

Accepted Manuscript

An HMM-Based Approach for Automatic Detection and Classification

of Duplicate Bug Reports

Neda Ebrahimi , Abdelaziz Trabelsi , Md. Shariful Islam ,

Abdelwahab Hamou-Lhadj , Kobra Khanmohammadi

PII: S0950-5849(19)30117-X

DOI: https://doi.org/10.1016/j.infsof.2019.05.007

Reference: INFSOF 6141

To appear in: Information and Software Technology

Received date: 11 October 2018

Revised date: 28 April 2019

Accepted date: 14 May 2019

Please cite this article as: Neda Ebrahimi , Abdelaziz Trabelsi , Md. Shariful Islam ,

Abdelwahab Hamou-Lhadj , Kobra Khanmohammadi , An HMM-Based Approach for Automatic

Detection and Classification of Duplicate Bug Reports, Information and Software Technology (2019),

doi: https://doi.org/10.1016/j.infsof.2019.05.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service

to our customers we are providing this early version of the manuscript. The manuscript will undergo

copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please

note that during the production process errors may be discovered which could affect the content, and

all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2019.05.007
https://doi.org/10.1016/j.infsof.2019.05.007

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

1

An HMM-Based Approach for Automatic Detection and

Classification of Duplicate Bug Reports

Neda Ebrahimi
*
, Abdelaziz Trabelsi, Md. Shariful Islam, Abdelwahab Hamou-Lhadj and Kobra

Khanmohammadi

Department of Electrical and Computer Engineering, Concordia University, Montréal, QC, Canada

Abstract

Context: Software projects rely on their issue tracking systems to guide maintenance activities of software developers. Bug reports submitted

to the issue tracking systems carry crucial information about the nature of the crash (such as texts from users or developers and execution

information about the running functions before the occurrence of a crash). Typically, big software projects receive thousands of reports every

day.

Objective: The aim is to reduce the time and effort required to fix bugs while improving software quality overall. Previous studies have

shown that a large amount of bug reports are duplicates of previously reported ones. For example, as many as 30% of all reports in for Firefox

are duplicates.

Method: While there exist a wide variety of approaches to automatically detect duplicate bug reports by natural language processing, only a

few approaches have considered execution information (the so-called stack traces) inside bug reports. In this paper, we propose a novel

approach that automatically detects duplicate bug reports using stack traces and Hidden Markov Models.

Results: When applying our approach to Firefox and GNOME datasets, we show that, for Firefox, the average recall for Rank k =1 is 59%,

for Rank k=2 is 75.55%. We start reaching the 90% recall from k=10. The Mean Average Precision (MAP) value is up to 76.5%. For

GNOME, The recall at k=1 is around 63%, while this value increases by about 10% for k=2. The recall increases to 97% for k=11. A MAP

value of up to 73% is achieved.

Conclusion: We show that HMM and stack traces are a powerful combination for detecting and classifying duplicate bug reports in large bug

repositories.

Keywords: Duplicate Bug Reports; Stack Traces; Hidden Markov Models; Machine Learning, Mining Software Repositories.

1. Introduction

A Bug Tracking System (BTS) is used by development

and management teams to keep track of software bugs and

resolutions. There are many bug tracking systems, both

commercial and open-source. Among the freely available

open-source systems, Bugzilla is perhaps the most popular

one. When a system crashes, users can submit a bug or a

crash report, which typically contains a description of the

nature of the crash, system and platform information (i.e.,

OS, version, failed components, etc.), and stack traces. Major

software companies such as Microsoft, Mozilla, and Apple,

have deployed crash report feedback mechanisms on their

software. They typically receive a large number of crash

reports over an extended period of time and use them to

guide their debugging efforts.

 However, processing these incoming bug reports (BRs)

can be tedious and time-consuming. Fortunately, not all

crashes are caused by new bugs; many of them are duplicates

of existing crashes. Anvik et al. [1] reported that

approximately 20% of BRs for Eclipse and 30% of BRs for

Firefox are duplicates. Lazar et al. [2] showed that the total

number of duplicate BRs in Eclipse, OpenOffice, Mozilla,

and Netbeans is up to 23% of the total reports. Due to a large

number of bug reports submitted every day, the bug handling

process tends to be challenging and time-consuming.

Identifying duplicate BRs at an early stage can help improve

the productivity of triaging teams, which in turn should speed

up the bug resolution process. It is therefore essential to

invest in techniques that can automatically detect duplicate

BRs.

There exist studies to automatically detect duplicate BRs

[3]–[6]. Most of them focus on the analysis of BR categorical

data (e.g., component, product, etc.) and textual information

such as BR descriptions and comments using machine

learning and information retrieval techniques [4], [7]–[9].

Textual descriptions are written by end users, testers or

developers may provide essential information for further

analysis of BRs. However, BRs vary in their quality of

content. They often contain incomplete or even incorrect

*Corresponding author:

E-mail addresses: n_ebr@ece.concordia.ca (N. Ebrahimi),

trabelsi@ece.concordia.ca (A. Trabelsi),

mdsha_i@ece.concordia.ca (Md. S. Islam),

abdelw@ece.concordia.ca (A. Hamou-Lhadj),

k_khanm@ece.concordia.ca (K. Khanmohammadi).

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

2

information [10], causing delays in fixing bugs due to poorly

written described BRs. To overcome these limitations,

researchers have turned to stack traces as the main features

for detection of duplicate BRs [6], [7], [10]–[17]. Considered

as an alternative and useful way to characterize a BR, a stack

trace contains a sequence of running methods and threads in

the system at the time of the crash. (Annotation 2.11) Stack

traces have been used to help diagnose the causes of failures

[18] or for bug reproduction [19], [20]. This is because they

tend to be a more formal source of information than BR

descriptions and comments that are entered by end users

(including developers) using natural language. Stack traces

are a useful alternative, especially when BR descriptions and

comments suffer from quality problems due to noise in the

data and the ambiguity and imprecision associated with the

use of natural language.

In our previous work [21], we presented an approach for

detecting duplicate BRs using stack traces and Hidden

Markov Models (HMMs). An HMM is designed for the

analysis of sequential data. This paper complements our

previous work, which serves as a motivation for this work.

More specifically, in this paper, we propose an approach that

not only detects duplicate bug reports but also automatically

assigns an incoming bug report to an appropriate and small-

sized group of previously reported duplicate bug reports. We

also fine-tuned and evaluated our approach on two new

datasets, collected from Firefox and GNOME bug

repositories, two large open source projects.

The proposed approach consists of four main steps (see

Figure 2). First, we extract stack traces from each BR and,

we split the resulting execution traces into duplicate groups

of appropriate sizes. Then, we build and train an HMM

model for every duplicate group. The generated HMMs are

used to classify incoming BRs. Finally, the stack trace of

each incoming BR is compared with the trained HMMs and

classified according to the generated scores. We assessed the

performance of our approach on BRs from Firefox and

GNOME datasets by computing the recall@rank- , where

ranges from 1 to 20, and the Mean Average Precision (MAP).

The main contributions of this paper compared to the

previous one are:

 We experiment with new datasets, an updated Firefox

dataset, and a new dataset of BRs of the GNOME

system

 We provide a better evaluation of our approach using

MAP and Recall@rank-k by varying k from 1 to 20. In

the previous paper, we only presented precision and

recall of the best result. Ranks provide a better view of

the performance of our approach since it gives more

flexibility to triagers and developers to search into a list

of possible candidate duplicated BR groups.

 We compare our approach to the approach of Kim et al.

[17], which uses graph theory to model stack traces for

the detection of duplicates BRs.

 We provide a better discussion of our approach along

with its limitations.

 We also improve the conclusion and future work section

based on the lessons learned from this extended work.

The remainder of the paper is structured as follows. The

next section surveys state of the art in duplicate-bug-report

detection. In Section 2, we provide background information.

Section 3 describes our proposed approach. Experimental

results are reported in Section 4, followed with threats to

validity in Section 5. Related work is presented in Section 6.

We conclude the paper and discuss future work in Section 7.

2. Background

2.1. Bugzilla Bug Report Lifecycle

The process of entering and resolving a bug has a life

cycle. A bug report may include fields such as ID, Product,

Component, Assignee, Status, Resolution, Summary and

Changed date and time. The lifecycle of a BR in Bugzilla is

shown in Figure 1 [22].

At each stage, the status of a bug changes until a final

resolution is found. A new bug is in the UNCONFIRMED

status until its presence is confirmed. It remains in the NEW

status until it is assigned to a developer. The status can be

one of FIXED, DUPLICATE, WONTFIX, WORKSFORME

or INVALID. The status is changed to RESOLVED FIXED

if a developer fixes the bug. A WORKSFORME status

means that the bug cannot be reproduced after some attempts

by the developer.

Fig. 1. Lifecycle of a Bugzilla Bug [22]

A bug is reopened if the tester is not satisfied with the fix

or a formerly resolved report may be reopened at a later date

(e.g., due to an ineffective fix). In such cases, the status of the

BR changes to REOPENED [1], [12], [23]–[25]. Note that

when a tester is satisfied with the fix, the status changes to

VERIFIED. Finally, if the bug does not occur again the status

changes to CLOSED [26].

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

3

2.2. Hidden Markov Models (HMMs)

An HMM is a statistical Markov model widely used to

analyze the behavior of a system over time [27]. A more

straightforward Markov process typically assumes that the

states are directly visible to the observation data produced in

the system. While in HMM, the states are hidden, but the

output of each hidden state (i.e., the state transition

probability) is dependent on the observation data. Moreover,

based on the data types, an HMM can be further classified

into discrete (typically the data is a discrete sequence

produced from a finite number of tokens or symbols over

time) or continuous (typically the data is generated from a

Gaussian distribution such as speech, music, etc.). Since the

observation data in our system is a discrete sequence of

function calls, we have used the discrete form for the output

distributions to model the function calls forming stack traces.

A typical topology of an HMM is shown in Figure 2.

Training an HMM model requires defining the following

parameters:

Number of hidden states: To train an HMM model, we

need to set the number of hidden states () in the Markov

process. Let the distinct states in a Markov process be and the notation represents

the hidden states sequence at time .

Number of observation symbols: To train an HMM model,

we need to set the number of observation symbols (). Let

the distinct observation symbols be
and the notation represents the observed symbol

at time for the given sequence of observations , where is the length of that sequence.

State transition probability distribution: The first-row

stochastic process is the hidden state transition probability

distribution matrix . is an square matrix

and the probability of each element is calculated by the

following equation: (|) (1)

In Equation (1), the transition from one state to the next is

a Markov process of order one [27]. This means that the next

state depends only on the current state and its probability

value. Since the original states are “hidden”, we cannot
directly compute the probability values in the past. However,

we can observe the observation symbols for the current state at time from the given observations sequence to train

an HMM model.

Observation symbol probability distribution: The second-

row stochastic process is the observations symbol probability

distribution matrix { } is an matrix

which is computed based on the observation sequences (i.e.,

the temporal order of stack traces). The probability of each

element is given by the following equation:

 (|) (2)

Initial state probability distribution: The third-row

stochastic process is the initial state probability

distribution . is a 1 row matrix and the

probability of each element is given by Equation (3): (3)

Training an HMM model aims to maximize the likelihood

function over the above three-parameter space. The

Baum-Welch (BW) algorithm is the most commonly

employed expectation-maximization (EM) algorithm to

estimate HMM parameters. It uses a forward-backward (FB)

algorithm at each iteration to efficiently evaluate the

likelihood function . It updates the model parameters

till a maximum number of iterations is reached or the

likelihood function achieves no more improvement. In this

paper, we also use BW to estimate HMM parameters.

3. Experimental Setup

3.1. Overall Approach

Figure 3 shows our approach, which consists of the

following steps. First, we extract BRs with stack traces from

BR repositories of Firefox and GNOME, which use Bugzilla

for BR tracking. For Firefox, there is another system that

manages crash reports, which contains stack traces. The link

between a BR in Bugzilla and its corresponding crash reports

in Mozilla, if it exists, is established through the bug ID (see

Section 3.2 for more details). For GNOME, traces are

embedded within the BRs. Once we have the BRs, we search

for the duplicates one by examining the BR status. We create

duplicate BR groups (DG) where each group DGi contains

stack traces of one master BR and those of all its duplicates.

We have as many duplicate groups as master BRs. For each

DGi, we train an HMM using 60% of the traces, validate the

HMM using 10% of the traces, and test the model using 30%

of the traces of this DGi and every other DG. These steps are

discussed in more details in the next subsections.

Fig. 2. Typical topology of an HMM.

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

4

Fig. 3. Overall approach

3.2. Datasets and formation of duplicate BR groups

Our empirical study was performed on bug reports

extracted from the two large open source software projects:

Firefox and GNOME.

Firefox dataset: Firefox is a well-known Internet browser

used by millions of users around the world. Firefox uses

Mozilla as a crash reporting system
1
 (more precisely, the

Mozilla crash reporting system is called Socorro), and

Bugzilla for tracking BRs. There is a difference between a

crash report and bug report for Firefox and other Mozilla

products. A crash report is automatically reported when a

crash occurs. The report contains various fields such as the

stack trace, priority, product, component, and OS

version. Similar crash reports are grouped into clusters

according to their top-method signature and a clustering

algorithm [28]. When the number of crash reports in the

same cluster reaches a certain threshold, a BR is created and

submitted to Mozilla’s bug tracking system, Bugzilla. This is

usually done manually. (Annotation R2.13) Most BRs do not

contain stack traces, but contain links to signatures that refer

to groups of crash reports. The link, if it exists, is through a

BR ID.

We implemented a web crawler to extract duplicate BRs

in the Bugzilla website from BR#1 to BR#1,299,999.

Bugzilla uses the “Product" and "Component" to classify
bugs. We used mainly the BRs associated with the "Core"

Product, which contains bugs in components used by Firefox

and other Mozilla software. We extracted BRs with status

“RESOLVED DUPLICATE” or “VERIFIED DUPLICATE”

and found their corresponding master BRs. (Annotation

R2.14) In addition, we only included in the dataset BRs that

have links to their corresponding crash reports since our

approach uses stack traces, which are only kept in crash

reports, i.e., not copied to BRs.

1https://crash-stats.mozilla.com/home/product/Firefox

 We create a duplicate BR group (DG) by including stack

traces of the master BR and those of its duplicates. For

example, the master BR Bug#1236639 was reported in

January 2016 and later Bug#1258802, Bug#1260779 and

Bug#1263241 were reported in 2016 and marked as

duplicates of Bug#1236639. The crash traces associated with

all these BRs that are retrieved from Mozilla are put together

to form a duplicate BR group.

We only included duplicate BRs that have at least four

stack traces, the strict minimum number of traces needed to

construct the training, validation, and testing sets.

(Annotation 2.16) It should also be noted that we removed

functions that contain “0x” (e.g., windows.dll@0x), and the

ones that start with “Fxxxx”. These functions exist when

debugging information could not be used to identify the

function names associated with the running function in a

Fig. 5. Number of duplicate BRs in each DG in the GNOME dataset.

Fig. 4. Number of duplicate BRs in each DG in the Firefox dataset.

Extract Duplicate BRs

with Stack traces

Create Duplicate BR

Groups (DG)

Create, Validate, and

Test an HMM for each

DG

BR

Repository

(Bugzilla)

Crash Report

Repository

(Firefox only)

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

5

memory dump. This may be caused by several reasons

including crashes that make the program jump to a random

address in memory, third-party DLLs, obfuscation, etc. We

also removed repetitions of the exact same traces.

In addition, in Mozilla, crash reports may be associated

with more than one crashing thread starting from Thread 0.

We have implemented a crawler to retrieve all available

threads in a crash report. For both convenience and

computation time reduction, we have only kept Thread 0 into

consideration. We also only limited the number of crash

traces associated with each bug report to 200 stack traces.

The total number of duplicate bug report groups (DGs) is

103. Figure 4 and Table 1 show the number of DGs for

Firefox. About 73% (90 DGs) contain only two duplicate

BRs. Others contain duplicates ranging from 2 to a maximum

of 8. While only 5 out of 103 DGs include more than 5

duplicates.

GNOME: GNOME is a graphical user interface and a set

of desktop applications for Linux. It also uses Bugzilla bug

tracker [26] to track bug reports. Unlike Firefox that uses a

different system to track stack traces, GNOME’s BRs have

stack traces as part of the BR description. We implemented a

web crawler to retrieve all GNOME BRs from Bugzilla. We

collected all available GNOME BRs that were reported until

December 2016, which represents a total of 753,300 BRs.

Similar to Firefox, we created DGs by putting in each DG

stack traces of a master BR and those of its duplicates. We

only kept duplicate BRs with a minimum of four stack traces

to construct training, validation, and testing sets. We

preprocessed GNOME traces by deleting calls to Java

libraries or setting up of debugging parameters. We also

removed repetitions of the exact same traces as we did for

Firefox.

We formed 182 DGs. Fig. 6 and Table 1 show the

characteristics of the GNOME DGs. A wide range of

duplicates ranging from 2 to 628 are available in each

duplicate group. As can be observed from Figure 5, 156 out

of 182 (about 86%) of DGs contain up to 50 duplicates.

Comparing both datasets, the GNOME dataset is larger in the

sense that it contains more duplicate groups and each

duplicate group contains a large number of traces.

Table 1
Characteristics of the duplicate BRs groups of Firefox and GNOME datasets

Dataset
Total number of duplicate

BR groups
Total number of traces

FIREFOX 103 2,883

GNOME 182 4,600

3.3. Training Phase

We build an HMM for each duplicate BR Group, DGi. We

use 60% of traces in DGi for training. We vary the number

of hidden states N from 15 to 50 with a leap out of 5. To our

knowledge, no study specifies how to set the number of

hidden states. Most studies that use HMMs set this parameter

through experimentation. In our case, we found that for

Firefox and GNOME, the best accuracy is obtained when

N=20 and N=40, respectively. We experimented with higher

N > 50 values and observed no improvement.

3.4. Validation Phase

Validation is used to better estimate the best fit for the

HMM parameters , , and . In our study, we used 10% of

traces in each DGi to validate the HMM constructed through

training. We performed 10 iterations
2
 to estimate the HMM

parameters A, B, and . Initial parameter values are passed to

the Baum-Welch algorithm to compute the log-likelihood as

scores for all traces inside the validation set. The best-

recorded parameters that are obtained from the

minimum mean value among the 10 iterations are used to

construct the HMM models.

3.5. Testing Phase

We used 30% of traces from each DG as a testing dataset.

Let a new stack trace be mapped to sequences of

observations . The latter ones are

presented to HMM models, , of all DGs.

Then, the log-likelihood of the sequence of

observations for every trained

HMM model is calculated. A set of ordered scores for all

HMM models, is subsequently generated

and reported to specify possible labels within the ranked list.

3.6. Evaluation Metrics

We used the recall rate and the Mean Average Precision

(MAP) to assess the effectiveness of our approach. These

metrics are used extensively in the literature [9], [29]–[32] so

as to evaluate the performance of a ranked list. The

recall@rank-k is defined as: (4)

where is the number of correctly retrieved

stack traces. Recall@rank-k is defined as the percentage of

duplicates for which the master is found for a given top list

size k.

The Mean Average Precision (MAP) indicates how

accurately duplicate candidates are ranked. It is measured as

follows:

 ∑ (5)

2Our experiments have shown that after 10 iterations, the parameter

values do not vary.

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

6

where is the number of correctly retrieved duplicate

candidates and is the position in which the right

stack trace is retrieved.

MAP ranges from 0 to 100%. An approach that returns

MAP=100% means that for all BRs in the testing set, the

approach was able to classify them accurately at the top rank.

It is sufficient for a triager to look at one DG to find the

corresponding duplicate group. A MAP close to zero means

that the approach would return many possible DGs for each

BR in the testing set because of a poor classification.

4. Evaluation

4.1. Firefox and GNOME Datasets

The results of applying our approach to Firefox dataset are

shown in in Table B1 (see Appendix B). The recall rates with

ranks with k ranging from 1 to 20 show that our approach

achieves promising results across all HMMs with different

states. The average recall for Rank k =1 is 59%, for Rank

k=2 is 75.55%. We start reaching the 90% recall from k=10.

In the case of MAP (see Figure 6), we obtained MAP

values between 75.77% and 76.44% with different

numbers of hidden states, an average of 76.24%. In other

words, a given incoming BR can be identified by our

approach in the first DG that the approach suggests with 76%

of chances. We pass to the 85% MAP bar with 5 DGs, which

we believe it is considered a good result.

Table B2 shows the results of the recall at rank k with k

ranging from 1 to 20 with HMM models with different state

numbers. The recall at k=1 is almost 63% for all state

numbers, while this value increases by about 10% for k=2. It

can also be observed that having a recommended list of 2

duplicate groups, detection accuracy of about 73% can be

achieved. This detection accuracy increases to 97% for k=11.

In terms of MAP rate, values of about 72% and 73% were

achieved using state numbers of 40 and 45, respectively (see

Figure 7). Similar to Firefox, we did not see a significant

impact in changing the number of hidden states.

We also found that changing the number of hidden states

does not substantially impact the recall rate in the ranked list

as shown by the boxplots of Figures A1 and A2 for both

Firefox and GNOME.

4.2. Comparison

In this section, we compare our approach to the approach

proposed by Kim et al. [17], which models aggregated views

of crash traces using graphs to detect duplicate crash reports

in the Windows Error Reporting (WER) system in order to

facilitate triaging tasks.

The approach, which we refer to as CrashGraph in this

paper, aggregates multiple stack traces (called crash traces in

[17] in the same group by constructing a graph where the

nodes represent the stack trace functions and the edges

represent the calling relationship.

Fig. 6. MAP obtained with different HMM state numbers for Firefox

Fig. 7. MAP obtained with different HMM state numbers for Gnome

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

7

Figure 10, taken from [17], shows an example of three

stack traces ABCD, AFGD, and CDFG, where A, B, C, D, F,

G are functions. In this example, a graph is created by taking

a 2-gram representation of trace elements and combining

them.

The authors use the aggregated graph to model stack

traces of each bucket (a group of related crash reports in

WER) to predict if a new crash trace should belong to the

same bucket or not. A similarity metric is used to determine

the extent to which an incoming stack trace is deemed similar

to those modeled in the graph. When applied to detect

duplicate bug reports in two Windows products, the best

accuracy achieved by CrashGraph is 71.5% precision and

62.4% recall using a 99% similarity, which we also used to

run the experiments with CrashGraph.

Fig. 10. An example of a graph created by CrashGraph to model traces [17]

We implemented CrashGraph to the best of our

knowledge. We applied it to DGs of Firefox and GNOME to

predict the DG of an incoming stack trace. We used the same

setting as before. More precisely, for each DGi (whether it is

for Firefox of GNOME), we used 60% of traces to construct

Fig. 8. Comparison of Recall rate@rank-k between CrashGraph and HMM

Fig. 9 Comparison of Recall rate@rank-k between CrashGraph and HMM

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

8

a CrashCraph and 20% of traces to test it. Note that we did

not use the validation set to validate CrashGraph since

CrashGraph does not use any particular heuristics.

We compared CrashGraph with HMM N=20 for Firefox,

and HMM N=40 for GNOME since these are the HMM

models that provide the best accuracy. The results are shown

in Figures 8 and 9.

The results show that HMM performs better than

CrashGraph when applied to the Firefox dataset. At Rank 1,

our approach achieves a recall of 59.7% whereas CrashGraph

achieves a recall of 51%. This gap is maintained as k

increases as shown in Fig. 9. MAP of HMM is also better

than the one obtained with CrashGraph.

For GNOME, our HMM-based approach performs almost

the same as CrashGraph as shown in Figures 8 and 9. This

may be due to the fact that there are many more traces in

GNOME than Firefox. CrashGraph was able to build a

representative graph that characterizes the traces of a DG.

4.3. Discussion and Limitations

A. Varying the number of hidden states

To train the HMM models, we varied the number of

hidden states from 15 to 50 with bounds of 5. A different

setting may lead to different results. However, our results

suggest that the number of hidden states does not have major

impact on the overall approach. As we can see from the

boxplots in Figures A1 and A2 (see Appendix A), the recall

changes slightly by varying the number of hidden states.

Take for example the results obtained for Rank 1 for Firefox,

the recall ranges from 57.91% to 59.81%, i.e., a 1.9%

difference.

B Impact on triaging effort

The MAP is an indication of how well a given approach

ranks incoming BRs (in our case a BR is characterized by its

stack trace). The average MAP across all HMMs is 76% for

Firefox and 71% for GNOME. This means that, in general,

our approach ranks well the incoming BRs, which should

reduce the time spent by triagers to find the right DG for an

incoming BR. The better the recall and MAP, the less effort

is needed. Note that for both datasets, the gap between recall

at Rank 1 and Rank 2 is significantly reduced when

comparing recalls between the subsequent pairs of ranks

(Rank 2 with Rank 3, Rank 3 with Rank 4, etc.). This

suggests that MAP should be even higher if we ignore Rank

1, meaning that a triager would accept to examine at least

two DGs to determine the right DG.

C Differences between Firefox and GNOME

(Annotation R2.1) We found that our approach (as well as

the CrashGraph approach) performs better for GNOME than

for Firefox. This may be due to the fact that GNOME has

more traces than Firefox (4,600 compared to 2,883). More

traces in a DG mean a better characterization of BRs of the

same group, which helps with the classification process

achieved by HMM (and CrashGraph). We also have more

DGs in GNOME than in Firefox. Besides, GNOME has more

duplicates in each DG than Firefox as shown in Figures 4 and

5. This may be due to the fact that crash reports go directly in

the bug reporting system in GNOME, which is not the case

for Firefox. There is an additional triage phase that Mozilla

does between the report of crashes and the filing of bugs,

which is not done in GNOME, resulting in less duplicates

BRs for Firefox than GNOME.

D. Limitations

One of the main limitations of our approach is that it does

not deal with new incoming BRs that do not have prior

duplicates in the database. In other words, we extend the

approach to consider the creation of new groups on the fly.

One possibility to do this is to determine a threshold below

which an incoming BR is deemed dissimilar enough to all

existing BRs and hence should be put in a new group that

needs to be created. This threshold can be determined during

the validation step of our approach using a validation set that

contains a mix of duplicate BRs and new BRs (BRs without

duplicates).

Another limitation of our approach is due to the low

number of BRs with stack traces in existing BR repositories.

Unfortunately, not all BR tracking systems collect traces

automatically, making it difficult for a user to submit traces.

As an example, only 10% of Eclipse bug reports described by

Lerch et al. [33] contain stack traces. Mozilla keeps stack

traces for only one year because of the cost of saving a large

number of stack traces. Nevertheless, we believe that an

approach that uses stack traces remains very useful,

especially because stack traces are needed for other tasks

such as bug reproduction [19], [20]. We conjecture that, in

the future, more bug tracking systems will collect

automatically stack traces and use advanced storage

mechanisms to make traces available for more extended

periods of time.

5. Threats to Validity

Our proposed approach and the conducted experiments
are subject to threats to validity, namely external, internal,
and construct validity.

5.1. Threats to external validity

Our approach is evaluated against two open source
datasets and tested on duplicate BRs with stack traces. We
need to apply our technique to more datasets. We also need
to evaluate if it outperforms existing work and approaches

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

9

that use other BR features such BR descriptions and
comments.

5.2. Threats to internal validity

In our approach, the way we set the parameters A and B,
and the conditional probability matrices to construct HMMs
could be a threat to internal validity. We used the validation
set to set the bounds to optimize A and B. A different
validation set could result in a different initialization,
resulting in a different model. However, to our knowledge,
there is no clear solution to this problem and most studies
that use HMM follow random initialization of A and B and
repeat this process several times until a satisfactory model is
obtained.

The way we set the number of hidden states is another
threat to validity. We followed the common practice of
setting this number to a small number and then increase it
with bounds of 5. Although different state numbers do not
seem to bring much improvement in accuracy (see Figure A1
in Appendix A), there is always a possibility that a different
number may lead to other models.

For Firefox, we used traces of Thread0 only. Considering
all threads will require an extensive amount of time to train
each HMM. However, for crashes due to hangs, the top few
methods are more or less the same (with functions such as
"wait") between crash reports even if the root causes of the
crashes are different. This may cause the associated BRs to
end up in the same bug report groups. To address this issue,
we should (a) examine in depth what the impact would be,
and (b) consider including other threads. This said,
considering all threads may cause scalability problems.
Therefore, a trade-off between precision and scalability
should be investigated.

(Annotation R2.3) The Firefox results depend on the
quality of the initial manual triage and the quality of the
signatures. Errors in manual triage and incorrect signatures
may affect our results.

Finally, another threat to internal validity is related to the
web crawling and parsing tools implemented to collect BRs
and extract stack traces, and in the way we implemented the
CrashGraph algorithm. To mitigate this threat, we verified
our data multiple times. We also intend to release a
reproduction package to allow other researchers to reproduce
our research work.

5.3. Threats to construct validity

The construct validity shows how the used evaluation

measures could reflect the performance of our predictive

model. In this study, we used recall and Mean Average

Precision, which are widely used in other studies to assess the

accuracy of machine learning models with applications to the

problem of duplicate BR detection.

6. Related Work

Several approaches have been proposed in the literature to

support the automatic detection of duplicate bug reports. This

section presents previous studies related to our work. They

can be divided into two main categories based on the type of

BR information used: 1) Textual-based approaches and 2)

Execution information-based approaches.

6.1. Textual-based approaches

Typically, developers and users submit information

related to the crash in the summary and textual description

part of a bug report. The aforementioned unstructured

information can then be used by researchers to investigate the

similarities between existing bug reports and an incoming

bug report for classification purposes [4], [9], [19], [29], [31],

[34]–[42]. Using natural language information, information

retrieval (IR) techniques are widely used to calculate the

similarity scores between queries and the retrieved data. In

this context, Wang et al. [36] have studied similar terms in

duplicate bug reports of OpenOffice for text similarity

measurements. Then, they proposed a new technique to

extract similar terms in BR descriptions that cannot be

obtained via a general purpose thesaurus. They showed that

their method improves existing methods by 58%. Rakha et

al. [7] have conducted a study on the effort required for

manually identifying duplicate issue reports for Firefox,

SeaMonkey, Bugzilla, and Eclipse-Platform. They have

observed that more than 50% of duplicate bug reports can be

detected within 24 hours after their submission even when

only one developer is involved. Their classification model

achieves an average precision and recall of 68% and 60%.

The performance of different IR models (e.g., Log-

Entropy based weighting systems) compared with topic-

based modes (e.g., LSI, LDA, and Random Projections) has

been studied by Kaushik et al. [34]. By applying different

heuristics on data retrieved from Eclipse and Firefox, they

have observed that word-based models outperform topic-

based models with 60% and 58% recall rates, respectively.

Their results suggest that the project’s domain and
characteristics play a crucial role in improving the

performance of heuristic models.

Sun et al. [32] proposed a supervised approach based on a

discriminative model. The model uses information retrieval

to extract textual features from both duplicate and non-

duplicate bug reports. It is then trained and tested using a

support vector machine (SVM) classifier. All pairs of

duplicate bug reports have been formed and considered as

positive samples, while all other pairs of non-duplicate bug

reports have been treated as negative ones. By applying the

method on BRs from Firefox, Eclipse, and OpenOffice, the

authors’ method was able to achieve a recall as high as 65%
on all datasets.

In another studies [32], the authors have improved their

model by extending the well-known BM25 ranker to provide

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

10

a ranked list of duplicates. It should be noted that BM25 is a

function for calculating term frequencies and similarities

among bug reports. By taking advantage of IR-based features

and topic-based features, Nguyen et al. have extended the

work of Sun et al. by combining BM25F with a specialized

topic model. The authors have considered words and term

occurrences inside bug reports in an effort to improve bug

localization performance. The algorithm shows recall rate@k

between 37% and 71% and MAP of 47%.

Sureka and Jalote [40] proposed a character-level n-gram

approach to further improve the accuracy of automatic

duplicate-bug-report detection. The technique calculates the

text similarity between the user’s query and existing title and
description information of bug reports in character-level. The

character-level n-grams are language independent and thus,

they save languages specific pre-processing time. According

to their experiments, however, their approach has been of

modest performance for which about 21% and 34% recall

rates have been achieved for top 10 and top 50

recommendations, respectively.

Another set of supervised approaches build a model based

on a training data and use it to analyze a pair of BRs to

predict whether they are duplicate. In addition to textual and

categorical features (description, component, priority, etc.),

Alipour et al. [29] suggested using contextual features to

detect duplicate BR pairs. They showed that domain

knowledge of software engineering concept plays a

compelling role in detecting duplicates between BR pairs.

When applied to a bug repository of the Android ecosystem,

the approach achieves a recall of up to 92%.

Deshmukh et al. [3] applied Convolutional Neural

Networks (CNN), and Long Short Term Memory (LSTM) on

short and long descriptions of BRs extracted from Lazar et al.

[2] dataset. They showed that their approach could achieve

accuracy and recall rate of 90% and 80%, respectively.

6.2. Execution information-based approaches

Wang et al. [39] applied natural language processing

techniques on both stack traces and BR descriptions and

observed that there is an improvement of 25% over

approaches that only use BR descriptions. The authors,

however, did not model the temporal order of sequence of

calls in stack traces. Instead, they treated stack traces as text

with stack trace functions are treated as words. This approach

detects 67%-93% of duplicate BRs of Firefox.

Lerch et al. [33] proposed an approach to identify stack

traces in BRs by transforming stack traces into a set of

methods and then using term frequency to compute and rank

the similarity between method sets. The authors’ method,
when applied to Eclipse BRs, achieves the same results as the

state-of-the-art approaches, but with fewer requirements.

This approach, however, does not take into account the

temporal order of sequences of function calls in stack traces.

Kim et al. [17] proposed a crash graph-based model which

captures the crashes reported and stored in a bucket. A graph

of stack traces in a bucket (a group of related bug reports) is

constructed to aggregate multiple traces. Instead of

comparing an upcoming stack trace with every single trace in

a bucket, their model only compares with the graph. To

evaluate their model, the authors used graph similarity as a

metric. When applied to crash reports of Windows systems,

their approach achieves a maximum precision of 71.5% and

recall of 64.2%. To our knowledge, this is the only approach

that uses temporal order of sequences of functions calls of

stack traces to detect duplicates. Our approach achieved a

better recall rate and MAP than Kim et al.’s approach as
discussed in Section 4.3.

To improve the accuracy of bucketing in the Windows

Error Reporting system (WER), Rebucket was proposed by

Dang et al. [5] for clustering crash reports based on call stack

similarity. Rebucket measures the similarity between call

stacks in WER and assigns crash reports to buckets according

to similarity values. This approach is not used to detect

duplicates, but group related crashes together.

In our previous work [13], we collected stack traces in a

small group of duplicates with a varying length n-grams and

automata (a Markov model). The automaton has been taken

as a representative for the duplicate group and test stack

traces of that duplicate group. When an incoming stack trace

is sufficiently similar to the automaton of a duplicate group,

it is labeled as a duplicate of that similar group. In our paper

[21], we improved CrashAutomata using HMMs.

Sabor et al. [43] used package names in stack traces

instead of method names to detect duplicates BRs in Eclipse.

Their method then generates n-gram features from sequences

of package names. The extracted features are then used for

measuring the similarity between new stack traces of new

and stack traces of historical BRs. The objective of their

paper is to reduce the computation time to process large

traces.

Castelluccio et al. [28] proposed a tool, which was

integrated in Socorro, to find statistically significant

properties in groups of Mozilla crash reports and present

them to analysts (developers and triaging teams) to help them

analyze the crashes and understand the causes. The tool is

based on contrast-set learning, a data mining approach [44].

The authors applied the tool crash data collected from the

Mozilla crash reporting system and bug tracking system.

Their findings show that the tool is very effective in

analyzing related crash groups and bugs.

Furthermore, the tool, which is now integrated with the

Mozilla crash reporting system, received favorable feedback

from Mozilla developers. Although this tool does not tackle

the problem of duplicate BR reports, it could be useful in our

research. We can use it to extract the most meaningful

properties of crash traces and use them to improve the HMM

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

11

models. The tool can also be used to improve the grouping of

crashes in Mozilla, and use the resulting grouping to identify

crash reports that are related to duplicate BRs.

6.3. Discussion

As described in the previous section, the majority of

studies focus on detecting duplicate BRs using the textual

parts of BRs such as summary and description. Most of the

techniques that use stack traces treat their content as

document and leverage natural language processing

techniques. These techniques do not take advantage of the

temporal order of function calls in stack traces, which

characterize the execution of a system. We conjecture in this

paper that they are an excellent alternative to BR

descriptions, especially in cases where we cannot rely on BR

descriptions and comments because of the quality issues.

To our knowledge, the only technique that truly leverages

stack traces for the problem of duplicate BR detection is the

one proposed by Kim et al. [17] by leveraging graph theory

techniques. As shown in the comparison section, our

approach performs better than the approach proposed by Kim

et al.

7. Conclusion and Future Work

In this paper, we have presented a novel approach aimed

at automatically detecting duplicate bug reports using

execution traces and Hidden Markov Models. Based on our

study, we recognize the obvious benefits we derive from

using stack trace’s information solely that we believe

improves the detection accuracy of duplicate bug reports.

Our experiments highlight that with a list of rank-1 bug

reports, recall values of 80% and 63% have been achieved on

Firefox and GNOME datasets, respectively. With the same

list of bug reports, our approach detects the duplication of a

given report with an average MAP value of 87% and 71.5%

on Firefox and GNOME datasets, respectively. It has also

been observed that the higher the rank level, the higher the

recall rate. For instance, the recall rate with a list of rank-2

has been about 12% higher than that with a list of rank-1.

In the future, we plan to investigate more BRs from

additional software systems. We also plan to improve the

effectiveness of our proposed approach in terms of recall and

MAP scores.

In addition, for Firefox, we used only traces coming from

Thread 0, we need to extend the dataset by considering more

threads. This way, we can have a better characterization of a

BR by using traces from multiple threads.

Also, we will study how we can combine stack traces with

other BR fields such as BR descriptions and comments. A

combined approach should not treat stack traces as

documents, as it is done in the literature, but model the

temporal order of sequences of function calls, just as it is

done in this paper.

(Annotation R2.2) Another interesting future work

direction is to investigate the use of our HMM-based

approach to detect similar crash reports in Mozilla and

compare it to the baseline solution of duplicating crash

reports based on method signatures. If effective, our

approach can be used on top of Socorro’s algorithms for
detecting similar crash reports [28].

Finally, we stress the need to examine the efficiency and

scalability of our approach by measuring the execution time

and other related factors. This is needed when HMMs are

used because HMM is known to cause scalability problems

when applied to very large datasets. The problem is not only

for the initial training of the model but also for model

updates, i.e., when new traces (BRs) should be added to the

model.

Acknowledgement

We would like to thank the anonymous reviewers for their

excellent comments and feedback. We would also like to

thank NSERC (Natural Science and Engineering Research

Council of Canada) for partly supporting this projet.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” Proc. of OOPSLA Work. on Eclipse Technol. Exch.

eclipse’05, Oct. 16, 2005 - Oct. 17, 2005, pp. 35–39, 2005.

[2] A. Lazar, S. Ritchey, and B. Sharif, “Generating duplicate bug
datasets,” Proc. 11th Work. Conf. Min. Softw. Repos. - MSR 2014, pp.

392–395, 2014.

[3] J. Deshmukh, K. M. Annervaz, S. Podder, S. Sengupta, and N.

Dubash, “Towards Accurate Duplicate Bug Retrieval using Deep
Learning Techniques,” pp. 115–124, 2017.

[4] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report
identification,” Proc. Eur. Conf. Softw. Maint. Reengineering, CSMR,

pp. 385–390, 2012.

[5] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “ReBucket: A
method for clustering duplicate crash reports based on call stack

similarity,” Proc. of Int. Conf. Softw. Eng., pp. 1084–1093, 2012.

[6] A. Lazar, S. Ritchey, and B. Sharif, “Improving the accuracy of
duplicate bug report detection using textual similarity measures,”
Proc. 11th Work. Conf. Min. Softw. Repos. - MSR 2014, pp. 308–311,

2014.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate
bug reports considered harmful... Really?,” IEEE Int. Conf. Softw.

Maintenance, ICSM, pp. 337–345, 2008.

[8] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” Proc. Int. Conf. Dependable Syst. Networks, pp.

52–61, 2008.

[9] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” 2010

ACM/IEEE 32nd Int. Conf. Softw. Eng., vol. 1, pp. 45–54, 2010.

[10] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and

C. Weiss, “What makes a good bug report?,” IEEE Trans. Softw.

Eng., vol. 36, no. 5, pp. 618–643, 2010.

[11] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?,” Proc. - Int. Conf. Softw. Eng., pp. 118–121,

2010.

[12] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,”
Proceeding 28th Int. Conf. Softw. Eng. - ICSE ’06, vol. 2006, p. 361,

2006.

[13] N. Ebrahimi Koopaei and A. Hamou-Lhadj, “CrashAutomata: An

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

12

Approach for the Detection of Duplicate Crash Reports Based on

Generalizable Automata,” Proc. 25th Annu. Int. Conf. Comput. Sci.

Softw. Eng., pp. 201–210, 2015.

[14] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,

“Boosting Bug-Report-Oriented Fault Localization with Segmentation

and Stack-Trace Analysis,” 2014.
[15] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,

A. E. Hassan, and K. I. Matsumoto, “Predicting re-opened bugs: A

case study on the Eclipse project,” Proc. - Work. Conf. Reverse Eng.

WCRE, pp. 249–258, 2010.

[16] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen, “On the use of
stack traces to improve text retrieval-based bug localization,” in
Proceedings - 30th International Conference on Software

Maintenance and Evolution, ICSME 2014, 2014, pp. 151–160.

[17] S. Kim, T. Zimmermann, and N. Nagappan, “Crash graphs: An
aggregated view of multiple crashes to improve crash triage,” Proc.

Int. Conf. Dependable Syst. Networks, pp. 486–493, 2011.

[18] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “CrashLocator: locating
crashing faults based on crash stacks,” Proc. 2014 Int. Symp. Softw.

Test. Anal. - ISSTA 2014, pp. 204–214, 2014.

[19] M. Nayrolles, A. Hamou-Lhadj, S. Tahar, and A. Larsson, “A bug
reproduction approach based on directed model checking and crash

traces,” J. Softw. Evol. Process, vol. 29, no. 3, p. e1789, 2017.

[20] N. Chen and S. Kim, “Star: Stack trace based automatic crash
reproduction via symbolic execution,” PhD Thesis, Honk Kong Univ.

Sci. Technol., vol. 41, no. 2, pp. 198–220, 2015.

[21] N. Ebrahimi Koopaei, M. S. Islam, A. Hamou-Lhadj, and M.

Hamdaqa, “An Effective Method for Detecting Duplicate Crash
Reports Using Crash Traces and Hidden Markov Models,” pp. 75–84,

2016.

[22] “Life Cycle of a Bug.” [Online]. Available:
https://www.bugzilla.org/docs/4.4/en/html/lifecycle.html. [Accessed:

23-Jul-2018].

[23] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really been
fixed?,” 2010 ACM/IEEE 32nd Int. Conf. Softw. Eng., vol. 1, pp. 55–
64, 2010.

[24] G. Cuevas, “Managing the software process with a software process
improvement tool in a small enterprise,” J. Software-Evolution

Process, no. July 2010, pp. 481–491, 2012.

[25] J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs Be Fixed ?,”
Proc. 34th Int. Conf. Softw. Eng., pp. 14–24, 2012.

[26] “Bugzilla.” [Online]. Available: https://bugzilla.mozilla.org/.
[27] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Ieee, vol. 77. pp. 257–286, 1989.

[28] M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi,

“Automatically analyzing groups of crashes for finding correlations,”
Proc. 2017 11th Jt. Meet. Found. Softw. Eng. - ESEC/FSE 2017, pp.

717–726, 2017.

[29] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach
towards more accurate duplicate bug report detection,” IEEE Int.

Work. Conf. Min. Softw. Repos., pp. 183–192, 2013.

[30] M. S. Rakha, C. P. Bezemer, and A. E. Hassan, “Revisiting the

Performance Evaluation of Automated Approaches for the Retrieval

of Duplicate Issue Reports,” IEEE Trans. Softw. Eng., vol. 5589, no.

c, pp. 1–27, 2017.

[31] A. T. Nguyen, T. T. T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug
report detection with a combination of information retrieval and topic

modeling,” Proc. 27th IEEE/ACM Int. Conf. Autom. Softw. Eng. -

ASE 2012, p. 70, 2012.

[32] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” 2011 26th IEEE/ACM Int. Conf.

Autom. Softw. Eng. ASE 2011, Proc., pp. 253–262, 2011.

[33] J. Lerch and M. Mezini, “Finding Duplicates of Your Yet Unwritten
Bug Report,” Proc. of Int. Cong. on Soft. Maintenance and Reeng.

CSMR, pp. 69–78, 2013.

[34] N. Kaushik and L. Tahvildari, “A comparative study of the
performance of IR models on duplicate bug detection,” Proc. Eur.

Conf. Softw. Maint. Reengineering, CSMR, pp. 159–168, 2012.

[35] M. J. Lin, C. Z. Yang, C. Y. Lee, and C. C. Chen, “Enhancements for
duplication detection in bug reports with manifold correlation

features,” J. Syst. Softw., vol. 0, pp. 1–11, 2014.

[36] X. Wang, D. Lo, J. Jiang, L. Zhang, and H. Mei, “Extracting
Paraphrases of Technical Terms from Noisy Parallel Software

Corpora,” Proc. ACL-IJCNLP 2009 Conf. Short Pap., no. August, pp.

197–200, 2009.

[37] M. S. Rakha, W. Shang, and A. E. Hassan, “Studying the needed
effort for identifying duplicate issues,” Empir. Softw. Eng., vol. 21,

no. 5, pp. 1960–1989, 2016.

[38] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” Proc. -

Int. Conf. Softw. Eng., pp. 499–508, 2007.

[39] X. W. X. Wang, L. Z. L. Zhang, T. X. T. Xie, J. Anvik, and J. S. J.

Sun, “An approach to detecting duplicate bug reports using natural
language and execution information,” 2008 ACM/IEEE 30th Int. Conf.

Softw. Eng., 2008.

[40] A. Sureka and P. Jalote, “Detecting duplicate bug report using

character N-gram-based features,” Proc. - Asia-Pacific Softw. Eng.

Conf. APSEC, pp. 366–374, 2010.

[41] A. Tsuruda, Y. Manabe, and M. Aritsugi, “Can We Detect Bug Report
Duplication with Unfinished Bug Reports ?,” 2015 Asia-Pacific Softw.

Eng. Conf. Can, pp. 151–158, 2015.

[42] S. Wang, F. Khomh, and Y. Zou, “Improving bug localization using
correlations in crash reports,” IEEE Int. Work. Conf. Min. Softw.

Repos., pp. 247–256, 2013.

[43] K. Koochekian Sabor, A. Hamou-lhadj, and A. Larsson, “DURFEX :
A Feature Extraction Technique for Efficient Detection of Duplicate

Bug Reports,” pp. 240–250, 2017.

[44] P. K. Novak, N. Lavrač, and G. I. Webb, “Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and

subgroup mining,” J. Mach. Learn. Res., vol. 10, no. Feb, pp. 377–
403, 2009.

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

13

Fig. A1. Recall@rank-k for Firefox dataset.
Fig. A2. Recall@rank-k for GNOME dataset.

Appendix A:

Figure A1.

 MAP values for Firefox and Gnome for various ranks

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

14

Appendix B: Results of recall rate@rank-k with different HMM state numbers

Table B1

 Median of recall rate@rank-k with different HMM state numbers using Firefox dataset.

Rank
Number of Hidden States

15 20 25 30 35 40 45 50

1 59.08% 59.70% 59.26% 59.81% 57.91% 58.21% 58.86% 58.50%

2 74.28% 76.36% 76.01% 75.76% 74.32% 75.23% 76.79% 75.67%

3 80.09% 81.20% 81.90% 81.84% 80.80% 80.55% 82.10% 82.95%

4 84.64% 85.44% 86.19% 85.08% 85.29% 85.24% 85.36% 85.19%

5 86.92% 86.55% 87.46% 87.33% 86.41% 87.05% 86.58% 87.11%

6 87.95% 88.53% 88.14% 88.17% 88.16% 88.10% 87.44% 88.52%

7 88.62% 89.03% 88.69% 88.64% 88.67% 88.71% 87.84% 88.65%

8 88.91% 89.48% 88.91% 88.80% 88.87% 88.88% 88.62% 88.82%

9 89.15% 89.57% 89.31% 89.20% 89.08% 89.19% 88.83% 89.03%

10 89.88% 89.90% 89.76% 89.52% 89.53% 89.54% 89.22% 89.47%

11 90.10% 90.00% 89.95% 89.84% 89.73% 89.76% 89.37% 89.57%

12 90.25% 90.12% 89.99% 89.96% 89.87% 89.85% 89.46% 89.86%

13 90.25% 90.12% 90.15% 90.04% 89.87% 89.94% 89.79% 90.04%

14 91.29% 90.81% 90.64% 90.58% 90.57% 90.72% 90.28% 90.55%

15 91.37% 91.36% 91.19% 90.65% 90.75% 91.28% 90.88% 91.22%

16 91.52% 91.48% 91.28% 90.81% 91.05% 91.36% 91.04% 91.31%

17 91.98% 91.80% 91.74% 91.66% 91.37% 91.92% 91.42% 91.77%

18 92.02% 92.26% 91.77% 91.77% 91.41% 91.98% 91.46% 91.77%

19 92.02% 92.26% 91.77% 91.84% 91.90% 91.98% 91.79% 91.77%

20 92.08% 92.33% 92.08% 91.84% 92.04% 92.02% 91.79% 91.77%

MAP 75.77% 76.44% 76.29% 76.40% 76.15% 76.33% 76.29% 76.26%

ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

15

Table B2

Median of recall rate@rank-k with different HMM state numbers using GNOME dataset.

Rank
Number of Hidden States

15 20 25 30 35 40 45 50

1 62.99% 62.74% 62.66% 63.39% 63.15% 63.72% 62.18% 62.50%

2 73.21% 73.54% 73.54% 73.30% 73.13% 72.81% 73.38% 73.21%

3 76.95% 77.27% 76.54% 76.87% 76.70% 76.79% 76.54% 77.03%

4 78.57% 78.73% 78.17% 78.08% 78.49% 78.41% 78.33% 78.65%

5 79.79% 79.79% 79.38% 79.79% 79.71% 79.38% 79.30% 80.19%

6 80.76% 81.25% 80.60% 81.09% 81.33% 80.68% 80.52% 81.09%

7 82.06% 82.47% 81.74% 82.39% 81.98% 81.98% 81.57% 81.98%

8 83.36% 83.36% 82.47% 83.20% 82.79% 82.95% 82.71% 82.87%

9 83.85% 83.93% 83.36% 84.17% 83.44% 83.77% 83.52% 83.60%

10 84.50% 84.50% 84.09% 84.74% 84.25% 84.17% 84.58% 84.82%

11 85.23% 85.23% 84.90% 85.39% 85.15% 84.98% 85.06% 85.39%

12 85.63% 86.36% 85.63% 85.88% 85.88% 85.96% 85.80% 85.96%

13 86.53% 87.09% 86.28% 86.61% 87.18% 86.61% 86.53% 86.85%

14 87.18% 87.58% 87.01% 87.34% 87.74% 87.01% 87.26% 87.26%

15 87.91% 87.91% 88.07% 88.07% 88.23% 87.99% 88.31% 87.91%

16 88.56% 88.56% 88.88% 88.56% 88.72% 88.47% 88.80% 88.72%

17 89.04% 88.96% 89.69% 88.96% 89.12% 89.29% 89.20% 89.37%

18 89.53% 89.53% 90.26% 89.37% 89.53% 89.61% 89.77% 89.69%

19 90.02% 89.85% 90.58% 90.02% 90.34% 90.26% 90.26% 89.94%

20 90.26% 90.42% 90.99% 90.58% 90.91% 90.99% 90.58% 90.34%

MAP 71.32% 71.33% 71.13% 71.53% 71.37% 71.57% 70.86% 71.11%

