presented a modern implementation method where the complex
embedded system (H.263 encoder) can be efficiently HW/SW partitioned and optimized.
Our architecture codes QCIF at 10-12.6 frames/sec with a 120 MHz system clock and can be
improved with another FPGA platform having higher operating frequency.

8. References

[1] H. Li, A. Lundmark, and R. Forchheimer, “Image sequence coding at very low bitrates: A
review,” IEEE Trans. Image Processing, vol. 3, pp. 568–609, Sept. 1994.

[2] B. Girod, K. B. Younes, R. Bernstein, P. Eisert, N. Farber, F. Hartung, U. Horn, E.
Steinbach, T. Wiegand, and K. Stuhlmuller, “Recent advances in video
compression,” in IEEE Int. Symp. Circuits Syst., Feb. 1996.

[3] B. Girod, “Advances in digital image communication,” in Proc. 2nd Erlangen Symp.,
Erlangen, Germany, Apr. 1997.

[4] ITU-T Rec. H.263, Video Coding for Low Bit Rate communication. 1998.
[5] Y. li and Al “Hardware-Software Co-Design of Embedded Reconfigurable

Architectures,” Design Automation Conference 2000, Los Angeles, California.
[6] S. M. Akramullah, I. Ahmad and M. L. Liou. “Optimization of H.263 Video Encoding

Using a Single Processor Computer: Performance Tradeoffs and Benchmarking,”
IEEE Trans. on Circuits and Syst. for Video Technology, vol. 11, pp. 901-915, Aug.
2001.

www.intechopen.com

 Effective Video Coding for Multimedia Applications

252

[7] K. -T. Shih, C.-Y. Tsai, H.-M. Hang, “ Real-Time Implementation of H.263+ Using
TMS320C6201 Digital Signal Processor,” in Proc. IEEE ISCAS '03, vol. 2, pp. 900-
903, May 2003.

[8] G. Lienhart, R. Lay, K. H. Noffz, R. Manner. “An FPGA-based video compressor for
H.263 compatible bitstreams,” in Proc. IEEE ICCE, pp. 320-321, June 2000.

[9] http://www.xilinx.com
[10] http://www.altera.com
[11] G. Côté, B. Erol, M. Gallant and F. Kossentini, “H.263+: Video Coding at Low Bit Rates,”

IEEE Trans. On Circuits And Systems. For Video Technology, vol. 8, pp. 849-866 ,
Nov. 1998.

[12] J. R. Jain and A. K. Jain “Displacement measurement and its applications in interframe
image coding,” IEEE Trans. on Communications, vol. 29, pp. 1799-1808, Dec. 1981.

[13] N. Ahmed, T. Natarajan and K. R. Rao, “On image processing and a discrete cosine
transform,” IEEE Trans, On Computers, vol. C-23,pp. 90-93, 1974.

[14] J. Johnston, N. Jayant, and R. Safranek, “Signal compression based on models of human
perception,” Proc. IEEE, vol. 81, pp. 1385-1422, Oct. 1993.

[15] R. Tessier and W. Burleson, “reconfigurable computing for digital signal processing: a
survey,” Journal of VLSI Signal Processing 28, 7-27, 2001

[16]Microblaze Integrated Development Environment http://www.xilinx.com/xlnx/xebiz/
designResources/ip_product_details.jsp?key=micro_blaze

[17] Nios II Integrated Development Environment
 http://www.altera.com/literature/lit-index.html
[18] Nios II Development Kit, Stratix II Edition, ALTERA 2006,
 http://www.altera.com/products/devkits/altera/kit-niosii-2S30.html
[19] SOPC Builder Applications ALTERA 2006,
 http://www.altera.com/products/software/products/sopc/sop-index.html
[20] J. Cong, Y. Fan, G. Han, A. Jagannathan, G. Reinman, Z. Zhang, “Instruction Set

Extension with Shadow Registers for Configurable Processors,” FPGA’05, February
20–22, 2005, Monterey, California, USA.

[21] Altera “NIOS Custom Instructions Tutorial”, June 2002,
 http://www.altera.com/literature/tt/tt_nios_ci.pdf
[22] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-Based Search Pattern for Fast Block Motion

Estimation”, IEEE Trans. On Circuits And Systs. For Video Technology, vol. 12, pp.
349-355, May 2002

[23] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel unrestricted
center-biased diamond search algorithm for block motion estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 8, pp. 369–377, Aug. 1998.

[24] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast blockmatching motion
estimation,” IEEE Trans. Image Process., vol. 9, no. 2, pp. 287–290, Feb. 2000.

[25] L. K. Liu and E. Feig, “A block-based gradient descent search algorithm for block
motion estimation in video coding,” IEEE Trans. Circuits Syst. Video Technol., vol.
6, no. 4, pp. 419–423, Aug. 1996.

[26] C. H. Cheung and L. M. Po, “A novel cross-diamond search algorithm for fast block
motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 12, pp.
1168–1177, Dec. 2002.

www.intechopen.com

An FPGA Implementation of HW/SW Codesign Architecture for H.263 Video Coding

253

[27] Y.P Lee and all “A cost effective architecture for 8x8 two-dimensional DCT/IDCT using
direct method,” IEEE Trans. On Circuit and System for video technology, VOL 7,
NO.3, 1997

[28] W.c Chen, C.h Smith and S.C. Fralick, “A fast Computational Algorithm for thr Discrete
Cosine Transform,” IEEE Trans. On Communications, Vol. COM-25, No. 9,
pp.1004-1009, Sept.1997

[29] C. Loeffler and A. Lightenberg, “Practical fast 1-D DCT algorithms with 11
Multiplications,” in Proceedings IEEE ICASSP ’89, vol. 2, pp. 988-991, May 1989.

[30] T.J. van Eijndhven and F.W. Sijstermans, “Data Processing Device and method of
Computing the Cosine Transform of a Mtrix”, PCT Patent WO 99948025, to
Koninklijke Philips Electronics, World Intellectual Property Organization,
International Bureau, 1999.

[31] P. Duhamel and H. H’Mida, “New 2n DCT algorithms suitable for VLSI
implementation,” in Proc. ICASSP’87, vol. 12, pp. 1805–1808, Apr. 1978.

[32] M. T. Heidemann, “Multiplicative Complexity, Convolution, and the DFT,” New York:
Springer-Verlag, 1988.

[33] E. Feig and S. Winograd, “On the multiplicative complexity of discrete cosine
transforms,” IEEE Trans. Inform. Theory, vol. 38, pp. 1387–1391, July 1992.

[34] M. D. Wagh and H. Ganesh, “A new algorithm for the discrete cosine transform of
arbitrary number of points,” IEEE Trans. Comput., vol. C-29, pp. 269–277, Apr.
1980.

[35] B. G. Lee, “A new algorithm to compute the discrete cosine transform,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 1243–1245, Dec. 1984.

[36] Y. Chan and W. Siu, “A cyclic correlated structure for the realization of discrete cosine
transform,” IEEE Trans. Circuits Syst.–II, vol. 39, pp. 109–113, Feb. 1992.

[37] M. Vetterli, “Fast 2-D discrete cosine transform,” in Proc. IEEE ICASSP’85, vol. 10, pp.
1538–1541, Mar. 1985.

[38] N. I. Cho and S. U. Lee, “DCT algorithms for VLSI parallel implementation,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 121–127, Jan. 1990.

[39] N.I. Cho, S.U. Lee, “A fast 4 _ 4 DCT algorithm for the recursive 2-D DCT,” IEEE Trans.
Signal Processing, vol. 40, pp. 2166–2173, Sept. 1992.

[40] C. Y. Lu, K. A. Wen, “On the design of selective coefficient DCT module”, IEEE Trans.
Circuits Syst. Video Technol., vol. 8, pp. 143–146, Dec. 2002.

[41] J. Liang, “Fast multiplierless approximations of the DCT with the lifting scheme”, IEEE
Trans. Signal Process., vol. 49, pp. 3032–3044, Dec. 2001.

[42] ITU Telecom. Standardization Sector of ITU, “Video codec test model near-term,
Version 8 (TMN8), Release 0,” H.263 Ad Hoc Group, June 1997.

[43] Proposal for Test Model Quantization Description, ITU-T doc. Q15-D-30, Apr. 1998.
[44] D.Lewis and Al, “The Stratix II Logic and Routing Architecture,” FPGA’05, February

20–22, 2005, Monterey, California, USA.
[45] Altera Startix II Architecture
 http://www.altera.com/products/devices/stratix2/st2-index.jsp
[46] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P.Nouel, N. Masmoudi, Ph.Marchegay

“Hardware Platform Design for Real-Time Video Applications,” in Proc. IEEE
ICM’04, pp. 722-725, Dec. 2004.

[47] The μClinux project http://www.uClinux.org.

www.intechopen.com

 Effective Video Coding for Multimedia Applications

254

[48] The NIOS Forum http://www.niosforum.com/forum.
[49] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, “Optimization and implementation

on FPGA of the DCT/IDCT algorithm”, in Proc. IEEE ICASSP’06, vol. 3, pp. 928-
931, May 2006.

[50] IEEE Std 1180-1990, “IEEE standard specification for the implementation of 8x8 inverse
cosine transform,” Institute of Electrical and Electronics Engineers, New York,
USA, International Standard, Dec. 1990

www.intechopen.com

Effective Video Coding for Multimedia Applications
Edited by Dr Sudhakar Radhakrishnan

ISBN 978-953-307-177-0
Hard cover, 292 pages
Publisher InTech
Published online 26, April, 2011
Published in print edition April, 2011

InTech Europe
University Campus STeP Ri

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai

Information has become one of the most valuable assets in the modern era. Within the last 5-10 years, the
demand for multimedia applications has increased enormously. Like many other recent developments, the
materialization of image and video encoding is due to the contribution from major areas like good network
access, good amount of fast processors e.t.c. Many standardization procedures were carrried out for the
development of image and video coding. The advancement of computer storage technology continues at a
rapid pace as a means of reducing storage requirements of an image and video as most situation warrants.
Thus, the science of digital video compression/coding has emerged. This storage capacity seems to be more
impressive when it is realized that the intent is to deliver very high quality video to the end user with as few
visible artifacts as possible. Current methods of video compression such as Moving Pictures Experts Group
(MPEG) standard provide good performance in terms of retaining video quality while reducing the storage
requirements. Many books are available for video coding fundamentals.This book is the research outcome of
various Researchers and Professors who have contributed a might in this field. This book suits researchers
doing their research in the area of video coding.The understanding of fundamentals of video coding is
essential for the reader before reading this book. The book revolves around three different challenges namely
(i) Coding strategies (coding efficiency and computational complexity), (ii) Video compression and (iii) Error
resilience. The complete efficient video system depends upon source coding, proper inter and intra frame
coding, emerging newer transform, quantization techniques and proper error concealment.The book gives the
solution of all the challenges and is available in different sections.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

A. Ben Atitallah, P. Kadionik, F. Ghozzi, P.Nouel, N. Masmoudi and H. Levi (2011). An FPGA Implementation
of HW/SW Codesign Architecture for H.263 Video Coding, Effective Video Coding for Multimedia Applications,
Dr Sudhakar Radhakrishnan (Ed.), ISBN: 978-953-307-177-0, InTech, Available from:
http://www.intechopen.com/books/effective-video-coding-for-multimedia-applications/an-fpga-implementation-
of-hw-sw-codesign-architecture-for-h-263-video-coding

www.intechopen.com

Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

