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Abstract: For the purpose of solving elliptic partial differential equations, we suggest a new approach
using an h-adaptive local discontinuous Galerkin approximation based on Sinc points. The adaptive
approach, which uses Poly-Sinc interpolation to achieve a predetermined level of approximation
accuracy, is a local discontinuous Galerkin method. We developed an a priori error estimate and
demonstrated the exponential convergence of the Poly-Sinc-based discontinuous Galerkin technique,
as well as the adaptive piecewise Poly-Sinc method, for function approximation and ordinary
differential equations. In this paper, we demonstrate the exponential convergence in the number of
iterations of the a priori error estimate derived for the local discontinuous Galerkin technique under
the condition that a reliable estimate of the precise solution of the partial differential equation at the
Sinc points exists. For the purpose of refining the computational domain, we employ a statistical
strategy. The numerical results for elliptic PDEs with Dirichlet and mixed Neumann-Dirichlet
boundary conditions are demonstrated to validate the adaptive greedy Poly-Sinc approach.

Keywords: Poly-Sinc methods; Lagrange interpolation; local discontinuous Galerkin methods; adap-
tive methods; exponential convergence; elliptic partial differential equations; mean absolute deviation;
sample standard deviation

MSC: 41A05; 41A10; 65D05; 65N50; 65N12

1. Introduction

Discontinuous Galerkin (DG) methods [1–5] are a class of numerical methods for
finding accurate approximate solutions to differential equations. In a DG method, the
domain of interest is partitioned into cells, which allows faster computation of the numerical
solution of the partial differential equation (PDE) on the domain of interest. The partitioning
process introduces local boundaries, leading to jumps at the interior edges of the cells. It
was shown in [4] that the accuracy of the DG approximation is affected by these jumps. We
use Poly-Sinc approximation [6–9], in which Lagrange interpolation with non-equidistant
points generated by conformal mappings, such as Sinc points, are used to minimize the
jumps at the interior edges of the cells. Another type of discontinuity is singularities.
Common singularities appear in the form of corner-like or L-shaped domains [10–15].
Sinc methods are characterized by their fast convergence rate of the exponential order
and effective handling of singularities [16]. The local DG (LDG) method [3,17,18] has
been rigorously studied and applied to a wide variety of problems due to their local
conservativity as well as ease of handling of hanging nodes, elements of various types
and shapes, and local spaces of different orders [19]. For a review of the LDG method as
well as the different forms of the DG method, the reader is referred to [18–22]. There has
been an increased interest in developing adaptive DG methods for elliptic problems [22,23],
compressible and incompressible flow problems [24–26], unsteady flow problems [27,28],
and shallow water equations [29–31].
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We extend our work on the DG method [32,33] and the adaptive piecewise collocation
method [34,35] using the Poly-Sinc approximation to elliptic partial differential equations.
It was shown in [6,7] that the a priori error estimate of the Poly-Sinc approximation is
exponentially convergent in the number of Sinc points, provided that the exact solution
belongs to the set of analytic functions.

We develop an adaptive LDG method based on Poly-Sinc approximation to solve
elliptic problems. In [34,35], the fraction of a standard deviation was computed as the ratio
of the mean absolute deviation to the sample standard deviation. It was shown in [36] that

the ratio approaches
√

2
π ≈ 0.798 for an infinite number of normal samples.

This paper is organized as follows. Section 2 discusses the approximation spaces.
Section 3 provides a brief overview of the LDG method. We present the adaptive Poly-
Sinc-based LDG algorithm, provide an a priori error estimate for the approximation error
and show its convergence, and demonstrate the convergence of the adaptive algorithm in
Section 4. We provide numerical examples to validate the adaptive algorithm in Section 5.
Finally, our concluding remarks are given in Section 6.

2. Approximation Spaces
2.1. Univariate Approximation Spaces

We will introduce some notations related to Sinc methods [6,7,37,38]. Let ϕ : D → Dd
be a conformal map that maps a simply connected region D ⊂ C, where

D = {z ∈ C : | arg
(

z− a
b− z

)
| < d}, −∞ < a < b < ∞,

onto the region [37,39]
Dd = {z ∈ C : | Im{z}| < d},

where d is a given positive number. The region D has a boundary ∂D, and let a and b be
two distinct points on ∂D. Let ψ = ϕ−1, ψ : Dd → D be the inverse conformal map. Let Γ
be an arc defined by

Γ = {z ∈ [a, b] : z = ψ(x), x ∈ R},

where a = ψ(−∞) and b = ψ(∞). For finite real numbers a, b, and Γ ⊆ R, ϕ(x) =
log((x− a)/(b− x)) and xk = ψ(k h) = (a + b ek h)/(1 + ek h) are the Sinc points with

spacing h(d, βs) =

(
πd

βsN

)1/2
, βs > 0 [38,40]. Sinc points can be also generated for

semi-infinite or infinite intervals. For a comprehensive list of conformal maps, see [7,38].
We now briefly discuss the function space for y. Let ρ = eϕ, αs be an arbitrary positive

integer number and Lαs,βs
(D) be the family of all functions that are analytic in D = ϕ−1(Dd)

such that for all z ∈ D, we have

|u(z)| ≤ C
|ρ(z)|αs

[1 + |ρ(z)|]αs+βs
.

We next set restrictions on αs, βs, and d such that 0 < αs ≤ 1, 0 < βs ≤ 1, and
0 < d < π. Let Mαs,βs

(D) be the set of all functions g defined on D that have finite limits
g(a) = limz→a g(z) and g(b) = limz→b g(z), where the limits are taken from within D such
that f ∈ Lαs,βs

(D), where

f = g− g(a) + ρ g(b)
1 + ρ

.

The transformation guarantees that f vanishes at the endpoints of (a, b). We assume that u
is analytic and uniformly bounded by B(u) (i.e., |u(x)| ≤ B(u)) in the larger region

D2 = D ∪t∈(a,b) B(t, r),

where r > 0 and B(t, r) = {z ∈ C : |z− t| < r}.
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Lagrange interpolation is a polynomial interpolation scheme [41] which is constructed
by Lagrange basis polynomials such that

`k(x) =
g(x)

(x− xk)g′(xk)
, k = 1, 2, . . . , m, (1)

where {xk}m
k=1 represents the interpolation points and g(x) = ∏m

l=1(x− xl). The Lagrange
basis polynomials satisfy the property

`k(xj) = δkj =

{
1, if k = j

0, if k 6= j.
(2)

Hence, the polynomial approximation in the Lagrange form can be written as

uh(x) =
m

∑
k=1

uk`k(x), (3)

where uh(x) is a polynomial of the degree m− 1 and uk = u(xk). The polynomial uh(x)
interpolates the function u(x) at the interpolation points (i.e., uh(xk) = uk). For the Sinc
points, the polynomial approximation uh(x) becomes

uh(x) =
N

∑
k=−N

uk`k(x), (4)

where m = 2N + 1 is the number of Sinc points.

2.2. Bivariate Approximation Spaces

We now define some notations for the function space Sα, d of the function
u(x, y) [37,39,42,43]. Let X = (x, y) be a point in Q = [a, b]× [c, d], and let D be defined as
in Section 2.1 with d = π/2. Let D be the closure of D. Define Ω as ([37], §6.5.2):

Ω = {(a, b)× D} ∪ {D× (c, d)}.

Let u : Ω→ C, u ∈ C(Ω). Define the following two functions:

ux : D → C such that ux(y) = u(x, y) for fixed x ∈ [a, b],

uy : D → C such that uy(x) = u(x, y) for fixed y ∈ [c, d].

We note that ux(y) ∈Mαs,y,βs,y(D2,y) and uy(x) ∈Mαs,x,βs,x(D2,x) ([37], §4.6.4). Define
the following space of functions Sα, d to be the space of all functions u(x, y) such that the
following apply:

• For all x ∈ [a, b], ux ∈ Hol(D);
• For all y ∈ [c, d], uy ∈ Hol(D);
• There exists α ∈ (0, 1) such that the following apply:

– For all x ∈ [a, b], ux ∈ Lipα(D);
– for all y ∈ [c, d], uy ∈ Lipα(D).

Here, Hol(D) is the family of all functions u that are analytic in a domain D. A
function υ is said to be in a class Lipα on a closed interval [a, b] if there exists a positive
constant C such that [37]

|υ(x1)− υ(x2)| ≤ C |x1 − x2|α,
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for all points x1, x2 ∈ [a, b]. Define the following two Lagrange approximations:

(L1u)(x) =
Nx

∑
j=−Mx

uy(xj)`j(x)

and

(L2u)(y) =
Ny

∑
k=−My

ux(yk)`k(y),

where Li, i = 1, 2, is the one-dimensional interpolation operator [37,39] and mx = Mx +
Nx + 1 and my = My + Ny + 1 are the number of interpolation points in the x axis and the y
axis, respectively. Then, the bivariate Lagrange approximation for a function u(x, y) ∈ Sα, d
can be written as

uh(x, y) = L1(L2u)(x, y) =
Nx

∑
j=−Mx

Ny

∑
k=−My

u(xj, yk)`j(x)`k(y), (5)

where `j(x) and `k(y) are the Lagrange basis functions defined in Section 2.1 for the
variables x and y, respectively. For simplicity, we assume that Mx = Nx and My = Ny
throughout the remaining discussion.

The LDG approximation using the Poly-Sinc interpolation becomes [44]

uc(x, y) =
K

∑
l=1

1Ωl

mx

∑
j=1

my

∑
k=1

cj,k,l`j,l(x)`k,l(y), (6)

where {cj,k,l}
mx,my,K
j,k,l=1 are the unknown coefficients to be determined by the LDG method.

The function 1C is an indicator function which outputs one if the condition C is satisfied
and zero otherwise.

3. A Brief Overview of the Local Discontinuous Galerkin Method

Consider the following elliptic equation [3,18]:

−∆u = f in Ω,

u = gD on ΓD ,

∇u · n = gN · n on ΓN ,

(7)

where f , gD , and gN are given functions. The computational domain Ω is a bounded
domain in R2, as discussed in Section 2.2, and n is the outward normal to its boundary
Γ = ΓD ∪ ΓN [22]. The computational domain Ω is divided into a Cartesian grid Th which
consists of K rectangular elements Ωl = Ωl,x×Ωl,y, l = 1, . . . , K [22]. For ease of exposition,
we will use the symbol ∆ to denote the element Ωl in this section. It is assumed that the
one-dimensional measure of ΓD is nonzero [3,18,22]. The model in Equation (7) can be
written as a system of first-order equations:

q = ∇u in Ω,

−∇ · q = f in Ω,

u = gD on ΓD ,

q · n = gN · n on ΓN .

(8)
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The weak formulation of Equation (8) can be obtained in what follows. By multiplying
the first and second equations in Equation (8) by the test functions v and w, respectively,
integrating over an element ∆ ∈ Th, and applying the divergence theorem [22], we obtain∫∫

∆

q · ∇v dx dy−
∫

Γ
q · n v ds =

∫∫
∆

f v dx dy ,

−
∫∫
∆

u ∇ ·w dx dy +
∫

Γ
u w · n ds =

∫∫
∆

q ·w dx dy .
(9)

We replace the exact solution (q, u) with its LDG approximation (qc, uc) in the finite
element space V p

c ×Vp
c , where [3,22]

V p
c = {q ∈

(
L2(Ω)

)2
: q|∆ ∈ Qp(∆), ∀∆ ∈ Th},

Vp
c = {u ∈ L2(Ω) : u|∆ ∈ (Qp(∆))2, ∀∆ ∈ Th},

(10)

and whereQp(∆) is a tensor product space consisting of polynomials of a degree of at most
p in each variable for the element ∆ [22]. We look for approximate solutions uc ∈ Vp

c and
qc = [q1, q2]

> ∈ V p
c . For any test functions v ∈ Vp

c and w ∈ V p
c , the LDG method consists

of finding (qc, uc) ∈ V p
c ×Vp

c [3,22] such that

∫∫
∆

qc · ∇v dx dy−
∫

Γ
q̂c · n v ds =

∫∫
∆

f v dx dy , ∀v ∈ Vp
c ,

−
∫∫
∆

uc ∇ ·w dx dy +
∫

Γ
ûc w · n ds =

∫∫
∆

qc ·w dx dy , ∀w ∈ V p
c ,

(11)

where ûc and q̂c are numerical fluxes. The fluxes are nothing but discrete approximations to
the traces of u and q on the boundary of the element ∆ [3,18,22]. Throughout the remaining
discussion, we will use the notations û and q̂. Let ∆+ and ∆− be two adjacent elements of
the Cartesian grid Th [3,22]. Let x be an arbitrary point of the edge Γ = ∂∆+ ∩ ∂∆− and
n+ and n− be the corresponding outward normal vectors at x. The mean values {{·}} and
jumps J·K at x ∈ Γ are defined as [3,18]

{{u}} = (u+ + u−)/2, {{q}} = (q+ + q−)/2,

J u K = u+n+ + u−n−, J q K = q+ · n+ + q− · n−,

where the superscript + denotes the cell ∆, the superscript − denotes an adjacent cell
sharing the edge Γ, and n+ = −n− [18,45]. If the edge Γ is inside the domain Ω, then the
fluxes are [3]

q̂ = {{q}} − C11J u K− C12J q K,

û = {{u}}+ C12 · J u K,

where C11 and C12 are parameters that depend on x ∈ Γ. If the edge Γ lies on the boundary
∂Ω, then the fluxes are [3]

q̂ =

{
q+ − C11(u+ − gD)n on ΓD ,
gN on ΓN

and û =

{
gD on ΓD ,
u+ on ΓN .

The stabilization parameter C11 and the auxiliary parameter C12 are defined on the
edge Γ as

C11(Γ) = ζ > 0, C12(Γ) · n = sign(v · n)/2,
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where v is an arbitrary vector with strictly positive components [45]. The vector v is used
to select the fluxes for all elements [3]. For simplicity, we set C11(Γ) = 1 and v = (1, 1). A
simple rule for û can be written as [3]

û =
1
2
(1 + sign(v · n))u+ +

1
2
(1− sign(v · n))u−.

As mentioned in [3], û is always equal to the left trace of u on the vertical edges, and
û is always equal to the trace of u from below on the horizontal edges. Similarly, {{q}} −
C12J q K is always equal to the right trace of q on the vertical edges, and {{q}} − C12J q K is
always equal to the trace of q from above on the horizontal edges. The quantities û and
{{q}} − C12J q K are demonstrated in Figure 1.

Figure 1. Illustration of û is shown in red, and illustration of {{q}} − C12J q K is shown in blue.

4. Adaptive Poly-Sinc-Based LDG Algorithm

The greedy algorithmic strategy utilized in adaptive Poly-Sinc techniques is intro-
duced in this section. The non-overlapping characteristics and the uniform exponential
convergence of the Sinc points on each cell of the computational domain serve as the major
features of the adaptive algorithm. Greedy algorithms look for the “best” option among the
possible solutions at the current iterate [46]. Model order reduction for the parametrized
partial differential equations was performed using greedy methods [47–49]. The adaptive
Poly-Sinc algorithm is greedy in that it makes a decision with the goal of locating the “best”
approximation for the current step of the PDE’s solution [46]. Iteratively, the technique
computes the L2 norm values of the local error for each cell of the computational domain.
The algorithm refines the cells whose L2 norm values of the local error are considerably
large at step i. It is anticipated that the L2 norm values of the local error will decrease with
each step of the cell refinement described above. The approach anticipates locating the
“best” polynomial approximation for the PDE’s solution as the algorithm iterates.

4.1. Local Error

The local error is used as a measure of the accuracy of the adaptive Poly-Sinc-based
LDG method. The local error can be expressed as

e(x, y) = u(x, y)− uc(x, y). (12)

The local error in the lth cell and ith iteration can be written as

e(i)l (x, y) = u(x, y)− u(i)
c (x, y), (13)

where uc(x, y), defined in Equation (6), for the ith iteration becomes

u(i)
c (x, y) =

Ki

∑
l=1

1
Ω(i)

l

mx

∑
j=1

my

∑
k=1

c(i)j,k,l`
(i)
j,l (x)`(i)k,l (y), (14)
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where Ki is the number of cells in the ith iteration.

4.2. Algorithm Description

We now discuss the adaptive algorithm for the Poly-Sinc-based LDG approximation.
The following steps of the adaptive algorithm are performed in an iterative loop [50]:

SOLVE→ ESTIMATE→ MARK→ REFINE.

The adaptive Poly-Sinc-based LDG algorithm is outlined in Algorithm 1. The refine-
ment strategy is performed as follows. For the ith iteration, we compute the set of L2

norm values
{∥∥∥e(i)l (x, y)

∥∥∥
L2(Ω(i)

l )

}Ki

l=1
, where e(i)l (x, y) is defined in Section 4.1, over the Ki

cells, from which the sample mean ξi =
1
Ki

∑Ki
l=1

∥∥∥e(i)l (x, y)
∥∥∥

L2(Ω(i)
l )

and the sample standard

deviation [51]

si =
1√

Ki − 1

√√√√ Ki

∑
l=1

(∥∥∥e(i)l (x, y)
∥∥∥

L2(Ω(i)
l )
− ξi

)2

are computed [52–54]. The symbol Ω(i)
l denotes the lth cell in the ith iteration. The cells with

the indices Ii =

{
j :
∥∥∥e(i)j (x, y)

∥∥∥
L2(Ω(i)

j )
− ξi ≥ ωi si

}
are marked for refinement, where the

test of normality ωi is defined as [36]

ωi =

1
Ki

∑Ki
l=1

∣∣∣∣∥∥∥e(i)l (x, y)
∥∥∥

L2(Ω(i)
l )
− ξi

∣∣∣∣
si

. (15)

Using Hölder’s inequality for sums with p = q = 2 ([55], §3.2.8), one can show that

ωi ≤
√

Ki−1
Ki

< 1. We restrict this to second-order moments only. The points in the cells

with the indices Ii are used as partitioning points, and (2N + 1)2 Sinc points are inserted
in the newly created cells, where 2N + 1 is the number of Sinc points in the x axis or the y
axis. The algorithm terminates when the stopping criterion is satisfied. The approximate
solution u(i)

c (x, y), i = 1, . . . , κ, for the ith iteration is computed using Equation (14).
The L2 norm of a two-dimensional function f (x, y) is computed as follows:

‖ f (x, y)‖2
L2(Ω) =

(∫∫
Ω

f 2(x, y)dx dy
)1/2

, (16)

where the definite integral is computed numerically using a Sinc quadrature [38]; in other
words, we have ∫ b

a
f (x)dx ≈ hQ

N

∑
k=−N

1
ϕ′(xk)

f (xk), (17)

where hQ is the Sinc spacing used for the Sinc quadrature, {xk}N
k=−N ∈ [a, b] represents

the quadrature points, which are also Sinc points, and ϕ(x) is the conformal mapping in
Section 2.1.
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Algorithm 1: Adaptive Poly-Sinc-based LDG algorithm.
input :C, threshold εstop, N
output :S: set of points

κ: number of iterations
e = {ξi}κ

i=1: set of mean values of

‖e(i)l (x, y)‖
L2(Ω(i)

l )
, l = 1, . . . , Ki, i = 1, . . . , κ

u(κ)
c (x, y): approximate solution

1 init: S = {}, C = {Ω(1)
l }

K1=1
l=1 , e = {}

2 Start with (2N + 1)2 Sinc points in each of the cells in C. Append the points to
S.

(Solve). Compute u(1)
c (x, y) (Section 4.1).

3 (Estimate). Compute {‖e(1)l (x, y)‖}K1=1
l=1 over the domain Ω. Append the mean

value ξ1 in e.
4 (Mark). Set I1 = {1}.
5 (Refine). Use the points in the cells with index set I1 as partitioning points.

Insert (2N + 1)2 Sinc points in each of the newly created cells. Update S and C.
6 Set i = 2.

7 while ξi−1 > εstop do
8 (Solve). Compute u(i)

c (x, y) (Section 4.1).

9 (Estimate). Compute
{∥∥∥e(i)l (x, y)

∥∥∥
L2(Ω(i)

l )

}Ki

l=1
over Ki cells. Compute the

sample mean value ξi and the sample standard deviation si. Append ξi in e.
10 (Mark). Identify the cells with indices

Ii =

{
j :
∥∥∥e(i)j (x, y)

∥∥∥
L2(Ω(i)

j )
− ξi ≥ ωi si

}
, l = 1, . . . , Ki.

11 (Refine). Use the (2N + 1)2 points in the cells with indices Ji as partitioning
points. Insert (2N + 1)2 Sinc points in each of the newly created cells. Update
S and C.

12 i← i + 1.
13 end
14 κ ← i− 1.

4.3. Error Analysis

We state below the main theorem:

Theorem 1 (Estimate of the upper bound). Let u be analytic and bounded in Ω, and let u(i)
c (x, y)

be the Poly-Sinc-based local discontinuous Galerkin approximation in the ith iteration. Let mx
and my be the number of Sinc points in the x axis and y axis, respectively. Let Λ be the Lebesgue

constant. Let c(i)j,k,l be the estimated coefficients and u(i)
j,k,l be the exact values of u(x, y) at the Sinc

points {(x(i)j,l , y(i)k,l )} with

∑
j,k,l
|c(i)j,k,l − u(i)

j,k,l | < δ, i = 1, 2, . . . , κ.

Then, there exists a constant A, independent of the ith iteration, such that

max
(x,y)∈Ω

∣∣∣u(x, y)− u(i)
c (x, y)

∣∣∣ ≤ Ki Ei + δ Λmx Λmy , (18)
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where Ei =
A

(2r)m λm(i−1)[(b− a)mx + Λmx(d− c)my ], r > 1, and 0 < λ < 1.

Proof. The derivation follows that of [34,35]. The upper bound on the error estimate
u(x, y)− u(i)

c (x, y) is

max
(x,y)∈Ω

∣∣∣u(x, y)− u(i)
c (x, y)

∣∣∣ = ∥∥u(x, y)− u(i)
c (x, y)

∥∥
Ω

=
∥∥u(x, y)− u(i)

c (x, y) + u(i)
h (x, y)− u(i)

h (x, y)
∥∥

Ω

≤
∥∥u(x, y)− u(i)

h (x, y)
∥∥

Ω +
∥∥u(i)

h (x, y)− u(i)
c (x, y)

∥∥
Ω

≤ Ki Ei +
Ki

∑
l=1

∥∥u(i)
h (x, y)− u(i)

c (x, y)
∥∥

Ω(i)
l

= Ki Ei +
Ki

∑
l=1

∥∥ mx

∑
j=1

my

∑
k=1

(c(i)j,k,l − u(i)
j,k,l)`

(i)
j,l (x)`(i)k,l (y)

∥∥
Ω(i)

l

≤ Ki Ei +
Ki

∑
l=1

∥∥ mx

∑
j=1

my

∑
k=1
|c(i)j,k,l − u(i)

j,k,l | |`
(i)
j,l (x)| |`(i)k,l (y)|

∥∥
Ω(i)

l

≤ Ki Ei +
δ

Ki

Ki

∑
l=1

∥∥ mx

∑
j=1

my

∑
k=1
|`(i)j,l (x)| |`(i)k,l (y)|

∥∥
Ω(i)

l

= Ki Ei +
δ

Ki

Ki

∑
l=1

∥∥ mx

∑
j=1
|`(i)j,l (x)|

my

∑
k=1
|`(i)k,l (y)|

∥∥
Ω(i)

l

≤ Ki Ei +
δ

Ki

Ki

∑
l=1

∥∥ mx

∑
j=1
|`(i)j,l (x)|

∥∥
Ω(i)

x,l︸ ︷︷ ︸
Λ(i)

mx,l

∥∥ my

∑
k=1
|`(i)k,l (y)|

∥∥
Ω(i)

y,l︸ ︷︷ ︸
Λ(i)

my,l

≤ Ki Ei +
δ

Ki
Ki Λ(i)

mx Λ(i)
my

= Ki Ei +
δ

Ki
Ki Λmx Λmy

= Ki Ei + δ Λmx Λmy , (19)

where Ω(i)
l = Ω(i)

x,l × Ω(i)
y,l , Λm = 1

π log(m) + 1.07618 is the Lebesgue constant for the
Poly-Sinc approximation [9,39,56], mx = maxl mx,l , my = maxl my,l , Λmx = maxl Λmx,l ,
Λmy = maxl Λmy,l , and the multiplicative property [57] of the supremum norm was used

(i.e., ‖xy‖ ≤ ‖x‖‖y‖). The iteration index i was dropped in Λ(i)
mx,l and Λ(i)

my,l since the
number of interpolation points mx or my is independent of the ith iteration. On average,

the term |c(i)j,k,l − u(i)
j,k,l | <

δ
ni

= δ
Ki mx my

< δ
Ki

, where ni = Ki mx my is the total number of
interpolation points in the ith iteration. Next, we derive the upper bound Ei, which follows
the derivation of [37,39]. We start with the computational domain Ω. An upper bound on
the error estimate ‖u− uh‖ becomes

‖u(x, y)− u(i)
h (x, y)‖Ω = ‖u(x, y)− L1(L2(u(i)))‖Ω

= ‖u(x, y)− L1(L2(u(i))) + L1(u(i))− L1(u(i))‖Ω

≤ ‖u(x, y)− L1(u(i))‖Ω + ‖L1(u(i))− L1(L2(u(i)))‖Ω.
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The upper bound of the error u(x, y)− L1(u(i)) is

‖u(x, y)− L1(u(i))‖Ω = max
(x,y)∈Ω

∣∣∣u(x, y)− L1(u(i))
∣∣∣

= max
(x,y)∈Ω

∣∣∣∣∣u(x, y)−
mx

∑
j=1

u(x(i)j , y)`(i)j (x)

∣∣∣∣∣
≤ max

x∈ [a,b]

∣∣∣∣∣u(x, y∗)−
mx

∑
j=1

u(x(i)j , y∗)`(i)j (x)

∣∣∣∣∣
≤

Ki

∑
l=1

max
x∈Ωx,l

∣∣∣∣∣u(x, y∗)−
mx

∑
j=1

u(x(i)j,l , y∗)`(i)j,l (x)

∣∣∣∣∣
≤

Ki

∑
l=1

A(i)
x,l

(2r(i)x,l )
mx

(L(Ω(i)
x,l ))

mx N(i)
x,l exp

(
−γ

(i)
l,x (N(i)

x,l )
β
(i)
l,x

)

≤ Ax

(2rx)mx
(L(Ω(i)

x ))mx
Ki

∑
l=1

1

= Ki
Ax

(2rx)mx
(λx)

mx(i−1)(b− a)mx (20)

where Ωl = Ωx,l × Ωy,l , Ax = maxl,i A(i)
x,l N(i)

x,l exp
(
−γ

(i)
l,x (N(i)

x,l )
β
(i)
l,x

)
, rx = minl,i r(i)x,l ,

L(Ω(i)
x ) = maxl L(Ω

(i)
x,l ), L(Ω

(i)
x ) = λi−1

x (b− a) [35], where L(·) denotes the length, and

y∗ =

{
y :

∣∣∣∣∣u(x, y)−
mx

∑
j=1

u(x(i)j , y) `(i)j (x)

∣∣∣∣∣ is maximum ∀x ∈ [a, b] and ∀i

}
.

The upper bound of the error L1(u(i))− L1(L2(u(i))) is

‖L1(u(i))− L1(L2(u(i)))‖Ω = ‖L1(u(i) − L2(u(i)))‖Ω

= max
(x,y)∈Ω

∣∣∣∣∣mx

∑
j=1

[
u(x(i)j , y)−

my

∑
k=1

u(x(i)j , y(i)k )`
(i)
k (y)

]
`
(i)
j (x)

∣∣∣∣∣
≤ max

y∈[c,d]

∣∣∣∣∣u(x∗, y)−
my

∑
k=1

u(x∗, y(i)k )`
(i)
k (y)

∣∣∣∣∣ max
x∈[a,b]

mx

∑
j=1

∣∣∣`(i)j (x)
∣∣∣︸ ︷︷ ︸

Λmx

≤ Λmx

Ki

∑
l=1

max
y∈Ωy,l

∣∣∣∣∣u(x∗, y)−
my

∑
k=1

u(x∗, y(i)k,l )`
(i)
k,l (y)

∣∣∣∣∣
≤ Λmx

Ki

∑
l=1

A(i)
y,l

(2r(i)y,l )
my

(L(Ω(i)
y,l ))

my N(i)
y,l exp

(
−γ

(i)
l,y(N(i)

y,l )
β
(i)
l,y

)

≤ Λmx

Ay

(2ry)
my

(L(Ω(i)
y ))my

Ki

∑
l=1

1

= Ki Λmx

Ay

(2ry)
my

(λy)
my(i−1)(d− c)my , (21)
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where Ay = maxl,i A(i)
y,l N(i)

y,l exp
(
−γ

(i)
l,y(N(i)

y,l )
β
(i)
l,y

)
, ry = minl,i r(i)y,l , L(Ω(i)

y ) = maxl L(Ω
(i)
y,l ),

L(Ω(i)
y ) = λi−1

y (d− c) [35], and

x∗ =

{
x :

∣∣∣∣∣u(x, y)−
my

∑
k=1

u(x, y(i)k )`
(i)
k (y)

∣∣∣∣∣ is maximum ∀y ∈ [c, d] and ∀i

}
.

From the inequalities in Equations (20) and (21), the upper bound on the error estimate
u− uh becomes

‖u(x, y)− u(i)
h (x, y)‖Ω ≤ ‖u(x, y)− u(i)

h (x, y)‖Ω

= ‖u(x, y)− L1(L2(u(i))) + L1(u(i))− L1(u(i))‖Ω

≤ ‖u(x, y)− L1(u(i))‖Ω + ‖L1(u(i))− L1(L2(u(i)))‖Ω

≤ Ki
Ax

(2rx)mx
λ

mx(i−1)
x (b− a)mx + Ki Λmx

Ay

(2ry)
my

λ
my(i−1)
y (d− c)my

≤ Ki
A

(2r)m λm(i−1)[(b− a)mx + Λmx(d− c)my ]

= Ki Ei,

where m = min{mx, my}, r = min{rx, ry}, λ = max{λx, λy}, A = max{Ax, Ay}, and

Ei =
A

(2r)m λm(i−1)[(b− a)mx + Λmx(d− c)mx ]. (22)

The inequality in Equation (19) becomes

max
(x,y)∈Ω

∣∣∣u(x, y)− u(i)
c (x, y)

∣∣∣ ≤ Ki Ei + δ Λmx Λmy .

We compute the mean value of the error estimate; in other words, we calculate

max
(x,y)∈Ω

1
Ki

∣∣∣u(x, y)− u(i)
c (x, y)

∣∣∣ ≤ Ei +
δ

Ki
Λmx Λmy . (23)

For fitting purposes, we can rewrite the inequality in Equation (23) as

max
(x,y)∈Ω

1
Ki

∣∣∣u(x, y)− u(i)
c (x, y)

∣∣∣ ≤ Ei +
δ

Ki
Λmx Λmy

= Ei + δ̃ Λmx Λmy ,
(24)

where δ̃ = δ
Ki

. We note that Ki is increasing and Ki is finite for a finite value of the
iteration index i. The factor δ̃ becomes small as Ki, the number of cells in the ith iteration,
becomes large.

4.4. Convergence Analysis of the Adaptive Algorithm

This section discusses the convergence of the adaptive algorithm. The convergence
analysis for the one-dimensional case was shown in [35]. It suffices to show that the
sequence {u(i)

c (x, y)} is contractive and that it converges uniformly on Ω to u(x, y).
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Lemma 1 (Contraction mapping [58]). The sequence {u(i)
c (x, y)} is contractive; in other words,

there exists some constant 0 < C < 1 such that∥∥u(i+1)
c (x, y)− u(i)

c (x, y)
∥∥

Ω ≤ C
∥∥u(i)

c (x, y)− u(i−1)
c (x, y)

∥∥
Ω.

Proof. Let Ki+1,i,i−1 = Ki+1KiKi−1. Recalling the inequality in Equation (23), we have

1
Ki+1,i,i−1

∥∥u(i+1)
c (x, y)− u(i)

c (x, y)
∥∥

Ω =
1

Ki+1,i,i−1

∥∥u(i+1)
c (x, y)− u(i)

c (x, y) + u(x, y)− u(x, y)
∥∥

Ω

≤ 1
Ki+1,i,i−1

∥∥u(x, y)− u(i+1)
c (x, y)

∥∥
Ω+

1
Ki+1,i,i−1

∥∥u(x, y)− u(i)
c (x, y)

∥∥
Ω

<
1

Ki+1

∥∥u(x, y)− u(i+1)
c (x, y)

∥∥
Ω +

1
Ki

∥∥u(x, y)− u(i)
c (x, y)

∥∥
Ω

≤ Ei+1 +
δ

Ki+1
Λmx Λmy + Ei +

δ

Ki
Λmx Λmy

= Ei+1 + Ei + δ Λmx Λmy

(
1

Ki+1
+

1
Ki

)
(25)

Similarly, we have

1
Ki+1,i,i−1

∥∥u(i)
c (x, y)− u(i−1)

c (x, y)
∥∥

Ω ≤ Ei + Ei−1 + δ Λmx Λmy

(
1
Ki

+
1

Ki−1

)
(26)

We compare the ratio of the upper bounds in Equations (25) and (26); in other words,
we have

θ =
Ei+1 + Ei + δ Λmx Λmy

(
1

Ki+1
+ 1

Ki

)
Ei + Ei−1 + δ Λmx Λmy

(
1
Ki

+ 1
Ki−1

) .

Since Ei < Ei−1, i = 2, . . . , κ from Equation (22) and Ki > Ki−1, i = 2, . . . , κ, one can
directly verify that

Ei+1 + Ei + δ Λmx Λmy

(
1

Ki+1
+

1
Ki

)
< Ei + Ei−1 + δ Λmx Λmy

(
1
Ki

+
1

Ki−1

)
,

In other words, θ < 1. This implies that there is a constant C > 0 such that

1
Ki+1,i,i−1

∥∥u(i+1)
c (x, y)− u(i)

c (x, y)
∥∥

Ω ≤
C

Ki+1,i,i−1

∥∥u(i)
c (x, y)− u(i−1)

c (x, y)
∥∥

Ω. (27)

Multiplying the inequality in Equation (26) by the constant C yields

C
Ki+1,i,i−1

∥∥u(i)
c (x, y)− u(i−1)

c (x, y)
∥∥

Ω ≤ C
(

Ei + Ei−1 + δ Λmx Λmy

(
1
Ki

+
1

Ki−1

))
. (28)

From the inequalities in Equations (27) and (28), we have

1
Ki+1,i,i−1

∥∥u(i+1)
c (x, y)− u(i)

c (x, y)
∥∥

Ω ≤ C
(

Ei + Ei−1 + δ Λmx Λmy

(
1
Ki

+
1

Ki−1

))
. (29)
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The upper bound of the inequality in Equation (29) cannot be larger than that of
Equation (25); in other words, we have

C
(

Ei + Ei−1 + δ Λmx Λmy

(
1
Ki

+
1

Ki−1

))
≤ Ei+1 + Ei + δ Λmx Λmy

(
1

Ki+1
+

1
Ki

)
.

This implies that C ≤ θ < 1. Hence, there exists a constant 0 < C ≤ θ < 1 such that

1
Ki+1,i,i−1

∥∥u(i+1)
c (x, y)− u(i)

c (x, y)
∥∥

Ω ≤
C

Ki+1,i,i−1

∥∥u(i)
c (x, y)− u(i−1)

c (x, y)
∥∥

Ω. (30)

Multiplying the inequality in Equation (30) by Ki+1,i,i−1, we obtain∥∥u(i+1)
c (x, y)− u(i)

c (x, y)
∥∥

Ω ≤ C
∥∥u(i)

c (x, y)− u(i−1)
c (x, y)

∥∥
Ω.

Lemma 2 (Uniform convergence [37,58]). Let {u(i)
c (x, y)}, i = 1, 2 . . ., be the sequence of

bounded functions on Ω ⊆ R2. If {u(i)
c (x, y)} forms a Cauchy sequence on Ω, then

lim
M→∞

{
sup

j>M,k>M

∥∥∥∥u(j)
c (x, y)− u(k)

c (x, y)
∥∥∥∥

Ω

}
= 0,

and the sequence {u(i)
c (x, y)} converges uniformly on Ω to u(x, y).

Proof. The derivation follows that of ([58], § 8.1.10). Since the sequence {u(i)
c (x, y)}

is contractive by Lemma 1, then the sequence {u(i)
c (x, y)} is a Cauchy se-

quence ([58], Theorem 3.5.8). Hence, there exists a natural number M such that
if j, k > M, then supj>M,k>M

∥∥u(j)
c (x, y) − u(k)

c (x, y)
∥∥

Ω ≤ ε. Since ε is arbitrary,

limM→∞
{

supj>M,k>M
∥∥u(j)

c (x, y) − u(k)
c (x, y)

∥∥
Ω

}
= 0. Hence, the sequence {u(i)

c (x, y)}
converges to a limit u(x, y), (x, y) ∈ Ω. Let u : Ω→ R, where

u(x, y) := lim
i→∞

u(i)
c (x, y), (x, y) ∈ Ω.

It was shown in Theorem 1 that max(x,y)∈Ω
1
Ki

∣∣∣u(x, y)− u(i)
c (x, y)

∣∣∣ < Ei +
δ

Ki
Λmx Λmy

for (x, y) ∈ Ω. Since 0 < λ < 1, then Ei → 0 as i→ ∞. The term δ
Ki

Λmx Λmy → 0 as i→ ∞

since Ki > 1. We conclude that limi→∞ u(i)
c (x, y) = u(x, y), (x, y) ∈ Ω, and the sequence

{u(i)
c (x, y)} converges uniformly on Ω to u(x, y), which completes the proof.

Lemmas (1) and (2) are used to prove the contraction mapping principle [37]. We con-
sider the Banach space X = Ω [37]. While the supremum norm has a theoretical advantage,
the L2 norm will be used as discussed in [34]. Next, we will present some results for PDEs
with Dirichlet boundary conditions and mixed Dirichlet-Neumann boundary conditions.

5. Numerical Examples

The results in this section were computed using Mathematica [59]. The Sinc spacing
used for generating the Sinc points was h = h(π

2 , 1
4 ) =

π√
1
2 N

, and the Sinc spacing used for

generating the quadrature points was hQ = π√
N

. The stopping criterion εstop = 10−4. A
precision of 200 digits was used. For all examples, we set the number of points per cell to
be constant (i.e., mxmy = m2 = (2N + 1)2 = 9). The traces were implemented as discussed
in [60]. The number of quadrature points used in the Sinc quadrature (17) for a cell was
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(2N + 1)2, where N = 20. The number of quadrature points in a cell was increased to
(2d1.5Ne+ 1)2 if the width or the height of the cell was less than 10−3.

Example 1. Solution of two-dimensional Poisson equation [61] with Dirichlet boundary conditions:
− ∆u = 2π2 sin(πx) sin(πy) (x, y) ∈ [0, 1]2,

u(x, 0) = u(x, 1) = 0 x ∈ [0, 1],

u(0, y) = u(1, y) = 0 y ∈ [0, 1],

(31)

whose exact solution is
u(x, y) = sin(πx) sin(πy).

The algorithm terminates after κ = 3 iterations and the number of points |S| = 684. Figure 2a
shows the 3D plot of u(3)

c (x, y), and Figure 2b shows the contour plot of u(3)
c (x, y).

We perform least squares fitting of the logarithm of the set e to the logarithm of the upper bound
of the inequality in Equation (24) as shown in Figure 3a. The dots represent the set e, and the solid
line represents the least squares fitted model in Equation (24). The fitted model demonstrates an
exponential decay in the mean value of ‖e(i)l (x, y)‖, l = 1, . . . , Ki, over the Ki cells. The parameter

δ̃, which results from the estimation of the coefficients of u(3)
c (x, y) under the Poly-Sinc-based LDG

method, is quite small. This indicates that our adaptive method can estimate the exact values of
u(x, y) at the Sinc points up to a negligible error. Figure 3b shows the logarithmic plot of the absolute
value of the local error e(3)(x, y). The jumps in the local error plot result from the partitioning
process of the Poly-Sinc-based LDG method. The jumps are almost negligible, as seen in Figure 2.
The L2 norm of the approximation error ‖u(x, y)− u(3)

c (x, y)‖L2 ≈ 1.2× 10−3.
We tabulate the test of normality ωi as a function of the iteration index i, i = 2, 3, in Table 1.

The test of normality ωi is less than one, as discussed in [34,35].

(a) (b)

Figure 2. A 3D plot and contour plot of u(3)
c (x, y) for Example 1. (a) 3D plot of u(3)

c (x, y); (b) Contour

plot of u(3)
c (x, y).

Table 1. Test of normality ωi, i = 2, 3, for Example 1.

i ωi

2 0.8385
3 0.7718
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1.0 1.5 2.0 2.5 3.0

10-4

0.001

0.010

0.100

i

ξ i

A = 1.34×105, r = 6.28×101, λ = 0.197, δ = 3.56×10-5

(a) A = 1.34× 105, r = 62.8, λ = 0.197, δ̃ = 3.56× 10−5. (b) Logarithmic plot of |u(x, y)− u(3)
c (x, y)|.

Figure 3. (a) Fitting the model in Equation (24) to the set e of Example 1. (b) Local error plot.

Example 2. Consider the following Laplace equation [61] with Dirichlet boundary conditions:

∆u = 0 (x, y) ∈ [−1, 1]2,

u(x,−1) = 0 x ∈ [−1, 1],

u(−1, y) = u(1, y) = 0 y ∈ [−1, 1],

u(x, 1) = sin
(π

2
(x + 1)

)
x ∈ [−1, 1],

(32)

whose exact solution is

u(x, y) =
sinh

(
−π

2 (y + 1)
)

sin
(

π
2 (x + 1)

)
sinh(−π)

.

The algorithm terminates after κ = 4 iterations and the number of points |S| = 1494.
Figure 4a shows the 3D plot of u(4)

c (x, y), and Figure 4b shows the contour plot of u(3)
c (x, y).

We perform least squares fitting of the logarithm of the set e to the logarithm of the upper bound
of the inequality in Equation (24) as shown in Figure 5a. The dots represent the set e, and the solid
line represents the least squares fitted model in Equation (24). The fitted model demonstrates an
exponential decay in the mean value of ‖e(i)l (x, y)‖, l = 1, . . . , Ki over the Ki cells. The parameter

δ̃, which results from the estimation of the coefficients of u(4)
c (x, y) under the Poly-Sinc-based LDG

method, is quite small. This indicates that our adaptive method can estimate the exact values of
u(x, y) at the Sinc points up to a negligible error. Figure 5b shows the logarithmic plot of the absolute
value of the local error e(4)(x, y). The jumps in the local error plot result from the partitioning
process of the Poly-Sinc-based LDG method. The jumps are almost negligible, as seen in Figure 4.
The L2 norm of the approximation error ‖u(x, y)− u(4)

c (x, y)‖L2 ≈ 7.84× 10−4.
We tabulate the test of normality ωi as a function of the iteration index i, i = 2, . . . , 4, in

Table 2. The test of normality oscillates around the value ωi ≈ 0.67.

Table 2. Test of normality ωi, i = 2, . . . , 4, for Example 2.

i ωi

2 0.665
3 0.7206
4 0.6191
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(a) (b)

Figure 4. A 3D plot and contour plot of u(4)
c (x, y) for Example 2. (a) A 3D plot of u(4)

c (x, y); (b) Con-

tour plot of u(4)
c (x, y).

1.0 1.5 2.0 2.5 3.0 3.5 4.0

10-4

0.001

0.010

0.100

i

ξ i

A = 1.33×105, r = 1.90×102, λ = 0.380, δ = 1.12×10-5

(a) A = 1.33× 105, r = 1.9× 102, λ = 0.38, δ̃ = 1.12× 10−5. (b) Logarithmic plot of |u(x, y)− u(4)
c (x, y)|.

Figure 5. (a) Fitting the model in Equation (24) to the set e of Example 2. (b) Local error plot.

Example 3. Consider the following elliptic problem [43,62] with Dirichlet boundary conditions:{
− ∆u = f (x, y) in Ω,

u(x, y) = 0 on ∂Ω,
(33)

where Ω = [−1, 4]× [0, 1] and the exact solution is

u(x, y) =
(x + 1)(x− 4)(1− y2)y2

3.1596
.

The algorithm terminates after κ = 4 iterations and the number of points |S| = 954. Figure 6a
shows the 3D plot of u(4)

c (x, y), and Figure 6b shows the contour plot of u(4)
c (x, y).

We perform least squares fitting of the logarithm of the set e to the logarithm of the upper bound
of the inequality in Equation (24) as shown in Figure 7a. The dots represent the set e, and the solid
line represents the least squares fitted model in Equation (24). The fitted model demonstrates an
exponential decay in the mean value of ‖e(i)l (x, y)‖, l = 1, . . . , Ki, over the Ki cells. The parameter

δ̃, which results from the estimation of the coefficients of u(4)
c (x, y) under the Poly-Sinc-based LDG

method, is quite small. This indicates that our adaptive method can estimate the exact values of
u(x, y) at the Sinc points up to a negligible error. Figure 7b shows the logarithmic plot of the absolute
value of the local error e(4)(x, y). The jumps in the local error plot result from the partitioning
process of the Poly-Sinc-based LDG method. The jumps are almost negligible, as seen in Figure 6.
The L2 norm of the approximation error ‖u(x, y)− u(4)

c (x, y)‖L2 ≈ 1.7× 10−3.
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We tabulate the test of normality ωi, as a function of the iteration index i, i = 2, . . . , 4, in
Table 3. The test of normality oscillates around the value ωi ≈ 0.62.

(a) (b)

Figure 6. A 3D plot and contour plot of u(4)
c (x, y) for Example 3. (a) 3D plot of u(4)

c (x, y); (b) Contour

plot of u(4)
c (x, y).

1.0 1.5 2.0 2.5 3.0 3.5 4.0

10-4

0.001

0.010

0.100

i

ξ i

A = 1.33×105, r = 2.10×102, λ = 0.260, δ = 6.37×10-5

(a) A = 1.33× 105, r = 2.1× 102, λ = 0.26, δ̃ = 6.37× 10−5. (b) Logarithmic plot of |u(x, y)− u(4)
c (x, y)|.

Figure 7. (a) Fitting the model in Equation (24) to the set e of Example 3. (b) Local error plot.

Table 3. Test of normality ωi, i = 2, . . . , 4, for Example 3.

i ωi

2 0.7329
3 0.5189
4 0.5945

Example 4. Consider the following Poisson problem [22] with mixed Dirichlet-Neumann bound-
ary conditions:

− ∆u = 8π2 sin(2π(x + y)), (x, y) ∈ [0, 1]2,

u(0, y) = sin(2πy), u(x, 0) = sin(2πy), x ∈ [0, 1], y ∈ [0, 1],

ux(1, y) = 2π cos(2πy), uy(x, 1) = 2π cos(2πx), x ∈ [0, 1], y ∈ [0, 1],

(34)

whose exact solution is
u(x, y) = sin(2π(x + y)).

The algorithm terminates after κ = 5 iterations and the number of points |S| = 7839.
Figure 8a shows the 3D plot of u(5)

c (x, y), and Figure 8b shows the contour plot of u(5)
c (x, y).

We perform least squares fitting of the logarithm of the set e to the logarithm of the upper bound
of the inequality in Equation (24) as shown in Figure 9a. The dots represent the set e, and the solid
line represents the least squares fitted model in Equation (24). The fitted model demonstrates an
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exponential decay in the mean value of ‖e(i)l (x, y)‖, l = 1, . . . , Ki, over the Ki cells. The parameter

δ̃, which results from the estimation of the coefficients of u(5)
c (x, y) under the Poly-Sinc-based LDG

method, is quite small. This indicates that our adaptive method can estimate the exact values of
u(x, y) at the Sinc points up to a negligible error. Figure 9b shows the logarithmic plot of the absolute
value of the local error e(5)(x, y). The jumps in the local error plot result from the partitioning
process of the Poly-Sinc-based LDG method. The jumps are almost negligible, as seen in Figure 8.
The L2 norm of the approximation error ‖u(x, y)− u(5)

c (x, y)‖L2 ≈ 5.6× 10−3.
Figure 10 shows the distribution of the Sinc points for i = 5. The plot shows a dense

distribution of Sinc points near the boundaries as well as the center of the domain Ω.
We tabulate the test of normality ωi as a function of the iteration index i, i = 2, . . . , 5, in

Table 4. It can be observed that the test of normality ωi is decaying.

(a) (b)

Figure 8. A 3D plot and contour plot of u(5)
c (x, y) for Example 4. (a) 3D plot of u(5)

c (x, y); (b) Contour

plot of u(5)
c (x, y).

1 2 3 4 5

10-4

0.001

0.010

0.100

i

ξ i

A = 1.34×105, r = 4.94×101, λ = 0.412, δ = 3.28×10-5

(a) A = 1.34× 105, r = 49.4, λ = 0.412, δ̃ = 3.28× 10−5. (b) Logarithmic plot of |u(x, y)− u(5)
c (x, y)|.

Figure 9. (a) Fitting the model in Equation (24) to the set e of Example 4. (b) Plot of |u(x, y) −
u(5)

c (x, y)|.

Table 4. Test of normality ωi, i = 2, . . . , 5, for Example 4.

i ωi

2 0.8372
3 0.7744
4 0.7222
5 0.7002
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Figure 10. Distribution of Sinc points for Example 4.

6. Conclusions

In this paper, we derived an a priori error estimate for the h-adaptive Poly-Sinc-based
LDG algorithm and showed its exponential convergence in the number of iterations, pro-
vided that a good estimate of the exact solution u(x, y) at the Sinc points existed. The
convergence of the adaptive algorithm was also shown. We used a statistical approach
for refinement of the computational domain. We validated our adaptive method on ellip-
tic PDEs with Dirichlet and mixed Neumann-Dirichlet boundary conditions. Our study
demonstrates that better approximation can be obtained if the stopping criterion is less
than 10−4 at the expense of more iterations.
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