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Abstract 

Context: Software projects rely on their issue tracking systems to guide maintenance activities of software developers. Bug reports submitted 

to the issue tracking systems carry crucial information about the nature of the crash (such as texts from users or developers and execution 

information about the running functions before the occurrence of a crash). Typically, big software projects receive thousands of reports every 

day. 

Objective: The aim is to reduce the time and effort required to fix bugs while improving software quality overall. Previous studies have 

shown that a large amount of bug reports are duplicates of previously reported ones. For example, as many as 30% of all reports in for Firefox 

are duplicates. 

Method: While there exist a wide variety of approaches to automatically detect duplicate bug reports by natural language processing, only a 

few approaches have considered execution information (the so-called stack traces) inside bug reports. In this paper, we propose a novel 

approach that automatically detects duplicate bug reports using stack traces and Hidden Markov Models. 

Results: When applying our approach to Firefox and GNOME datasets, we show that, for Firefox, the average recall for Rank k =1 is 59%, 

for Rank k=2 is 75.55%.  We start reaching the 90% recall from k=10. The Mean Average Precision (MAP) value is up to 76.5%. For 

GNOME, The recall at k=1 is around 63%, while this value increases by about 10% for k=2. The recall increases to 97% for k=11. A MAP 

value of up to 73% is achieved. 

Conclusion: We show that HMM and stack traces are a powerful combination for detecting and classifying duplicate bug reports in large bug 

repositories. 

 
Keywords: Duplicate Bug Reports; Stack Traces; Hidden Markov Models; Machine Learning, Mining Software Repositories. 

1. Introduction 

A Bug Tracking System (BTS) is used by development 

and management teams to keep track of software bugs and 

resolutions. There are many bug tracking systems, both 

commercial and open-source. Among the freely available 

open-source systems, Bugzilla is perhaps the most popular 

one. When a system crashes, users can submit a bug or a 

crash report, which typically contains a description of the 

nature of the crash, system and platform information (i.e., 

OS, version, failed components, etc.), and stack traces. Major 

software companies such as Microsoft, Mozilla, and Apple, 

have deployed crash report feedback mechanisms on their 

software. They typically receive a large number of crash 

reports over an extended period of time and use them to 

guide their debugging efforts.  

 

     However, processing these incoming bug reports (BRs) 

can be tedious and time-consuming. Fortunately, not all 

crashes are caused by new bugs; many of them are duplicates 

of existing crashes. Anvik et al. [1] reported that 

approximately 20% of BRs for Eclipse and 30% of BRs for 

Firefox are duplicates. Lazar et al. [2] showed that the total 

number of duplicate BRs in Eclipse, OpenOffice, Mozilla, 

and Netbeans is up to 23% of the total reports. Due to a large 

number of bug reports submitted every day, the bug handling 

process tends to be challenging and time-consuming. 

Identifying duplicate BRs at an early stage can help improve 

the productivity of triaging teams, which in turn should speed 

up the bug resolution process. It is therefore essential to 

invest in techniques that can automatically detect duplicate 

BRs.  

There exist studies to automatically detect duplicate BRs 

[3]–[6]. Most of them focus on the analysis of BR categorical 

data (e.g., component, product, etc.) and textual information 

such as BR descriptions and comments using machine 

learning and information retrieval techniques [4], [7]–[9]. 

Textual descriptions are written by end users, testers or 

developers may provide essential information for further 

analysis of BRs. However, BRs vary in their quality of 

content. They often contain incomplete or even incorrect 
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information [10], causing delays in fixing bugs due to poorly 

written described BRs. To overcome these limitations, 

researchers have turned to stack traces as the main features 

for detection of duplicate BRs [6], [7], [10]–[17]. Considered 

as an alternative and useful way to characterize a BR, a stack 

trace contains a sequence of running methods and threads in 

the system at the time of the crash. (Annotation 2.11) Stack 

traces have been used to help diagnose the causes of failures 

[18] or for bug reproduction [19], [20]. This is because they 

tend to be a more formal source of information than BR 

descriptions and comments that are entered by end users 

(including developers) using natural language. Stack traces 

are a useful alternative, especially when BR descriptions and 

comments suffer from quality problems due to noise in the 

data and the ambiguity and imprecision associated with the 

use of natural language.  

In our previous work [21], we presented an approach for 

detecting duplicate BRs using stack traces and Hidden 

Markov Models (HMMs). An HMM is designed for the 

analysis of sequential data. This paper complements our 

previous work, which serves as a motivation for this work. 

More specifically, in this paper, we propose an approach that 

not only detects duplicate bug reports but also automatically 

assigns an incoming bug report to an appropriate and small-

sized group of previously reported duplicate bug reports. We 

also fine-tuned and evaluated our approach on two new 

datasets, collected from Firefox and GNOME bug 

repositories, two large open source projects. 

The proposed approach consists of four main steps (see 

Figure 2). First, we extract stack traces from each BR and, 

we split the resulting execution traces into duplicate groups 

of appropriate sizes. Then, we build and train an HMM 

model for every duplicate group. The generated HMMs are 

used to classify incoming BRs. Finally, the stack trace of 

each incoming BR is compared with the trained HMMs and 

classified according to the generated scores. We assessed the 

performance of our approach on BRs from Firefox and 

GNOME datasets by computing the recall@rank- , where   

ranges from 1 to 20, and the Mean Average Precision (MAP).  

The main contributions of this paper compared to the 

previous one are:  

 We experiment with new datasets, an updated Firefox 

dataset, and a new dataset of BRs of the GNOME 

system  

 We provide a better evaluation of our approach using 

MAP and Recall@rank-k by varying k from 1 to 20. In 

the previous paper, we only presented precision and 

recall of the best result. Ranks provide a better view of 

the performance of our approach since it gives more 

flexibility to triagers and developers to search into a list 

of possible candidate duplicated BR groups.  

 We compare our approach to the approach of Kim et al. 

[17], which uses graph theory to model stack traces for 

the detection of duplicates BRs. 

 We provide a better discussion of our approach along 

with its limitations. 

 We also improve the conclusion and future work section 

based on the lessons learned from this extended work. 

The remainder of the paper is structured as follows. The 

next section surveys state of the art in duplicate-bug-report 

detection. In Section 2, we provide background information. 

Section 3 describes our proposed approach. Experimental 

results are reported in Section 4, followed with threats to 

validity in Section 5. Related work is presented in Section 6. 

We conclude the paper and discuss future work in Section 7. 

2. Background 

2.1. Bugzilla Bug Report Lifecycle 

The process of entering and resolving a bug has a life 

cycle. A bug report may include fields such as ID, Product, 

Component, Assignee, Status, Resolution, Summary and 

Changed date and time. The lifecycle of a BR in Bugzilla is 

shown in Figure 1 [22]. 

At each stage, the status of a bug changes until a final 

resolution is found. A new bug is in the UNCONFIRMED 

status until its presence is confirmed. It remains in the NEW 

status until it is assigned to a developer. The status can be 

one of FIXED, DUPLICATE, WONTFIX, WORKSFORME 

or INVALID.  The status is changed to RESOLVED FIXED 

if a developer fixes the bug. A WORKSFORME status 

means that the bug cannot be reproduced after some attempts 

by the developer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Lifecycle of a Bugzilla Bug [22] 

A bug is reopened if the tester is not satisfied with the fix 

or a formerly resolved report may be reopened at a later date 

(e.g., due to an ineffective fix). In such cases, the status of the 

BR changes to REOPENED [1], [12], [23]–[25]. Note that 

when a tester is satisfied with the fix, the status changes to 

VERIFIED. Finally, if the bug does not occur again the status 

changes to CLOSED [26]. 
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2.2. Hidden Markov Models (HMMs)  

An HMM is a statistical Markov model widely used to 

analyze the behavior of a system over time [27]. A more 

straightforward Markov process typically assumes that the 

states are directly visible to the observation data produced in 

the system. While in HMM, the states are hidden, but the 

output of each hidden state (i.e., the state transition 

probability) is dependent on the observation data. Moreover, 

based on the data types, an HMM can be further classified 

into discrete (typically the data is a discrete sequence 

produced from a finite number of tokens or symbols over 

time) or continuous (typically the data is generated from a 

Gaussian distribution such as speech, music, etc.). Since the 

observation data in our system is a discrete sequence of 

function calls, we have used the discrete form for the output 

distributions to model the function calls forming stack traces. 

A typical topology of an HMM is shown in Figure 2.  

Training an HMM model requires defining the following 

parameters: 

Number of hidden states: To train an HMM model, we 

need to set the number of hidden states ( ) in the Markov 

process. Let the distinct states in a Markov process be                  and the notation       represents 

the hidden states sequence    at time  . 

Number of observation symbols: To train an HMM model, 

we need to set the number of observation symbols ( ). Let 

the distinct observation symbols be                  
and the notation       represents the observed symbol    

at time   for the given sequence of observations                 , where   is the length of that sequence. 

State transition probability distribution: The first-row 

stochastic process is the hidden state transition probability 

distribution matrix        .   is an     square matrix 

and the probability of each element       is calculated by the 

following equation:      (               |             )                                       (1) 

In Equation (1), the transition from one state to the next is 

a Markov process of order one [27]. This means that the next 

state depends only on the current state and its probability 

value. Since the original states are “hidden”, we cannot 
directly compute the probability values in the past. However, 

we can observe the observation symbols for the current state    at time   from the given observations sequence   to train 

an HMM model. 

Observation symbol probability distribution: The second-

row stochastic process is the observations symbol probability 

distribution matrix   {      }    is an     matrix 

which is computed based on the observation sequences (i.e., 

the temporal order of stack traces). The probability of each 

element        is given by the following equation: 

        (                          |             )     (2) 

Initial state probability distribution: The third-row 

stochastic process is the initial state probability 

distribution       .   is a 1   row matrix and the 

probability of each element      is given by Equation (3):                          (3) 

Training an HMM model aims to maximize the likelihood 

function         over the above three-parameter space. The 

Baum-Welch (BW) algorithm is the most commonly 

employed expectation-maximization (EM) algorithm to 

estimate HMM parameters. It uses a forward-backward (FB) 

algorithm at each iteration to efficiently evaluate the 

likelihood function       . It updates the model parameters 

till a maximum number of iterations is reached or the 

likelihood function achieves no more improvement. In this 

paper, we also use BW to estimate HMM parameters. 

3. Experimental Setup 

3.1. Overall Approach 

Figure 3 shows our approach, which consists of the 

following steps. First, we extract BRs with stack traces from 

BR repositories of Firefox and GNOME, which use Bugzilla 

for BR tracking. For Firefox, there is another system that 

manages crash reports, which contains stack traces. The link 

between a BR in Bugzilla and its corresponding crash reports 

in Mozilla, if it exists, is established through the bug ID (see 

Section 3.2 for more details). For GNOME, traces are 

embedded within the BRs.  Once we have the BRs, we search 

for the duplicates one by examining the BR status. We create 

duplicate BR groups (DG) where each group DGi contains 

stack traces of one master BR and those of all its duplicates. 

We have as many duplicate groups as master BRs. For each 

DGi, we train an HMM using 60% of the traces, validate the 

HMM using 10% of the traces, and test the model using 30% 

of the traces of this DGi and every other DG. These steps are 

discussed in more details in the next subsections. 

 

 

 

 

Fig. 2. Typical topology of an HMM. 
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Fig. 3. Overall approach 

3.2. Datasets and formation of duplicate BR groups 

Our empirical study was performed on bug reports 

extracted from the two large open source software projects: 

Firefox and GNOME. 

Firefox dataset: Firefox is a well-known Internet browser 

used by millions of users around the world. Firefox uses 

Mozilla as a crash reporting system
1
 (more precisely, the 

Mozilla crash reporting system is called Socorro), and 

Bugzilla for tracking BRs. There is a difference between a 

crash report and bug report for Firefox and other Mozilla 

products. A crash report is automatically reported when a 

crash occurs. The report contains various fields such as the 

stack trace, priority, product, component, and OS 

version. Similar crash reports are grouped into clusters 

according to their top-method signature and a clustering 

algorithm [28]. When the number of crash reports in the 

same cluster reaches a certain threshold, a BR is created and 

submitted to Mozilla’s bug tracking system, Bugzilla. This is 

usually done manually. (Annotation R2.13) Most BRs do not 

contain stack traces, but contain links to signatures that refer 

to groups of crash reports. The link, if it exists, is through a 

BR ID.  

We implemented a web crawler to extract duplicate BRs 

in the Bugzilla website from BR#1 to BR#1,299,999. 

Bugzilla uses the “Product" and "Component" to classify 
bugs. We used mainly the BRs associated with the "Core" 

Product, which contains bugs in components used by Firefox 

and other Mozilla software. We extracted BRs with status 

“RESOLVED DUPLICATE” or “VERIFIED DUPLICATE” 

and found their corresponding master BRs. (Annotation 

R2.14) In addition, we only included in the dataset BRs that 

have links to their corresponding crash reports since our 

approach uses stack traces, which are only kept in crash 

reports, i.e., not copied to BRs.  

                                                           
1https://crash-stats.mozilla.com/home/product/Firefox 

 We create a duplicate BR group (DG) by including stack 

traces of the master BR and those of its duplicates. For 

example, the master BR Bug#1236639 was reported in 

January 2016 and later Bug#1258802, Bug#1260779 and 

Bug#1263241 were reported in 2016 and marked as 

duplicates of Bug#1236639. The crash traces associated with 

all these BRs that are retrieved from Mozilla are put together 

to form a duplicate BR group.   

We only included duplicate BRs that have at least four 

stack traces, the strict minimum number of traces needed to 

construct the training, validation, and testing sets.  

(Annotation 2.16) It should also be noted that we removed 

functions that contain “0x” (e.g., windows.dll@0x), and the 

ones that start with “Fxxxx”. These functions exist when 

debugging information could not be used to identify the 

function names associated with the running function in a 

 
Fig. 5. Number of duplicate BRs in each DG in the GNOME dataset. 

 

Fig. 4. Number of duplicate BRs in each DG in the Firefox dataset. 

Extract Duplicate BRs 

with Stack traces 

Create Duplicate BR 

Groups (DG) 

Create, Validate, and 

Test an HMM for each 

DG 

BR 

Repository 

(Bugzilla) 
 

Crash Report 

Repository 

(Firefox only) 
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memory dump. This may be caused by several reasons 

including crashes that make the program jump to a random 

address in memory, third-party DLLs, obfuscation, etc. We 

also removed repetitions of the exact same traces.  

In addition, in Mozilla, crash reports may be associated 

with more than one crashing thread starting from Thread 0. 

We have implemented a crawler to retrieve all available 

threads in a crash report. For both convenience and 

computation time reduction, we have only kept Thread 0 into 

consideration. We also only limited the number of crash 

traces associated with each bug report to 200 stack traces. 

The total number of duplicate bug report groups (DGs) is 

103. Figure 4 and Table 1 show the number of DGs for 

Firefox. About 73% (90 DGs) contain only two duplicate 

BRs. Others contain duplicates ranging from 2 to a maximum 

of 8. While only 5 out of 103 DGs include more than 5 

duplicates.  

GNOME: GNOME is a graphical user interface and a set 

of desktop applications for Linux. It also uses Bugzilla bug 

tracker [26] to track bug reports. Unlike Firefox that uses a 

different system to track stack traces, GNOME’s BRs have 

stack traces as part of the BR description. We implemented a 

web crawler to retrieve all GNOME BRs from Bugzilla. We 

collected all available GNOME BRs that were reported until 

December 2016, which represents a total of 753,300 BRs. 

Similar to Firefox, we created DGs by putting in each DG 

stack traces of a master BR and those of its duplicates. We 

only kept duplicate BRs with a minimum of four stack traces 

to construct training, validation, and testing sets. We 

preprocessed GNOME traces by deleting calls to Java 

libraries or setting up of debugging parameters. We also 

removed repetitions of the exact same traces as we did for 

Firefox. 

We formed 182 DGs. Fig. 6 and Table 1 show the 

characteristics of the GNOME DGs. A wide range of 

duplicates ranging from 2 to 628 are available in each 

duplicate group. As can be observed from Figure 5, 156 out 

of 182 (about 86%) of DGs contain up to 50 duplicates. 

Comparing both datasets, the GNOME dataset is larger in the 

sense that it contains more duplicate groups and each 

duplicate group contains a large number of traces.  

Table 1  
Characteristics of the duplicate BRs groups of Firefox and GNOME datasets 

Dataset 
Total number of duplicate 

BR groups 
Total number of traces 

FIREFOX 103 2,883 

GNOME 182 4,600 

3.3. Training Phase 

We build an HMM for each duplicate BR Group, DGi. We 

use 60% of traces in DGi for training.  We vary the number 

of hidden states N from 15 to 50 with a leap out of 5.  To our 

knowledge, no study specifies how to set the number of 

hidden states. Most studies that use HMMs set this parameter 

through experimentation. In our case, we found that for 

Firefox and GNOME, the best accuracy is obtained when 

N=20 and N=40, respectively. We experimented with higher 

N > 50 values and observed no improvement. 

3.4. Validation Phase 

Validation is used to better estimate the best fit for the 

HMM parameters  ,  , and  . In our study, we used 10% of 

traces in each DGi to validate the HMM constructed through 

training. We performed 10 iterations
2
 to estimate the HMM 

parameters A, B, and . Initial parameter values are passed to 

the Baum-Welch algorithm to compute the log-likelihood as 

scores for all traces inside the validation set. The best-

recorded parameters               that are obtained from the 

minimum mean value among the 10 iterations are used to 

construct the HMM models. 

3.5. Testing Phase 

We used 30% of traces from each DG as a testing dataset. 

Let a new stack trace     be mapped to sequences of 

observations                  . The latter ones are 

presented to HMM models,                 , of all DGs. 

Then, the log-likelihood of the sequence of 

observations                             for every trained 

HMM model is calculated. A set of ordered scores for all 

HMM models,                is subsequently generated 

and reported to specify possible labels within the ranked list. 

3.6. Evaluation  Metrics 

We used the recall rate and the Mean Average Precision 

(MAP) to assess the effectiveness of our approach. These 

metrics are used extensively in the literature [9], [29]–[32] so 

as to evaluate the performance of a ranked list. The 

recall@rank-k is defined as:                                      (4) 

where             is the number of correctly retrieved   

stack traces. Recall@rank-k is defined as the percentage of 

duplicates for which the master is found for a given top list 

size k. 

The Mean Average Precision (MAP) indicates how 

accurately duplicate candidates are ranked. It is measured as 

follows: 

        ∑                    (5) 

 

                                                           
2Our experiments have shown that after 10 iterations, the parameter 

values do not vary. 
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where   is the number of correctly retrieved duplicate 

candidates and         is the position in which the right 

stack trace is retrieved. 

MAP ranges from 0 to 100%. An approach that returns 

MAP=100% means that for all BRs in the testing set, the 

approach was able to classify them accurately at the top rank. 

It is sufficient for a triager to look at one DG to find the 

corresponding duplicate group. A MAP close to zero means 

that the approach would return many possible DGs for each 

BR in the testing set because of a poor classification. 

4. Evaluation 

4.1. Firefox and GNOME Datasets 

The results of applying our approach to Firefox dataset are 

shown in in Table B1 (see Appendix B). The recall rates with 

ranks with k ranging from 1 to 20 show that our approach 

achieves promising results across all HMMs with different 

states. The average recall for Rank k =1 is 59%, for Rank 

k=2 is 75.55%.  We start reaching the 90% recall from k=10.  

In the case of MAP (see Figure 6), we obtained MAP 

values between 75.77%  and 76.44% with different 

numbers of hidden states, an average of 76.24%. In other 

words, a given incoming BR can be identified by our 

approach in the first DG that the approach suggests with 76% 

of chances. We pass to the 85% MAP bar with 5 DGs, which 

we believe it is considered a good result.  

Table B2 shows the results of the recall at rank k with k 

ranging from 1 to 20 with HMM models with different state 

numbers. The recall at k=1 is almost 63% for all state 

numbers, while this value increases by about 10% for k=2. It 

can also be observed that having a recommended list of 2 

duplicate groups, detection accuracy of about 73% can be 

achieved. This detection accuracy increases to 97% for k=11. 

In terms of MAP rate, values of about 72% and 73% were 

achieved using state numbers of 40 and 45, respectively (see 

Figure 7). Similar to Firefox, we did not see a significant 

impact in changing the number of hidden states.  

We also found that changing the number of hidden states 

does not substantially impact the recall rate in the ranked list 

as shown by the boxplots of Figures A1 and A2 for both 

Firefox and GNOME. 

4.2. Comparison  

In this section, we compare our approach to the approach 

proposed by Kim et al. [17], which models aggregated views 

of crash traces using graphs to detect duplicate crash reports 

in the Windows Error Reporting (WER) system in order to 

facilitate triaging tasks.  

The approach, which we refer to as CrashGraph in this 

paper, aggregates multiple stack traces (called crash traces in 

[17] in the same group by constructing a graph where the 

nodes represent the stack trace functions and the edges 

represent the calling relationship.  

 
 

Fig. 6. MAP obtained with different HMM state numbers for Firefox 

 
 

Fig. 7. MAP obtained with different HMM state numbers for Gnome  
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Figure 10, taken from [17], shows an example of three 

stack traces ABCD, AFGD, and CDFG, where A, B, C, D, F, 

G are functions. In this example, a graph is created by taking 

a 2-gram representation of trace elements and combining 

them. 

The authors use the aggregated graph to model stack 

traces of each bucket (a group of related crash reports in 

WER) to predict if a new crash trace should belong to the 

same bucket or not. A similarity metric is used to determine 

the extent to which an incoming stack trace is deemed similar 

to those modeled in the graph. When applied to detect 

duplicate bug reports in two Windows products, the best 

accuracy achieved by CrashGraph is 71.5% precision and 

62.4% recall using a 99% similarity, which we also used to 

run the experiments with CrashGraph. 

 

Fig. 10. An example of a graph created by CrashGraph to model traces [17] 

We implemented CrashGraph to the best of our 

knowledge. We applied it to DGs of Firefox and GNOME to 

predict the DG of an incoming stack trace. We used the same 

setting as before. More precisely, for each DGi (whether it is 

for Firefox of GNOME), we used 60% of traces to construct 

    
 

Fig. 8. Comparison of Recall rate@rank-k between CrashGraph and HMM 

 

 
 

Fig. 9 Comparison of Recall rate@rank-k between CrashGraph and HMM 
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a CrashCraph and 20% of traces to test it. Note that we did 

not use the validation set to validate CrashGraph since 

CrashGraph does not use any particular heuristics. 

We compared CrashGraph with HMM N=20 for Firefox, 

and HMM N=40 for GNOME since these are the HMM 

models that provide the best accuracy. The results are shown 

in Figures 8 and 9.  

The results show that HMM performs better than 

CrashGraph when applied to the Firefox dataset. At Rank 1, 

our approach achieves a recall of 59.7% whereas CrashGraph 

achieves a recall of 51%. This gap is maintained as k 

increases as shown in Fig. 9. MAP of HMM is also better 

than the one obtained with CrashGraph. 

For GNOME, our HMM-based approach performs almost 

the same as CrashGraph as shown in Figures 8 and 9. This 

may be due to the fact that there are many more traces in 

GNOME than Firefox. CrashGraph was able to build a 

representative graph that characterizes the traces of a DG.  

4.3. Discussion and Limitations 

A. Varying the number of hidden states 

To train the HMM models, we varied the number of 

hidden states from 15 to 50 with bounds of 5. A different 

setting may lead to different results. However, our results 

suggest that the number of hidden states does not have major 

impact on the overall approach. As we can see from the 

boxplots in Figures A1 and A2 (see Appendix A), the recall 

changes slightly by varying the number of hidden states. 

Take for example the results obtained for Rank 1 for Firefox, 

the recall ranges from 57.91% to 59.81%, i.e., a 1.9% 

difference.  

B Impact on triaging effort 

The MAP is an indication of how well a given approach 

ranks incoming BRs (in our case a BR is characterized by its 

stack trace). The average MAP across all HMMs is 76% for 

Firefox and 71% for GNOME. This means that, in general, 

our approach ranks well the incoming BRs, which should 

reduce the time spent by triagers to find the right DG for an 

incoming BR.  The better the recall and MAP, the less effort 

is needed. Note that for both datasets, the gap between recall 

at Rank 1 and Rank 2 is significantly reduced when 

comparing recalls between the subsequent pairs of ranks 

(Rank 2 with Rank 3, Rank 3 with Rank 4, etc.). This 

suggests that MAP should be even higher if we ignore Rank 

1, meaning that a triager would accept to examine at least 

two DGs to determine the right DG.  

C Differences between Firefox and GNOME 

(Annotation R2.1) We found that our approach (as well as 

the CrashGraph approach) performs better for GNOME than 

for Firefox. This may be due to the fact that GNOME has 

more traces than Firefox (4,600 compared to 2,883). More 

traces in a DG mean a better characterization of BRs of the 

same group, which helps with the classification process 

achieved by HMM (and CrashGraph). We also have more 

DGs in GNOME than in Firefox. Besides, GNOME has more 

duplicates in each DG than Firefox as shown in Figures 4 and 

5. This may be due to the fact that crash reports go directly in 

the bug reporting system in GNOME, which is not the case 

for Firefox. There is an additional triage phase that Mozilla 

does between the report of crashes and the filing of bugs, 

which is not done in GNOME, resulting in less duplicates 

BRs for Firefox than GNOME.  

D. Limitations 

One of the main limitations of our approach is that it does 

not deal with new incoming BRs that do not have prior 

duplicates in the database. In other words, we extend the 

approach to consider the creation of new groups on the fly. 

One possibility to do this is to determine a threshold below 

which an incoming BR is deemed dissimilar enough to all 

existing BRs and hence should be put in a new group that 

needs to be created. This threshold can be determined during 

the validation step of our approach using a validation set that 

contains a mix of duplicate BRs and new BRs (BRs without 

duplicates). 

Another limitation of our approach is due to the low 

number of BRs with stack traces in existing BR repositories. 

Unfortunately, not all BR tracking systems collect traces 

automatically, making it difficult for a user to submit traces. 

As an example, only 10% of Eclipse bug reports described by 

Lerch et al. [33] contain stack traces. Mozilla keeps stack 

traces for only one year because of the cost of saving a large 

number of stack traces. Nevertheless, we believe that an 

approach that uses stack traces remains very useful, 

especially because stack traces are needed for other tasks 

such as bug reproduction [19], [20].  We conjecture that, in 

the future, more bug tracking systems will collect 

automatically stack traces and use advanced storage 

mechanisms to make traces available for more extended 

periods of time. 

5. Threats to Validity 

Our proposed approach and the conducted experiments 
are subject to threats to validity, namely external, internal, 
and construct validity. 

5.1. Threats to external validity 

Our approach is evaluated against two open source 
datasets and tested on duplicate BRs with stack traces. We 
need to apply our technique to more datasets. We also need 
to evaluate if it outperforms existing work and approaches 
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that use other BR features such BR descriptions and 
comments. 

5.2. Threats to internal validity 

In our approach, the way we set the parameters A and B, 
and the conditional probability matrices to construct HMMs 
could be a threat to internal validity. We used the validation 
set to set the bounds to optimize A and B. A different 
validation set could result in a different initialization, 
resulting in a different model. However, to our knowledge, 
there is no clear solution to this problem and most studies 
that use HMM follow random initialization of A and B and 
repeat this process several times until a satisfactory model is 
obtained. 

The way we set the number of hidden states is another 
threat to validity. We followed the common practice of 
setting this number to a small number and then increase it 
with bounds of 5. Although different state numbers do not 
seem to bring much improvement in accuracy (see Figure A1 
in Appendix A), there is always a possibility that a different 
number may lead to other models. 

For Firefox, we used traces of Thread0 only. Considering 
all threads will require an extensive amount of time to train 
each HMM. However, for crashes due to hangs, the top few 
methods are more or less the same (with functions such as 
"wait") between crash reports even if the root causes of the 
crashes are different. This may cause the associated BRs to 
end up in the same bug report groups. To address this issue, 
we should (a) examine in depth what the impact would be, 
and (b) consider including other threads. This said, 
considering all threads may cause scalability problems. 
Therefore, a trade-off between precision and scalability 
should be investigated. 

(Annotation R2.3) The Firefox results depend on the 
quality of the initial manual triage and the quality of the 
signatures. Errors in manual triage and incorrect signatures 
may affect our results. 

Finally, another threat to internal validity is related to the 
web crawling and parsing tools implemented to collect BRs 
and extract stack traces, and in the way we implemented the 
CrashGraph algorithm. To mitigate this threat, we verified 
our data multiple times. We also intend to release a 
reproduction package to allow other researchers to reproduce 
our research work. 

5.3. Threats to construct validity 

The construct validity shows how the used evaluation 

measures could reflect the performance of our predictive 

model. In this study, we used recall and Mean Average 

Precision, which are widely used in other studies to assess the 

accuracy of machine learning models with applications to the 

problem of duplicate BR detection. 

6. Related Work 

Several approaches have been proposed in the literature to 

support the automatic detection of duplicate bug reports. This 

section presents previous studies related to our work. They 

can be divided into two main categories based on the type of 

BR information used: 1) Textual-based approaches and 2) 

Execution information-based approaches. 

6.1. Textual-based approaches 

Typically, developers and users submit information 

related to the crash in the summary and textual description 

part of a bug report. The aforementioned unstructured 

information can then be used by researchers to investigate the 

similarities between existing bug reports and an incoming 

bug report for classification purposes [4], [9], [19], [29], [31], 

[34]–[42]. Using natural language information, information 

retrieval (IR) techniques are widely used to calculate the 

similarity scores between queries and the retrieved data. In 

this context, Wang et al. [36] have studied similar terms in 

duplicate bug reports of OpenOffice for text similarity 

measurements. Then, they proposed a new technique to 

extract similar terms in BR descriptions that cannot be 

obtained via a general purpose thesaurus. They showed that 

their method improves existing methods by 58%. Rakha et 

al. [7] have conducted a study on the effort required for 

manually identifying duplicate issue reports for Firefox, 

SeaMonkey, Bugzilla, and Eclipse-Platform. They have 

observed that more than 50% of duplicate bug reports can be 

detected within 24 hours after their submission even when 

only one developer is involved. Their classification model 

achieves an average precision and recall of 68% and 60%.  

The performance of different IR models (e.g., Log-

Entropy based weighting systems) compared with topic-

based modes (e.g., LSI, LDA, and Random Projections) has 

been studied by Kaushik et al. [34]. By applying different 

heuristics on data retrieved from Eclipse and Firefox, they 

have observed that word-based models outperform topic-

based models with 60% and 58% recall rates, respectively. 

Their results suggest that the project’s domain and 
characteristics play a crucial role in improving the 

performance of heuristic models. 

Sun et al. [32] proposed a supervised approach based on a 

discriminative model.  The model uses information retrieval 

to extract textual features from both duplicate and non-

duplicate bug reports. It is then trained and tested using a 

support vector machine (SVM) classifier. All pairs of 

duplicate bug reports have been formed and considered as 

positive samples, while all other pairs of non-duplicate bug 

reports have been treated as negative ones. By applying the 

method on BRs from Firefox, Eclipse, and OpenOffice, the 

authors’ method was able to achieve a recall as high as 65% 
on all datasets.  

In another studies [32], the authors have improved their 

model by extending the well-known BM25 ranker to provide 
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a ranked list of duplicates. It should be noted that BM25 is a 

function for calculating term frequencies and similarities 

among bug reports. By taking advantage of IR-based features 

and topic-based features, Nguyen et al. have extended the 

work of Sun et al. by combining BM25F with a specialized 

topic model. The authors have considered words and term 

occurrences inside bug reports in an effort to improve bug 

localization performance. The algorithm shows recall rate@k 

between 37% and 71% and MAP of 47%.  

Sureka and Jalote [40] proposed a character-level n-gram 

approach to further improve the accuracy of automatic 

duplicate-bug-report detection. The technique calculates the 

text similarity between the user’s query and existing title and 
description information of bug reports in character-level. The 

character-level n-grams are language independent and thus, 

they save languages specific pre-processing time. According 

to their experiments, however, their approach has been of 

modest performance for which about 21% and 34% recall 

rates have been achieved for top 10 and top 50 

recommendations, respectively. 

Another set of supervised approaches build a model based 

on a training data and use it to analyze a pair of BRs to 

predict whether they are duplicate. In addition to textual and 

categorical features (description, component, priority, etc.), 

Alipour et al. [29] suggested using contextual features to 

detect duplicate BR pairs. They showed that domain 

knowledge of software engineering concept plays a 

compelling role in detecting duplicates between BR pairs. 

When applied to a bug repository of the Android ecosystem, 

the approach achieves a recall of up to 92%. 

Deshmukh et al. [3] applied Convolutional Neural 

Networks (CNN), and Long Short Term Memory (LSTM) on 

short and long descriptions of BRs extracted from Lazar et al. 

[2] dataset. They showed that their approach could achieve 

accuracy and recall rate of 90% and 80%, respectively. 

6.2. Execution information-based approaches 

Wang et al. [39] applied natural language processing 

techniques on both stack traces and BR descriptions and 

observed that there is an improvement of 25% over 

approaches that only use BR descriptions. The authors, 

however, did not model the temporal order of sequence of 

calls in stack traces. Instead, they treated stack traces as text 

with stack trace functions are treated as words. This approach 

detects 67%-93% of duplicate BRs of Firefox. 

Lerch et al. [33] proposed an approach to identify stack 

traces in BRs by transforming stack traces into a set of 

methods and then using term frequency to compute and rank 

the similarity between method sets. The authors’ method, 
when applied to Eclipse BRs, achieves the same results as the 

state-of-the-art approaches, but with fewer requirements. 

This approach, however, does not take into account the 

temporal order of sequences of function calls in stack traces. 

Kim et al. [17] proposed a crash graph-based model which 

captures the crashes reported and stored in a bucket. A graph 

of stack traces in a bucket (a group of related bug reports) is 

constructed to aggregate multiple traces. Instead of 

comparing an upcoming stack trace with every single trace in 

a bucket, their model only compares with the graph. To 

evaluate their model, the authors used graph similarity as a 

metric. When applied to crash reports of Windows systems, 

their approach achieves a maximum precision of 71.5% and 

recall of 64.2%.  To our knowledge, this is the only approach 

that uses temporal order of sequences of functions calls of 

stack traces to detect duplicates. Our approach achieved a 

better recall rate and MAP than Kim et al.’s approach as 
discussed in Section 4.3.  

To improve the accuracy of bucketing in the Windows 

Error Reporting system (WER), Rebucket was proposed by 

Dang et al. [5] for clustering crash reports based on call stack 

similarity. Rebucket measures the similarity between call 

stacks in WER and assigns crash reports to buckets according 

to similarity values. This approach is not used to detect 

duplicates, but group related crashes together. 

In our previous work [13], we collected stack traces in a 

small group of duplicates with a varying length n-grams and 

automata (a Markov model). The automaton has been taken 

as a representative for the duplicate group and test stack 

traces of that duplicate group. When an incoming stack trace 

is sufficiently similar to the automaton of a duplicate group, 

it is labeled as a duplicate of that similar group. In our paper 

[21], we improved CrashAutomata using HMMs.  

Sabor et al. [43] used package names in stack traces 

instead of method names to detect duplicates BRs in Eclipse. 

Their method then generates n-gram features from sequences 

of package names. The extracted features are then used for 

measuring the similarity between new stack traces of new 

and stack traces of historical BRs. The objective of their 

paper is to reduce the computation time to process large 

traces. 

Castelluccio et al. [28] proposed a tool, which was 

integrated in Socorro, to find statistically significant 

properties in groups of Mozilla crash reports and present 

them to analysts (developers and triaging teams) to help them 

analyze the crashes and understand the causes. The tool is 

based on contrast-set learning, a data mining approach [44]. 

The authors applied the tool crash data collected from the 

Mozilla crash reporting system and bug tracking system. 

Their findings show that the tool is very effective in 

analyzing related crash groups and bugs. 

Furthermore, the tool, which is now integrated with the 

Mozilla crash reporting system, received favorable feedback 

from Mozilla developers. Although this tool does not tackle 

the problem of duplicate BR reports, it could be useful in our 

research. We can use it to extract the most meaningful 

properties of crash traces and use them to improve the HMM 
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models. The tool can also be used to improve the grouping of 

crashes in Mozilla, and use the resulting grouping to identify 

crash reports that are related to duplicate BRs.  

6.3. Discussion 

As described in the previous section, the majority of 

studies focus on detecting duplicate BRs using the textual 

parts of BRs such as summary and description. Most of the 

techniques that use stack traces treat their content as 

document and leverage natural language processing 

techniques. These techniques do not take advantage of the 

temporal order of function calls in stack traces, which 

characterize the execution of a system. We conjecture in this 

paper that they are an excellent alternative to BR 

descriptions, especially in cases where we cannot rely on BR 

descriptions and comments because of the quality issues. 

To our knowledge, the only technique that truly leverages 

stack traces for the problem of duplicate BR  detection is the 

one proposed by Kim et al. [17]  by leveraging graph theory 

techniques. As shown in the comparison section, our 

approach performs better than the approach proposed by Kim 

et al.  

7. Conclusion and Future Work 

In this paper, we have presented a novel approach aimed 

at automatically detecting duplicate bug reports using 

execution traces and Hidden Markov Models. Based on our 

study, we recognize the obvious benefits we derive from 

using stack trace’s information solely that we believe 

improves the detection accuracy of duplicate bug reports. 

Our experiments highlight that with a list of rank-1 bug 

reports, recall values of 80% and 63% have been achieved on 

Firefox and GNOME datasets, respectively. With the same 

list of bug reports, our approach detects the duplication of a 

given report with an average MAP value of 87% and 71.5% 

on Firefox and GNOME datasets, respectively. It has also 

been observed that the higher the rank level, the higher the 

recall rate. For instance, the recall rate with a list of rank-2 

has been about 12% higher than that with a list of rank-1. 

In the future, we plan to investigate more BRs from 

additional software systems. We also plan to improve the 

effectiveness of our proposed approach in terms of recall and 

MAP scores.  

In addition, for Firefox, we used only traces coming from 

Thread 0, we need to extend the dataset by considering more 

threads. This way, we can have a better characterization of a 

BR by using traces from multiple threads. 

Also, we will study how we can combine stack traces with 

other BR fields such as BR descriptions and comments. A 

combined approach should not treat stack traces as 

documents, as it is done in the literature, but model the 

temporal order of sequences of function calls, just as it is 

done in this paper. 

(Annotation R2.2) Another interesting future work 

direction is to investigate the use of our HMM-based 

approach to detect similar crash reports in Mozilla and 

compare it to the baseline solution of duplicating crash 

reports based on method signatures. If effective, our 

approach can be used on top of Socorro’s algorithms for 
detecting similar crash reports [28]. 

Finally, we stress the need to examine the efficiency and 

scalability of our approach by measuring the execution time 

and other related factors. This is needed when HMMs are 

used because HMM is known to cause scalability problems 

when applied to very large datasets. The problem is not only 

for the initial training of the model but also for model 

updates, i.e., when new traces (BRs) should be added to the 

model. 
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Fig. A1. Recall@rank-k for Firefox dataset. 
Fig. A2. Recall@rank-k for GNOME dataset. 

 

 

 

 

 
 

Appendix A:  

 
Figure  A1.  

 MAP values for Firefox and Gnome for various ranks 
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Appendix B: Results of recall rate@rank-k with different HMM state numbers 

 
Table B1 

 Median of  recall rate@rank-k with different HMM state numbers using Firefox dataset. 

 

Rank 
Number of Hidden States 

15 20 25 30 35 40 45 50 

1 59.08% 59.70% 59.26% 59.81% 57.91% 58.21% 58.86% 58.50% 

2 74.28% 76.36% 76.01% 75.76% 74.32% 75.23% 76.79% 75.67% 

3 80.09% 81.20% 81.90% 81.84% 80.80% 80.55% 82.10% 82.95% 

4 84.64% 85.44% 86.19% 85.08% 85.29% 85.24% 85.36% 85.19% 

5 86.92% 86.55% 87.46% 87.33% 86.41% 87.05% 86.58% 87.11% 

6 87.95% 88.53% 88.14% 88.17% 88.16% 88.10% 87.44% 88.52% 

7 88.62% 89.03% 88.69% 88.64% 88.67% 88.71% 87.84% 88.65% 

8 88.91% 89.48% 88.91% 88.80% 88.87% 88.88% 88.62% 88.82% 

9 89.15% 89.57% 89.31% 89.20% 89.08% 89.19% 88.83% 89.03% 

10 89.88% 89.90% 89.76% 89.52% 89.53% 89.54% 89.22% 89.47% 

11 90.10% 90.00% 89.95% 89.84% 89.73% 89.76% 89.37% 89.57% 

12 90.25% 90.12% 89.99% 89.96% 89.87% 89.85% 89.46% 89.86% 

13 90.25% 90.12% 90.15% 90.04% 89.87% 89.94% 89.79% 90.04% 

14 91.29% 90.81% 90.64% 90.58% 90.57% 90.72% 90.28% 90.55% 

15 91.37% 91.36% 91.19% 90.65% 90.75% 91.28% 90.88% 91.22% 

16 91.52% 91.48% 91.28% 90.81% 91.05% 91.36% 91.04% 91.31% 

17 91.98% 91.80% 91.74% 91.66% 91.37% 91.92% 91.42% 91.77% 

18 92.02% 92.26% 91.77% 91.77% 91.41% 91.98% 91.46% 91.77% 

19 92.02% 92.26% 91.77% 91.84% 91.90% 91.98% 91.79% 91.77% 

20 92.08% 92.33% 92.08% 91.84% 92.04% 92.02% 91.79% 91.77% 

MAP 75.77% 76.44% 76.29% 76.40% 76.15% 76.33% 76.29% 76.26% 
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Table B2 

Median of recall rate@rank-k with different HMM state numbers using GNOME dataset. 

 

Rank 
Number of Hidden States 

15 20 25 30 35 40 45 50 

1 62.99% 62.74% 62.66% 63.39% 63.15% 63.72% 62.18% 62.50% 

2 73.21% 73.54% 73.54% 73.30% 73.13% 72.81% 73.38% 73.21% 

3 76.95% 77.27% 76.54% 76.87% 76.70% 76.79% 76.54% 77.03% 

4 78.57% 78.73% 78.17% 78.08% 78.49% 78.41% 78.33% 78.65% 

5 79.79% 79.79% 79.38% 79.79% 79.71% 79.38% 79.30% 80.19% 

6 80.76% 81.25% 80.60% 81.09% 81.33% 80.68% 80.52% 81.09% 

7 82.06% 82.47% 81.74% 82.39% 81.98% 81.98% 81.57% 81.98% 

8 83.36% 83.36% 82.47% 83.20% 82.79% 82.95% 82.71% 82.87% 

9 83.85% 83.93% 83.36% 84.17% 83.44% 83.77% 83.52% 83.60% 

10 84.50% 84.50% 84.09% 84.74% 84.25% 84.17% 84.58% 84.82% 

11 85.23% 85.23% 84.90% 85.39% 85.15% 84.98% 85.06% 85.39% 

12 85.63% 86.36% 85.63% 85.88% 85.88% 85.96% 85.80% 85.96% 

13 86.53% 87.09% 86.28% 86.61% 87.18% 86.61% 86.53% 86.85% 

14 87.18% 87.58% 87.01% 87.34% 87.74% 87.01% 87.26% 87.26% 

15 87.91% 87.91% 88.07% 88.07% 88.23% 87.99% 88.31% 87.91% 

16 88.56% 88.56% 88.88% 88.56% 88.72% 88.47% 88.80% 88.72% 

17 89.04% 88.96% 89.69% 88.96% 89.12% 89.29% 89.20% 89.37% 

18 89.53% 89.53% 90.26% 89.37% 89.53% 89.61% 89.77% 89.69% 

19 90.02% 89.85% 90.58% 90.02% 90.34% 90.26% 90.26% 89.94% 

20 90.26% 90.42% 90.99% 90.58% 90.91% 90.99% 90.58% 90.34% 

MAP 71.32% 71.33% 71.13% 71.53% 71.37% 71.57% 70.86% 71.11% 

 

 

 

 


