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S U M M A R Y

We present a discontinuous Galerkin finite-element method (DG-FEM) formulation with

Convolutional Perfectly Matched Layer (CPML) absorbing boundary condition for 3-D elastic

seismic wave modelling. This method makes use of unstructured tetrahedral meshes locally

refined according to the medium properties (h-adaptivity), and of approximation orders that

can change from one element to another according to an adequate criterion (p-adaptivity).

These two features allow us to significantly reduce the computational cost of the simula-

tions. Moreover, we have designed an efficient CPML absorbing boundary condition, both

in terms of absorption and computational cost, by combining approximation orders in the

numerical domain. A quadratic interpolation is typically used in the medium to obtain

the required accuracy, while lower approximation orders are used in the CPMLs to reduce

the total computational cost and to obtain a well-balanced workload over the processors.

While the efficiency of DG-FEMs have been largely demonstrated for high approximation

orders, we favour the use of low approximation orders as they are more appropriate to the

applications we are interested in. In particular, we address the issues of seismic modelling

and seismic imaging in cases of complex geological structures that require a fine discretiza-

tion of the medium. We illustrate the efficiency of our approach within the framework of the

EUROSEISTEST verification and validation project, which is designed to compare high-

frequency (up to 4 Hz) numerical predictions of ground motion in the Volvi basin (Greece).

Through the tetrahedral meshing, we have achieved fine discretization of the basin, which

appears to be a sine qua non condition for accurate computation of surface waves diffracted

at the basin edges. We compare our results with predictions computed with the spectral ele-

ment method (SEM), and demonstrate that our method yields the same level of accuracy with

computation times of the same order of magnitude.

Key words: Surface waves and free oscillations; Site effects; Computational seismology;

Wave propagation.

1 I N T RO D U C T I O N

Over the last decades, simulations of wave propagation in complex

media have been efficiently tackled with finite-difference methods

(FDMs) and applied with success to numerous physical problems

(Graves 1996; Moczo et al. 2007). Nevertheless, FDMs suffer from

some critical issues that are inherent to the underlying Cartesian

grid, such as parasite diffractions in cases where the boundaries

have a complex topography. To reduce these artefacts, the discretiza-

tion should be fine enough to reduce the ‘stair-case’ effect at the

free surface. For instance, a second-order rotated FDM requires up

to 60 gridpoints per wavelength to compute an accurate seismic

wavefield in elastic media with a complex topography (Bohlen &

Saenger 2006). Such constraints on the discretization drastically

restrict the possible field of realistic applications. Some interesting

combinations of FDMs and finite-element methods (FEMs) might

overcome these limitations (Galis et al. 2008). The idea is to use

an unstructured FEM scheme to represent both the topography and

the shallow part of the medium, and to adopt for the rest of the

model a classical FDM regular grid. For the same reasons as the

issues related to the topography, uniform grids are not suitable for

highly heterogeneous media, since the grid size is determined by

the shortest wavelength. Except in some circumstances, like mixing

grids (Aoi & Fujiwara 1999) or using non uniform Cartesian grids

(Pitarka 1999) in the case of a low velocity layer, it is almost impos-

sible to locally adapt the grid size to the medium properties in the
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general case. From this point of view, FEMs are appealing, since

they can use unstructured grids or meshes. Due to ever-increasing

computational power, these kinds of methods have been the focus

of a lot of interest and have been used intensively in seismology

(Aagaard et al. 2001; Akcelik et al. 2003; Ichimura et al. 2007).

Usually, the approximation order remains low, due to the prohibitive

computational cost related to a non-diagonal mass matrix. However,

this high computational cost can be avoided by mass lumping, a stan-

dard technique that replaces the large linear system by a diagonal

matrix (Marfurt 1984; Chin-Joe-Kong et al. 1999). Another class of

FEMs that relies on the Gauss–Lobatto–Legendre quadrature points

has removed these limitations, and allows for spectral convergence

with high approximation orders. This high-order FEM, called the

spectral element method (SEM, Seriani & Priolo 1994; Komatitsch

& Vilotte 1998), has been applied to large-scale geological models,

up to the global scale (Chaljub et al. 2007; Komatitsch et al. 2008).

The major limitation of SEM is the exclusive use of hexahedral

meshes, which makes the design of an optimal mesh cumbersome

in contrast to the flexibility offered by tetrahedral meshes. With

tetrahedral meshes (Frey & George 2008), it is possible to fit almost

perfectly complex topographies or geological discontinuities and

the mesh width can be adapted locally to the medium properties

(h-adaptivity). The extension of the SEM to tetrahedral elements

represents ongoing work, while some studies have been done in two

dimensions on triangular meshes (Mercerat et al. 2006; Pasquetti

& Rapetti 2006). On the other hand, another kind of FEM has been

proven to give accurate results on tetrahedral meshes: the discon-

tinuous Galerkin finite-element method (DG-FEM) in combination

with the arbitrary high-order derivatives (ADER) time integration

(Dumbser & Käser 2006). Originally, DG-FEM was developed for

the neutron transport equation (Reed & Hill 1973). It has been

applied to a wide range of applications such as electromagnetics

(Cockburn et al. 2004), aeroacoustics (Toulopoulos & Ekaterinaris

2006) and plasma physics (Jacobs & Hesthaven 2006), just to cite

a few examples. This method relies on the exchange of numeri-

cal fluxes between adjacent elements. Contrary to classical FEMs,

no continuity of the basis functions is imposed between elements,

and therefore the method supports discontinuities in the seismic

wavefield, as in the case of a fluid–solid interface. In such cases,

the DG-FEM allows the same equation to be used for both the

elastic and the acoustic media, and it does not require any explicit

conditions on the interface (Käser & Dumbser 2008), which is, on

the contrary, mandatory for continuous formulations, like the SEM

(Chaljub et al. 2003). Moreover, the DG-FEM is completely local,

which means that elements do not share their nodal values, contrary

to conventional continuous FEM. Local operators make the method

suitable for parallelization and allow for the mixing of different

approximation orders (p-adaptivity).

However, in most studies, the DG-FEM is generally used with

high approximation orders. Here, we present a low-order DG-FEM

formulation with the convolutional perfectly matched layer (CPML)

absorbing boundary condition (Roden & Gedney 2000; Komatitsch

& Martin 2007) that is suitable for large-scale 3-D seismic wave

simulations. In this context, the DG-FEM provides major benefits.

Our approach relies intensively on the p-adaptivity. This last feature

is crucial for efficient simulations, in order to mitigate the effects

of the very small elements that are generally encountered in refined

tetrahedral meshes. Indeed, the p-adaptivity allows an optimized

time stepping to be achieved, by adapting the approximation or-

der according to the size of the elements and the properties of the

medium. The benefit of such a numerical scheme is particularly im-

portant with strongly heterogeneous media. Due to the mathematical

formulation we consider, the medium properties are assumed to be

constant per element. Therefore, meshes have to be designed in such

a way that this assumption is compatible with the expected accu-

racy. In particular, we address the issues of seismic modelling and

seismic imaging in complex media. In the first application, the dis-

cretization must be able to represent the geological structures fairly,

without oversampling, while in the second, the spatial resolution of

the imaging process puts constraints on the coarsest parametrization

of the medium. If we consider full waveform inversion (FWI) appli-

cations, the expected imaging resolution reaches half a wavelength,

as shown by Sirgue & Pratt (2004). Therefore, following the Shan-

non theorem, a minimum number of four points per wavelength is

required to obtain such accuracy. These reasons have motivated our

development of DG-FEM with low orders. In this study, we focus

on the quadratic interpolation, which yields a good compromise

between accuracy, discretization and computational cost.

This paper is structured as follows. In Section 2, we review in

detail the DG-FEM formulation, and introduce the concept of p-

adaptivity. The implementation of the method on distributed mem-

ory machines is discussed in Section 3. The source excitation and

two kinds of boundary conditions are explained in Section 4: the

free surface, and the absorbing boundary conditions. Special atten-

tion is paid to the latter with the detailed CPML formulation. The

efficiency of the CPML is demonstrated with validation tests that

in some cases reveal instabilities inside the absorbing layers. The

strategy for saving CPU time and memory with low-order CPML

is then presented. In Section 5, we study the convergence of the

method, and the ability to compute accurate surface waves when

a free surface is considered. The advantages of the hp-adaptivity

in the context of tetrahedral meshes are discussed in Section 6. Fi-

nally, in Section 7, we illustrate the efficiency of our method, with a

challenging seismological model, where the computation of surface

waves is critical for the prediction of site effects.

2 T H E D G - F E M F O R M U L AT I O N

2.1 Elastodynamic system

The equations governing particle velocity and stress in an isotropic

elastic medium, namely the elastodynamic system (Virieux 1986),

is a first-order hyperbolic system. Following the approach of

BenJemaa et al. (2009), the elastodynamic system can be written in

the following pseudo-conservative form

ρ∂t �v =
∑

θ∈{x,y,z}
∂θ (Mθ �σ ) + �f

�∂t �σ =
∑

θ∈{x,y,z}
∂θ (Nθ �v) + �∂t �σ0, (1)

with the definitions of the velocity and stress vectors as

�v = (vx vy vz)
T

�σ = (τ τ ′ τ ′′ σxy σxz σyz)
T , (2)

and

τ = 1

3
(σxx + σyy + σzz)

τ ′ = 1

3
(2σxx − σyy − σzz)

τ ′′ = 1

3
(−σxx + 2σyy − σzz).

(3)

Due to the change of variables defined in eq. (3), the right-hand

side of (1) does not include any terms that relate to the physical
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properties. Mθ and Nθ are constant real matrices (Appendix B). �

is a diagonal matrix given by

� = diag

(
3

3λ + 2μ
,

3

2μ
,

3

2μ
,

1

μ
,

1

μ
,

1

μ

)
,

where λ and μ are the Lamé parameters. Moreover, the diagonal-

ity of � is an essential point of our formulation since the inverse

of this matrix is required for the computation of the stress com-

ponents (eq. 1). The extension of the pseudo-conservative form

for the anisotropic or viscoelastic cases should be further analysed

since the change of variable may depend on the physical parameters

while the isotropic purely elastic case requires the simple global

change of variables as shown in this study. Finally, in eq. (1), ρ is

the medium density, while �f and �σ0 are the external forces and the

initial stresses, respectively.

2.2 Spatial discretization

As is usual with FEMs (Zienkiewicz et al. 2005), we want to ap-

proximate the solution of eq. (1) by means of polynomial basis

functions defined in volume elements. The spatial discretization is

carried out with non-overlapping and conforming tetrahedra. We

adopt the nodal form of the DG-FEM formulation (Hesthaven &

Warburton 2008), assuming that the stress and velocity vectors are

approximated in the tetrahedral elements as follows

�̂vi (�x, t) =
di∑

j=1

�vi j (�x j , t) ϕi j (�x)

�̂σi (�x, t) =
di∑

j=1

�σi j (�x j , t) ϕi j (�x),
(4)

where i is the index of the element, �x is the spatial coordinates inside

the element, and t is the time. di is the number of nodes or degrees of

freedom (DOF) associated with the interpolating Lagrangian poly-

nomial basis function ϕij relative to the jth node located at position

�x j . The expressions of the Lagrangian basis functions are given

in Appendix A. �vi j and �σi j are the velocity and stress vectors, re-

spectively, evaluated at the jth node of the element. Although it is

not an intrinsic limitation, we have adopted here the same set of

basis functions for the interpolation of the velocity and the stress

components. In the following, the notation Pk refers to a spatial

discretization based on polynomial basis functions of degree k, and

a Pk element is a tetrahedron in which a Pk scheme is applied.

The number of DOF in a tetrahedral element is given by di =
(k + 1)(k + 2)(k + 3)/6. For instance, in a P0 element (Fig. 1a),

there is only one DOF (the stress and velocity are constant per ele-

ment), while in a P1 element (Fig. 1b), there are four DOF located

at the four vertices of the tetrahedron (the stress and velocity are

linearly interpolated). It is worth noting that the P0 scheme corre-

sponds to the case of the finite-volume method (BenJemaa et al.

2007, 2009; Brossier et al. 2008). For the quadratic approximation

order P2, one node is added at the middle of each edge of the

tetrahedron, leading to a total of 10 DOF per element (Fig. 1c).

The first step in the finite-element formulation is to obtain the

weak form of the elastodynamic system. To do so, we multiply

eq. (1) by a test function ϕir and integrate the system over the

volume of the element i. For the test function, we adopt the same

kind of function as used for the approximation of the solution. This

case corresponds to the standard Galerkin method and can be written

as

∫

Vi

ϕir ρ∂t �v dV =
∫

Vi

ϕir

∑

θ∈{x,y,z}
∂θ (Mθ �σ ) dV

∫

Vi

ϕir �∂t �σ dV =
∫

Vi

ϕir

∑

θ∈{x,y,z}
∂θ (Nθ �v) dV ∀r ∈ [1, di ],

(5)

where Vi is the volume of the tetrahedral element i. For the purpose

of clarity, we have omitted the external forces and stresses in (5).

Integration by parts of the right-hand side of (5) leads to

∫

Vi

ϕir ρ∂t �v dV = −
∫

Vi

∑

θ∈{x,y,z}
∂θϕir (Mθ �σ ) dV

+
∫

Si

ϕir

( ∑

θ∈{x,y,z}
Mθ nθ

)
�σ dS

∫

Vi

ϕir �∂t �σ dV = −
∫

Vi

∑

θ∈{x,y,z}
∂θϕir (Nθ �v) dV

+
∫

Si

ϕir

( ∑

θ∈{x,y,z}
Nθ nθ

)
�v dS,

(6)

with Si as the surface of the element i, and �n = (nx , ny, nz)
T as the

outward pointing unit normal vector with respect to the surface Si.

In the second term of the right-hand side of eq. (6), the fluxes of

the stress and velocity wavefields across the faces of the element

i appear. For evaluation of these fluxes, we adopt the centred flux

scheme for its non-dissipative property (Remaki 2000; BenJemaa

et al. 2009; Delcourte et al. 2009). Using eq. (4) and assuming con-

stant physical properties per element, eq. (6) can be approximated

Figure 1. (a) P0 element with one unique DOF. (b) P1 element with four DOF. (c) P2 element with 10 DOF.
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with

ρi

∫

Vi

ϕir ∂t �̂vi dV = −
∫

Vi

∑

θ∈{x,y,z}
∂θϕir (Mθ �̂σi ) dV

+ 1

2

∑

k∈Ni

∫

Sik

ϕir Pik( �̂σi + �̂σk) dS

�i

∫

Vi

ϕir ∂t �̂σi dV = −
∫

Vi

∑

θ∈{x,y,z}
∂θϕir (Nθ �̂vi ) dV

+ 1

2

∑

k∈Ni

∫

Sik

ϕir Qik(�̂vi + �̂vk) dS, (7)

with k ∈ Ni representing the elements k adjacent to the element i,

and Sik the face between elements i and k. P and Q are defined as

follows

Pik =
∑

θ∈{x,y,z}
nik θ Mθ

Qik =
∑

θ∈{x,y,z}
nik θ Nθ ,

where nik θ is the component along the θ axis of the unit vector

�nik of the face Sik that points from element i to element k. Eq. (7)

indicates that the computations of the stress and velocity wavefields

in one element require information from the directly neighbouring

elements. This illustrates clearly the local nature of DG-FEM. Using

the tensor product ⊗, we obtain the expression

ρi (I3 ⊗ Ki )∂t �vi = −
∑

θ∈{x,y,z}
(Mθ ⊗ Eiθ )�σi

+ 1

2

∑

k∈Ni

[
(Pik ⊗ Fik)�σi + (Pik ⊗ Gik)�σk

]

(�i ⊗ Ki )∂t �σi = −
∑

θ∈{x,y,z}
(Nθ ⊗ Eiθ )�vi

+ 1

2

∑

k∈Ni

[
(Qik ⊗ Fik)�vi + (Qik ⊗ Gik)�vk

]
, (8)

where I3 represents the identity matrix. In eq. (8), the vectors �vi

and �σi should be read as the collection of all nodal values of the

velocity and stress components in the element i. We now introduce

the mass matrix

(Ki )r j =
∫

Vi

ϕir ϕi j dV j, r ∈ [1, di ], (9)

the stiffness matrix

(Eiθ )r j =
∫

Vi

(∂θϕir ) ϕi j dV j, r ∈ [1, di ], (10)

with θ ∈ {x , y, z}, and the flux matrices

(Fik)r j =
∫

Sik

ϕir ϕi j dS j, r ∈ [1, di ] (11)

(Gik)r j =
∫

Sik

ϕir ϕk j dS r ∈ [1, di ] j ∈ [1, dk]. (12)

It is worth noting that in eq. (12), the DOF of elements i and k appear

(di and dk , respectively) indicating that the approximation orders

are totally decoupled from one element to another. Therefore, the

DG-FEM allows for varying approximation orders in the numerical

scheme. This feature is referred to as p-adaptivity. Moreover, given

an approximation order, these matrices are unique for all elements

(with a normalization according to the volume or surface of the

elements) and they can be computed before hand with appropriate

integration quadrature rules. The memory requirement is therefore

low, since only a collection of small matrices is needed according to

the possible combinations of approximation orders. The maximum

size of these matrices is (dmax × dmax) where dmax is the maximum

number of DOF per element and the number of matrices to store is

given by the square of the number of approximation orders mixed

in the numerical domain. Details regarding the computation of the

matrices are given in Appendix B. It should be mentioned that to

retrieve both the velocity and the stress components, eq. (8) requires

the computation of K−1
i , which can also be performed before hand.

Note that if we want to consider variations in the physical prop-

erties inside the elements, the pseudo-conservative form makes the

computation of flux much easier and computationally more efficient

than in the classical elastodynamic system. These properties come

from the fact that in the pseudo-conservative form, the physical

properties are located in the left-hand side of eq. (1). Therefore, no

modification of the stiffness and flux matrices nor additional terms

are needed in eq. (8) to take into account the variation of properties.

Only the mass matrix needs to be evaluated for each element and

for each physical property according to the expression

(Ki )r j =
∫

Vi

χi (�x) ϕir (�x) ϕi j (�x) dV j, r ∈ [1, di ], (13)

where χi (�x) represents the physical property (ρ i or one of the �i

components) varying inside the element.

2.3 Time discretization

For the time integration of eq. (8), we adopt a second-order explicit

leap-frog scheme that allows to compute alternatively the velocity

and the stress components between a half time step. Eq. (8) can be

written as

ρi (I3 ⊗ Ki )
�vi

n+ 1
2 − �vi

n− 1
2

�t
= −

∑

θ∈{x,y,z}
(Mθ ⊗ Eiθ )�σ n

i

+ 1

2

∑

k∈Ni

[
(Pik ⊗ Fik)�σ n

i + (Pik ⊗ Gik)�σ n
k

]

(�i ⊗ Ki )
�σi

n+1 − �σi
n

�t
= −

∑

θ∈{x,y,z}
(Nθ ⊗ Eiθ )�vn+ 1

2
i

+ 1

2

∑

k∈Ni

[
(Qik ⊗ Fik)�vn+ 1

2
i + (Qik ⊗ Gik)�vn+ 1

2
k

]
,

(14)

where the superscript n indicates the time step. We chose to apply

the definition of the time step as given by Käser et al. (2008), which

links the mesh width and time step as follows

�t < min
i

(
1

2ki + 1
· 2ri

VP i

)
, (15)

where ri is the radius of the sphere inscribed in the element indexed

by i , V Pi is the P-wave velocity in the element, and ki is the poly-

nomial degree used in the element. Eq. (15) is a heuristic stability

criterion that usually works well. However, there is no mathematical

proof for unstructured meshes that guarantees numerical stability.

3 C O M P U TAT I O NA L A S P E C T S

As mentioned in Section 2, the DG-FEM is a local method, and

therefore it is naturally suitable for parallel computing. In our im-

plementation, the parallelism relies on a domain-partitioning strat-

egy, assigning one subdomain to one CPU. This corresponds to the

C© 2010 The Authors, GJI, 183, 941–962
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Figure 2. Speed-up observed when the number of MPI processes is in-

creased from 1 to 256 for modelling with a mesh of 1.8 million P2 elements.

The ideal speed-up is plotted with a dashed line, the observed speed-up with

a continuous line. These values were observed on a computing platform

with bi-processor quad core Opteron 2.3 GHz CPUs interconnected with

Infiniband at 20 Gb s−1.

single program mutiple data (SPMD) architecture, which means

that there is only one program and each CPU uses the same exe-

cutable to work on different parts of the 3-D mesh. Communication

between the subdomains is performed with the message passing

interface (MPI) parallel environment (Aoyama & Nakano 1999),

which allows for applications to run on distributed memory ma-

chines. For efficient load balancing among the CPUs, the mesh is

divided with the partitioner METIS (Karypis & Kumar 1998), to

balance the number of elements in the subdomains, and to minimize

the number of adjacent elements between the subdomains. These

two criteria are crucial for the efficiency of the parallelism on large-

scale numerical simulations. Fig. 2 shows the observed speed-up

(i.e. the ratio between the computation time with one CPU, and the

computation time with N CPUs) when the number of MPI processes

is increased from 1 to 256, for strong scaling calculations on a fixed

mesh of 1.8 million P2 elements. This figure shows good efficiency

of the parallelism, of around 80 per cent.

In our formulation, another key point is the time step, which is

common for all of the subdomains. The time step should satisfy

the stability condition given in eq. (15) for every element. Conse-

quently, the element with the smallest time step imposes its time

step on all of the subdomains. We should mention here a more elab-

orate approach with local time stepping (Dumbser et al. 2007) that

allows for elements to have their own time step independent of the

others. Nevertheless, the p-adaptivity offered by DG-FEM allows

mitigation of the computational burden resulting from the common

time step. This point is detailed in section 6. From a technical point

of view, we implemented the method in the FORTRAN 90 language

without the use of specific mathematical libraries like Basic Lin-

ear Algebra Subroutines (BLAS). Indeed, the matrix products in

the DG-FEM formulation involve relatively small matrices (typi-

cally 10 × 10 in P2). Therefore, we did not experience substantial

gains when calling mathematical libraries, as already observed by

Komatitsch et al. (2008) for SEM.

4 S O U RC E E XC I TAT I O N A N D

B O U N DA RY C O N D I T I O N S

We consider here the implementation of a point source in the DG-

FEM, and we detail two types of boundary conditions that are

generally encountered in seismic modelling: the free surface, and

the absorbing boundary conditions. Special attention is given to

the latter, based on the CPML (Drossaert & Giannopoulos 2007;

Komatitsch & Martin 2007). To our knowedge, this point has not

been studied intensely in a DG-FEM framework.

4.1 Source excitation

The excitation of a point source is projected onto the nodes of the

element that contains the source as follows

�sn
i = �ϕi (�xs)

∑di

j=1 ϕi j (�xs)
∫

Vi
ϕi j (�x)dV

s(t), (16)

with �sn
i the nodal values vector associated to the excited component,

t = n�t, �xs the position of the point source and s(t) the source

function. Eq. (16) gives the source term that should be added to

the right-hand side of eq. (14) for the required components. It should

be noticed that this term is only applied to the element containing the

source. Depending on the approximation order, the spatial support of

the source varies. Fig. 3(a) shows that the support of a P0 element

is actually the whole volume of the element (represented on the

cross-section with a homogeneous white area). In this case, no

precise localization of the source inside the element is possible due

to the constant piecewise interpolation approximation. On the other

hand, in a P1 element (Fig. 3b), the spatial support of the source

is linear and allows for a rough localization of the source. In a P2

Figure 3. (a) Cross-section of the mesh near the source position, indicated with a yellow star in the xy plane. This view represents the spatial support of the

stress component in a P0 element containing the point source. (b) Same as (a) with a P1 element. (c) Same as (a) with a P2 element.

C© 2010 The Authors, GJI, 183, 941–962
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element (Fig. 3c), the quadratic spatial support tends to resemble

the expected Dirac in space close to the source position. It should

be noted that the limitations concerning source localization also

apply to the solution extraction at the receivers, according to the

approximation order of the elements containing the receivers.

4.2 Free surface condition

For the element faces located on the free surface, we use an explicit

condition by changing the flux expression locally. This is carried out

with the concept of virtual elements, which are exactly symmetric to

the elements located on the free surface. Inside the virtual elements,

we impose a velocity wavefield that is identical to the wavefield of

the corresponding inner elements, and we impose an opposite stress

wavefield. As a result, the velocity is seen as continuous across the

free surface, while the stress is equal to zero on the faces related to

the free surface.

4.3 Absorbing boundary condition

For simulations in an infinite medium, an absorbing boundary con-

dition needs to be applied at the edges of the numerical model. An

efficient way to mimic such an infinite medium can be achieved

with PMLs, which was initially developed by Berenger (1994) for

electromagnetics, and adapted for elastodynamics by Chew & Liu

(1996). PMLs are anisotropic absorbing layers that are added at the

periphery of the numerical model. The classical PML formulation is

based on splitting of the elastodynamic equations. In the following,

we use a new kind of PML, known as CPML, which does not require

split terms. The CPML originated from Roden & Gedney (2000) for

electromagnetics and was applied by Komatitsch & Martin (2007)

and Drossaert & Giannopoulos (2007) to the elastodynamic system.

CPML is based on an idea of Kuzuoglu & Mittra (1996), who ob-

tained a strictly causal form of PML by adding some parameters in

the standard damping function of Berenger (1994), which enhanced

the absorption of waves arriving at the boundaries of the model with

grazing incidence angles.

4.3.1 CPML formulation

Inside the CPML, a damping function is applied only onto the spatial

derivative perpendicular to the boundary. In the CPML formulation,

the damping function is defined in the frequency domain as follows

sθ = κθ + dθ

αθ + iω
∀θ ∈ {x, y, z}, (17)

with angular frequency ω and coefficients κθ ≥ 1 and αθ ≥ 0. The

damping profile dθ varies from 0 at the entrance of the layer, up to

a maximum real value dθ max at the end (Collino & Tsogka 2001)

such that

dθ = dθ max

( δθ

Lcpml

)2

, (18)

and

dθ max = −3VP

log(Rcoeff )

2Lcpml

∀θ ∈ {x, y, z}, (19)

with δθ as the depth of the element barycentre inside the CPML,

Lcpml the thickness of the absorbing layer, and Rcoeff the theoretical

reflection coefficient. For all of the tests presented in the following,

we chose Rcoeff = 0.1 per cent. αθ is a coefficient that varies from a

maximum value (αθmax = π f0) at the entrance of the CPML, to zero

at its end. If κθ = 1 and αθ = 0, the classical PML formulation is

obtained. In the CPML, the spatial derivatives are replaced by

∂θ̃ → 1

κθ

∂θ + ζθ ∗ ∂θ ∀θ ∈ {x, y, z}, (20)

with

ζθ (t) = − dθ

κ2
θ

H (t)e−(dθ κθ +αθ )t ∀θ ∈ {x, y, z}, (21)

where H(t) denotes the Heaviside distribution. Roden & Gedney

(2000) have demonstrated that the time convolution in eq. (20) can

be performed in a recursive way using memory variables defined by

ψθ = ζθ ∗ ∂θ ∀θ ∈ {x, y, z}. (22)

ψ θ represents a memory variable in the sense that it is updated at

each time step. Komatitsch & Martin (2007) showed that the term

κθ has a negligible effect on the absorbing abilities, and it can be

set to 1. If we take κθ = 1 and derive eq. (22) using eq. (21), we get

∂tψθ = −dθ∂θ − (dθ + αθ )ψθ ∀θ ∈ {x, y, z}. (23)

We can introduce the memory variables into the initial elastody-

namic system of eq. (1) with the definition of vectors

�ψθ (�v) = [ψθ (vx ) ψθ (vy) ψθ (vz)]
T

�ψθ (�σ ) = [ψθ (τ ) ψθ (τ ′) ψθ (τ ′′) ψθ (σxy) ψθ (σxz) ψθ (σyz)]
T

∀θ ∈ {x, y, z}. (24)

If we apply the change of variables in eq. (20), eq. (1) becomes

ρ∂t �v =
∑

θ∈{x,y,z}
∂θ (Mθ �σ ) +

∑

θ∈{x,y,z}
Mθ

�ψθ (�σ )

�∂t �σ =
∑

θ∈{x,y,z}
∂θ (Nθ �v) +

∑

θ∈{x,y,z}
Nθ

�ψθ (�v). (25)

Eq. (25) is the initial elastodynamic system augmented by the mem-

ory variables on the right-hand side. In combination, another extra

system dealing with the memory variables is

∂t
�ψθ (�σ ) = −dθ∂θ (�σ ) − (dθ + αθ ) �ψθ (�σ )

∂t
�ψθ (�v) = −dθ∂θ (�v) − (dθ + αθ ) �ψθ (�v) ∀θ ∈ {x, y, z}. (26)

The collection of memory variables associated with each element

located in the CPMLs is made of 22 memory variables per DOF.

These variables correspond to the 22 spatial derivatives involved in

eq. (1). If we apply the DG-FEM formulation as presented in the

previous section to eqs (25) and (26), we get

ρi (I3 ⊗ Ki )
�vi

n+ 1
2 − �vi

n− 1
2

�t
= −

∑

θ∈{x,y,z}
(Mθ ⊗ Eiθ )�σ n

i

+ 1

2

∑

k∈Ni

[
(Pik ⊗ Fik)�σ n

i + (Pik ⊗ Gik)�σ n
k

]

+ (I3 ⊗ Ki )
∑

θ∈{x,y,z}
Mθ

�ψθ

(
�σ n

i

)

(�i ⊗ Ki )
�σi

n+1 − �σi
n

�t
= −

∑

θ∈{x,y,z}
(Nθ ⊗ Eiθ )�vn+ 1

2
i

+ 1

2

∑

k∈Ni

[
(Qik ⊗ Fik)�vn+ 1

2
i + (Qik ⊗ Gik)�vn+ 1

2
k

]

+ (I3 ⊗ Ki )
∑

θ∈{x,y,z}
Nθ

�ψθ

(
�vn+ 1

2
i

)
,

(27)
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incombination with the memory variable system

(I3 ⊗ Ki )
�ψθ

(
�σ n

i

)
− �ψθ

(
�σ n−1

i

)

�t
= di θ (I6 ⊗ Eiθ )�σ n−1

i

− di θ

1

2

∑

k∈Ni

nik θ

[
(I6 ⊗ Fik)�σ n−1

i + (I6 ⊗ Gik)�σ n−1
k

]

− (I3 ⊗ Ki )(di θ + αi θ ) �ψθ

(
�σ n−1

i

)

(I3 ⊗ Ki )

�ψθ

(
�vn+ 1

2
i

)
− �ψθ

(
�vn− 1

2
i

)

�t
=

∑

θ∈{x,y,z}
di θ (I3 ⊗ Eiθ )�vn− 1

2
i

− di θ

1

2

∑

k∈Ni

nik θ

[
(I3 ⊗ Fik)�vn− 1

2
i + (I3 ⊗ Gik)�vn− 1

2
k

]

− (I3 ⊗ Ki )(di θ + αi θ ) �ψθ

(
�vn− 1

2
i

)
∀θ ∈ {x, y, z}. (28)

Eqs (27) and (28) indicate that p-adaptivity is also supported in the

CPMLs. At the end of the CPMLs, we apply a simple free surface

condition as explained in the previous section.

4.3.2 Validation tests

To validate the efficiency of the CPML, we present some simula-

tions of wave propagation in a homogeneous, isotropic and purely

elastic medium. The model size is 8 km × 8 km × 8 km, and the

medium properties are: VP = 4000 m s−1, VS = 2310 m s−1 and ρ =
2000 kg m−3. An explosive source is placed at coordinates (xs =
2000 m, ys = 2000 m, zs = 4000 m) and a line of receivers is

located at coordinates (3000 m ≤ xr ≤ 6000 m, yr = 2000 m,

zr = 4000 m) with 500 m between receivers. The conditions of the

tests are particularly severe, since the source and the receivers are

located close to the CPMLs (at a distance of 250 m), thus favour-

ing grazing waves. The source signature is a Ricker wavelet with

a dominant frequency of 3 Hz and a maximum frequency of about

7.5 Hz. Due to the explosive source, only P-wave is generated

and the minimum wavelength is about 533 m. The mesh contains

945 477 tedrahedra with an average edge of 175 m, making a dis-

cretization of about 3 elements per λmin. Figs 4(c) and (d) show

the results obtained with the P2 interpolation and CPMLs of 10-

elements width (Lcpml = 1750 m) at all edges of the model. With the

standard scale, no reflection can be seen from the CPMLs. When the

amplitude is magnified by a factor of 100, some spurious reflections

are visible. This observation is in agreement with the theoretical re-

flection coefficient (Rcoeff = 0.1 per cent) in eq. (19). Fig. 5(a)

allows to compare the seismograms computed with CPMLs of 10-

elements width and the seismograms computed in a larger model

without reflection in the time window.

As shown by Collino & Tsogka (2001), the thickness of the

absorbing layer plays an important role in the absorption efficiency.

In Figs 4(a) and (b), the same test was performed with CPMLs

of five-elements width (Lcpml = 875 m) at all edges of the model.

Figure 4. Snapshots at 1.6 s of the velocity component vx in the plane xy that contains the source location. CPMLs of five-elements width are applied at all

edges of the model. The modelling was carried out with P2 interpolation. White lines, the limits of the CPMLs; black cross, the position of the source. (a) Real

amplitude. (b) Amplitude magnified by a factor of 100. (c) and (d) Same as (a) and (b) with CPMLs of 10-elements width.
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Figure 5. (a) Seismograms of the velocity component vx. The amplitude of each seismogram is normalized. Black continuous line, numerical solution in large

model without reflection in the time window; dashed line, numerical solution with 10-elements width CPMLs; grey line, residuals magnified by a factor of 10.

(b) Same as (a) with 10-elements width M-CPMLs.

Compared to Figs 4(c) and (d), the amplitude of the reflections have

the same order of magnitude. Nevertheless, in the upper and left

parts of the model, some areas with a strong amplitude appear close

to the edges. These numerical instabilities arise at the outer edges

of the CPMLs, and they expand over the complete model during

the simulations. Instabilities of PML in long time simulations have

been studied in electromagnetics (Abarbanel et al. 2002; Bécache

et al. 2004). In the following, we present a numerical stability study

of CPML combined with DG-FEM for the elastodynamics. The

results are shown in Fig. 6, with snapshots at long times for CPMLs

of 5- and 10-elements widths. In these snapshots, the instabilities

arise at the four corners of the model (at 20 s for the 10-elements

width CPML). Tests with larger CPMLs (not shown) demonstrate

that when the CPML width is 20 elements, these instabilities do

not appear. Such instabilities were experienced by Meza-Fajardo &

Papageorgiou (2008) with standard PML, for an isotropic medium.

These authors proposed the application of an additional damping

in the PML, onto the directions parallel to the layer, leading to a

multiaxial PML (M-PML). Fig. 7 is equivalent to Fig. 6, instead

that 10 per cent of the damping profile defined in eq. (18) has been

added onto the directions parallel to the CPMLs (in the latter named

M-CPMLs). As a result, instabilities do not appear when the CPML

width is at least 10 elements while the efficiency of the absorption

is preserved as shown by Fig. 5(b) with similar residuals compared

to Fig. 5(a).

4.3.3 Saving computation time and memory

Table 1 gives the computation times for updating the velocity and

stress wavefields in one element for one time step, for different ap-

proximation orders, without or with the update of the CPML mem-

ory variables (i.e. elements located outside or inside the CPMLs).

These computation times illustrate the significant increase with re-

spect to the approximation order, and they allow an evaluation of the

additional costs of the CPML memory variables computation from

40 per cent to 60 per cent. The effects of this additionnal cost have

to be analysed in the context of a domain-partitioning strategy. As

introduced in Section 3, the mesh is divided into subdomains, using

a partitioner. Fig. 8(a) shows the layout of the subdomains that were

obtained with the partitioner METIS (Karypis & Kumar 1998) along

the xy plane used in the previous validation tests. The mesh was di-

vided into 32 partitions, although only a few of these are visible on

the cross-section in Fig. 8(a). We used an unweighted partitioning,

meaning that each partition contains approximately the same num-

ber of elements. The subdomains, partially located in the CPMLs,

contain different numbers of CPML elements. In large simulations,

some subdomains are totally located inside the CPMLs, and some

others outside the CPMLs. In such a case, the extra computation

costs of the subdomains located in the absorbing layers penalize

the whole simulation. Indeed, most of the subdomains spend 40–

60 per cent of the time just waiting for the subdomains located in

the CPMLs to complete the computations at each time step. For a

better load balancing, we propose to benefit from the p-adaptivity of

DG-FEM, using lower approximation orders in the CPMLs. Indeed,

inside the absorbing layers, we do not need a specific accuracy, and

consequently the approximation order can be decreased. Table 1 in-

dicates that such a mixed numerical scheme is advantageous, since

the computation time required for a P0 or P1 element located in

the CPML is shorter than the computation time of a standard P2

element. Fig. 8(b) shows the approximation order per element when

P1 is used in the CPMLs and P2 in the rest of the medium. We

should note here that the interface between these two areas is not

strictly aligned to a cartesian axis, and has some irregularities due

to the shape of the tetrahedra. Although it is possible to constrain

the alignment of the element faces parallel to the CPML limits, we

did not observe significant differences in the absorption efficiency

whether the faces are aligned or not.

Fig. 9(a) shows the seismograms computed when the modelling

was carried out with P2 inside the medium and P1 in the CPMLs.

Absorbing layers of 10-elements width are applied at all edges of

the model. For comparison, Fig. 9(b) shows the results obtained

with P0 in the CPMLs and P2 for the rest of the medium. In

this case, the spurious reflections have significant amplitudes. The

snaphots (not presented here) reveal a large number of artefacts

both in the CPMLs and in the medium. These artefacts make it

impossible to use these seismograms for practical applications. On

the other hand, the seismograms computed with the mixed scheme

P2/P1 show weak artefacts, and are reasonably comparable with the
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Figure 6. (a), (b) and (c) Snapshots of the velocity component vx in the plane xy that contains the source location at 10, 20 and 30 s, respectively. The amplitude

is plotted without any magnification factor. The modelling was carried out with P2 interpolation. CPMLs with five-elements width are applied at all edges

of the model. White lines, the limits of the CPMLs; black cross, the position of the source. (d), (e) and (f) Same as (a), (b) and (c), respectively, except with

CPMLs of 10-elements width.

seismograms obtained with complete P2 modelling (compare

Figs 9a and 5a). Therefore, taking into account that the compu-

tation time and the memory consumption of the P2/P1 simulation

are nearly half of those required with the full P2 modelling, we

can conclude that this mixed numerical scheme is of interest. It

should be noticed that it is possible to adopt a weighted partitioning

approach to overcome partly load balancing issues. Nevertheless,

it does not prevent from using our mixed scheme approach which

allows a significant reduction of the number of CPML memory vari-

ables. Actually, our strategy is totally compatible with a weighted

partitioning and the combination of both would be more efficient

than using only one of them. We should also stress that the saving in

CPU time and memory provided with this kind of low-cost absorb-

ing boundary condition is crucial for large 3-D simulations, and this

becomes a must in the context of 3-D seismic imaging applications

that require a lot of forward problems, such as FWI.

5 A C C U R A C Y O F D G - F E M W I T H

T E T R A H E D R A L M E S H E S

There are a variety of studies in the literature concerning the dis-

persive and dissipative properties of DG-FEM with reference to

wave-propagation problems. To cite but a few examples: Ainsworth

et al. (2006) provided a theoretical study for the 1-D case; Basabe

et al. (2008) analysed the effects of basis functions on 2-D periodic

and regular quadrilateral meshes; and Käser et al. (2008) discussed

the convergence of the DG-FEM combined with ADER time inte-

gration and 3-D tetrahedral meshes. More related to our particular

concern here, Delcourte et al. (2009) provided a convergence anal-

ysis of the DG-FEM with a centred flux scheme and tetrahedral

meshes for elastodynamics. They demonstrated the sensitivity of

the DG-FEM to the mesh quality, and they proved that the conver-

gence is limited by the second-order time integration we have used

in this study, despite the order of the basis function.

5.1 Convergence study

We present a convergence analysis of the DG-FEM P2, P1 and P0

schemes following the approach of Delcourte et al. (2009). The

analysis is based on the propagation of an eigenmode in a unit cube

with a free surface condition applied at all faces. The properties

of the cube are VP = 1 m s−1, VS = 0.5 m s−1 and ρ = 1 kg m−3.

According to these parameters, the solution of the eigenmode (1,1,1)
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Figure 7. (a), (b) and (c) Snapshots of the velocity component vx in the plane xy that contains the source location at 10, 20 and 30 s, respectively. The amplitude

is plotted without any magnification factor. The modelling was carried out with P2 interpolation. M-CPMLs with five-elements width and 10 per cent of the

damping profile added onto the directions parallel to the layer were applied at all edges of the model. White lines, the limits of the M-CPMLs; black cross, the

position of the source. (d), (e) and (f) Same as (a), (b) and (c), respectively, except with M-CPMLs of 10-elements width.

Table 1. Computation times for updating the velocity and stress wave-

fields in one element for one time step. These values correspond to average

computation times for a computing platform with bi-processor quad core

Opteron 2.3 GHz CPUs interconnected with Infiniband 20 at Gb s−1.

Approximation Element outside Element inside

order CPML (µs) CPML (µs)

P0 2.6 3.6

P1 5.0 8.3

P2 21.1 29.9

is given by

vx = cos(πx) [sin(πy) − sin(π z)] cos(�t)

vy = cos(πy) [sin(π z) − sin(πx)] cos(�t)

vz = cos(π z) [sin(πx) − sin(πy)] cos(�t)

σxx = −A sin(πx) [sin(πy) − sin(π z)] sin(�t)

σyy = −A sin(πy) [sin(π z) − sin(πx)] sin(�t)

σzz = −A sin(π z) [sin(πx) − sin(πy)] sin(�t)

σxy = σxz = σyz = 0,
(29)

where A = 1/
√

2 and � = π/
√

2. In order to assess the con-

vergence rate of the method, we made several tests with different

unstructured tetrahedral meshes with the characteristics summa-

rized in Table 2. The initial conditions are imposed at each node

of the elements by setting the velocities at t = 0 and the stresses

at t =�t/2 following eq. (29). We place a bunch of receivers ac-

cording to a cartesian grid that matches the size of the cube. The

spacing between receivers is 0.1 m, making a total number of 1331

receivers (11 × 11 × 11). At each receiver, a sinusoidal signal with

a period of T = 2
√

2s should be observed. This monochromatic

signal corresponds to the propagation of P-waves across the cube

that are continuously reflected at the cube faces. Consequently, we

can establish a relationship between the simulation time and the

propagated distance. In the Fig. 10(a), we present the normalized

rms error between the analytical and numerical solutions at t =
5T and at t = 50T , corresponding to a propagation of 5 and 50

wavelengths, respectively. We can observe that no convergence is

achieved with P0 while a second-order convergence is observed for

both P1 and P2 at t = 5T . As expected, an increase of the error

is seen at longer times, resulting from the accumulation of errors

with time iterations. At t = 50T , a second-order convergence is

still observed for P1 while the convergence of P2 becomes more
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Figure 8. (a) Layout of the subdomains obtained with the partitioner METIS (Karypis & Kumar 1998) along the xy plane that contains the source location.

Grey lines, the limits of the CPMLs. The mesh was divided into 32 partitions, although only a few of these are visible on this cross-section. (b) View of the

approximation order per element along the same plane. Black, the P2 elements; white, the P1 elements.

Figure 9. (a) Seismograms of the velocity component vx. The amplitude of each seismogram is normalized. The modelling is done with P1 in the CPMLs

and P2 inside the medium. Black continuous line, numerical solution in large model without reflection in the time window; dashed line, numerical solution

with 10-elements width CPMLs; grey line, residuals magnified by a factor of 10. (b) Same as (a) except the modelling is done with P0 in the CPMLs and P2

inside the medium.

Table 2. Average edge length, minimum and maximum insphere radius and number of elements of the unstructured

tetrahedral meshes used for the convergence study.

Mesh 1 2 3 4 5 6

Average edge (m) 0.19 0.12 0.08 0.05 0.04 0.03

Min. insphere radius (m) 0.0203 0.0132 0.0078 0.0048 0.0030 0.0019

Max. insphere radius (m) 0.0486 0.0304 0.0211 0.0155 0.0117 0.0087

Number of elements 1561 5357 17 932 49 822 154 297 388 589

erratic. The seismograms of Figs 11(a) and (a) represent the vx com-

ponent observed at short and long times, respectively. These seis-

mograms have been recorded at the position (x = 0 m, y = 0 m, z =
0.5 m) with the mesh # 4. At short times, we can see a good match

between the numerical and analytical solutions for both P1 and P2

schemes. Concerning the P0 scheme, we can notice a strong distor-

tion of the sinusoidal signal with a apparent period that is shorter

than the analytical one. We can conclude that the P0 scheme does

not provide accurate results with unstructured tetrahedral meshes.

At long times, the agreement is still good for P2 (thus explaining

the slow convergence observed when using finer meshes) but we

can observe a strong delay for the P1 scheme. The delay is reduced

when using finer meshes as indicated by the convergence curve in

Fig. 10(a). In terms of precision and efficiency, the gain from the

P2 scheme compared with the P1 scheme can be evaluated from

Fig. 10(b). For the same level of precision, the computation time of

the P2 modelling is nearly two orders of magnitude lower than the

computation time of the P1 modelling.
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Figure 10. (a) Root mean square error between the analytical and numerical solutions versus the inverse of the maximum insphere radius r. Black dashed line,

the error against the P0 solution at t = 5T ; black continuous line, the error against P0 at t = 50T ; red dashed line, the error against the P1 solution at t = 5T ;

red continuous line, the error against P1 at t = 50T ; blue dashed line, the error against the P2 solution at t = 5T ; blue continuous line, the error against P2

at t = 50T ; grey curve, second-order slope. (b) Same as (a) except the root mean square error is plotted versus the elapsed computation time. The tests have

been performed with 32 CPUs on a computing platform with bi-processor quad core Opteron 2.3 GHz CPUs interconnected with Infiniband at 20 Gb s−1.

Figure 11. (a). Seismograms of velocity component vx computed with the P2, P1 and P0 schemes for t ∈ [0, 3 T ]. Continuous line, the DG-FEM solution;

dashed line, the analytical solution. (b) Same as (a) for t ∈ [47T , 50T ].

5.2 Accurate modelling of surface waves

Accurate modelling of surfaces wave is crucial for seismological

studies, such as for the prediction of site effects or FWI of land

seismic data, where the receivers are usually located on the free

surface. For simple geometries, some analytical solutions exist. The

propagation of waves along the surface of an elastic half space was

discussed by Lamb (1904) for a force located on the surface, and an

analytical solution was defined by Garvin (1956) for the buried line-

source problem. Nevertheless, in the case of complex topographies,

a numerical method needs to be used. For this, a method suitable

for unstructured meshes has major advantages. In the following,

for validation purposes, we consider a homogeneous, isotropic and

purely elastic medium with a planar free surface, and we adopt

the experimental set-up defined in the WP1_HHS1 test case of the

SPICE test code validation project (Moczo et al. 2005). The model

dimensions are 20 km × 20 km × 10 km in the directions x, y

and z, respectively. The physical properties are given by VP = 6000

m s−1, VS = 3464 m s−1 and ρ = 2700 kg m−3. The source is a point

dislocation with the only non-zero moment tensor component Mxy.

The moment-rate time history is given by

Mxy(t) = M0

t

T 2
exp

(
− t

T

)
,

with M0 = 1018 Nm and T = 0.1 s. Considering a maximum fre-

quency of 5 Hz, the minimum wavelength is 693 m. The source and

receiver locations are given in Table 3. The distance between the

source and the receivers varies from 1 to 16 λmin. We performed

the computation with the mixed scheme, with P2 elements in the

medium and P1 elements in the CPMLs. Absorbing layers were

applied at all edges of the model, except at the top, where a free

surface condition was used. Figs 12(a) and (b) allow a comparison

of the seismograms of the components vx and vz, respectively, ob-

tained with DG-FEM and with the reflectivity method (Bouchon

1981; Coutant 1989). All of these seismograms were filtered be-

tween 0.13 and 5 Hz. With an average mesh spacing of 3 elements

per wavelength, a good match is seen between the analytical and

numerical solutions for all of the traces. Exceptions are found for
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Table 3. Source and receiver locations for the planar free-surface

modelling.

Type X (m) Y (m) Z (m)

Source 0 0 –693

Receiver #1 0 693 0

Receiver #2 0 5543 0

Receiver #3 0 10 932 0

Receiver #4 490 490 0

Receiver #5 3919 3919 0

Receiver #6 7348 7348 0

Receiver #7 577 384 0

Receiver #8 4612 3075 0

Receiver #9 8647 5764 0

the component vz in traces #1, 2 and 3, where the DG-FEM fails to

reproduce strictly null signals, but exhibits weak residuals. These

residuals might be due to the spatial support of the source, which

does not coincide with a pure Dirac in space, as depicted in Fig. 3(c).

6 H P - A DA P T I V I T Y

6.1 Two-step refinement approach

One of the most interesting aspects of the DG-FEM is the possibil-

ity to mix approximation orders without any special efforts. This

feature relies on the local support of the basis functions, which are

discontinuous between the elements, as was introduced in Section 2,

and is referred to as p-adaptivity. When combined with mesh re-

finement, this method becomes hp-adaptive. As in the initial study

of Babuska & Suri (1990), hp-adaptive FEMs associated with a

posteriori error estimates have gained a lot of interest due to the

exponential rates of convergence seen with the correct combination

of h- and p- refinements. In the present study, we propose to define a

simple a priori error estimate to predict the required approximation

order for each element. Our approach is based on two major steps.

The first refers to the mesh construction, with the intention to build

a tetrahedral mesh that is locally adapted to the media properties.

Initially, a mesh is generated that roughly satisfies the discretization

required by the target approximation order. At the very beginning

of the procedure, the mesh can even be regular. Afterwards, the el-

ements are checked against the physical properties of the medium,

and the list of elements that need to be refined is used for the next

iteration. The process is repeated until the list of elements to refine

is empty. We used to build and refine our meshes with the tool

TETGEN (Si & Gärtner 2005) which allows to specify for each

element the maximum authorized volume. To compute the optimal

volume for each element, we usually define a maximum ratio be-

tween the insphere radius and the wavelength and then we evaluate

the corresponding volume of an equilateral tetrahedron. Given the

complexity of the medium to be discretized, tetrahedral mesh gen-

erators can produce ill-shaped tetrahedra even if quality criteria are

used. A common practice is to limit the aspect ratio, which is defined

by the ratio between the maximum side length and the minimum

height of the elements. Nevertheless, despite robust algorithms,

like the Delaunay refinement algorithm of Shewchuk (1998), some

almost flat elements can be present at the end of the refinement

process, which are known as slivers. Besides these slivers, another

critical phenomenon can occur where there are abrupt contrasts in

the physical properties. In these situations, the refinement algorithm

might not be able to perform the optimal discretization. This occurs

when the size of the elements cannot vary as fast as the medium

properties for geometrical reasons. In that case, some elements are

necessarily undersized. Consequently, the construction of an ideal

mesh is a difficult task, and a large range of element sizes is often

seen in constrained meshes. To mitigate the negative effects of the

badly sized elements, we propose to downgrade these elements with

lower approximation orders. This is done in the second step of our

refinement approach, which is devoted to the p-adaptivity.

6.2 Numerical results

Our intention here, is to illustrate the benefits of the p-adaptivity.

For that purpose, we consider the case of the eigenmode propa-

gation in the unit cube presented in Section 5.1 and introduce a

refined area in meshes #1, 2 and 3 in order to create artificially

a large range of element sizes. We obtain the new meshes #1′, 2′

and 3′ by defining a cubic zone of size 0.1 m × 0.1 m × 0.1 m

in the middle of the model where the average edge length is ten

times smaller than h, the average edge length in the surrounding

mesh. The characteristics of the meshes can be found in Table 4.

The ratio between the maximum and minimum insphere radius have

been significantly increased compared to the uniform meshes used

Figure 12. (a) Seismograms of the velocity component vx computed for the planar free-surface modelling of the SPICE test code validation project. Continuous

line, the analytical solution provided by the reflectivity method; dashed line, the DG-FEM solution. (b) Same as (a) with the component vz.
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Table 4. Minimum and maximum insphere radius and number of elements

of the unstructured tetrahedral meshes with a refined area.

Mesh 1′ 2′ 3′

Min. insphere radius (m) 0.0017 0.0010 0.0007

Max. insphere radius (m) 0.0425 0.0292 0.0198

Number of elements 6952 26 374 82 668

previously (compare with Table 2). The cross section of the mesh

#3′ in Fig. 13(a). allows to see the refined area in the center of the

model. For the p-adaptivity, we adopted the following criteria: if the

insphere radius is comprised between h/30 and h/10, the approxi-

mation order is downgraded to P1, and if the radius is smaller than

h/30, the approximation order is downgraded to P0. This strategy

is depicted in Fig. 14, where for each approximation order, the time

step evaluated with eq. (15) versus the insphere radius of one sin-

gle equilateral tetrahedron is shown. When applying these criteria,

the time step does not decrease uniformly according to the size

of the element. Instead, two jumps (Fig. 14, dashed line) allow the

time step to increase despite the reduction in the element size. These

jumps are due to the decrease in the approximation order from P2 to

P1, and from P1 to P0. According to the adopted criteria, we obtain

the distribution of approximation orders indicated in Table 5. The

number of downgraded elements is quite important and represent

for all meshes approximatively 60 per cent. Nevertheless, the down-

graded elements are mostly located in the vicinity of the refined area

as shown in Fig. 13(b) and represent in average only 3 per cent of

the volume of the model. Moreover, despite the fact that the P0

scheme does not provide accurate results, the introduction of such

elements allows a drastic increase of the time step by a factor of

five. The impact of the downgraded elements can be analysed with

Fig. 15(a) showing the normalized rms error between the analytical,

the P2 and the p-adaptive numerical solutions at t = 50T . Actually,

the p-adaptive scheme exhibits an error which is comparable to the

complete P2 modelling except for the mesh #3′, where we observe

a particular behavior of the P2 scheme with an increase of the error

despite the mesh spacing has been reduced. This indicates that a

large distribution of element sizes has an effect on the convergence

on the P2 scheme. On the contrary, the p-adaptive scheme seems

Figure 14. Time step versus the insphere radius of one single equilateral

tetrahedron computed with eq. (15), for different approximation orders.

Grey curve, P0; blue curve, P1; red curve, P2; dashed line, the p-adaptive

approach used for mesh #3′.

less sensitive and preserves the second-order convergence. From a

computational point of view, the benefit of the approach appears

in Fig. 15(b) where the error is represented versus the computa-

tion time. For the same computation time, the p-adaptive approach

shows a better misfit than the full P2 modelling, as indicated by

the position of the p-adaptive curve at the left of the P2 curve. The

hp-refinement provided by DG-FEM is particularly interesting in

the case of complex refined meshes where small elements are gen-

erally produced by tetrahedral mesh generators. The efficiency of

our approach in such cases is illustrated in the next section.

7 A P P L I C AT I O N T O C O M P L E X M E D I U M

We here demonstrate the potential of DG-FEM with hp-adaptivity

in a challenging seismological model, where the computation of

the surface waves is critical for the prediction of site effects. These

phenomena arise when the ground motion caused by an earthquake

Figure 13. (a) View of the mesh in the xy plane at z = 0.5 m, showing the size of the elements (insphere radius) in the mesh #3′. (b) Same as (a) with the

approximation order associated with each element. White, P2 elements; grey, P1 elements; black, P0 elements.
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Table 5. Number of elements per approximation orders and time steps for the complete P2 and the

p-adaptive modelling.

Nb P0 elements Nb P1 elements Nb P2 elements Time step

Full P2 scheme with mesh 1′ 0 0 6952 0.0006745

p-adaptive scheme with mesh 1′ 2520 1606 2826 0.0033372

Full P2 scheme with mesh 2′ 0 0 26 374 0.0004187

p-adaptive scheme with mesh 2′ 10 883 5849 9642 0.0020934

Full P2 scheme with mesh 3′ 0 0 82 668 0.0002737

p-adaptive scheme with mesh 3′ 34 176 17 483 31 009 0.0013687

Figure 15. (a) Root mean square error between the analytical and numerical solutions versus the inverse of the maximum insphere radius r at t = 50T . Blue

line, the error against the P2 solution; pink line, the error against the p-adaptive solution; grey curve, second-order slope. (b) Same as (a) except the root mean

square error is plotted versus the elapsed computation time. The tests have been performed with 32 CPUs on a computing platform with bi-processor quad

core Opteron 2.3 GHz CPUs interconnected with Infiniband at 20 Gb s−1.

is amplified by geological structures. Site effects can be related to a

sedimentary basin, like for the great earthquake in Mexico in 1985

(Campillo et al. 1989; Kawase 2003). The importance of site effects

and their study were the main motivation for setting-up worldwide

test sites. Here, we consider the EUROSEISTEST verification and

validation project (Chaljub et al. 2009), and address the issue of

modelling the ground motion in a basin structure. We compare the

results obtained with our method against results computed with

SEM.

7.1 Description of EUROSEISTEST verification

and validation project

The EUROSEISTEST verification and validation project refers to

the geological structure of the Mygdonian sedimentary basin about

30 km E–NE of the city of Thessaloniki (northern Greece). It

mainly consists of a sedimentary basin with extreme low veloci-

ties and a high Poisson ratio, embedded in high velocity bedrock.

The velocity structure of the area is well known along the central

section AB (Fig. 16b), following a large number of geophysical

and geotechnical measurements (Jongmans et al. 1998), surface

and borehole seismic prospecting, and electrical soundings and mi-

crotremor recordings. The 3-D structure in the whole graben was

then extrapolated from this central profile, taking into account infor-

mation from many single-point microtremor measurements, some

array microtremor recordings, one EW refraction profile, and old

deep boreholes drilled for water-exploration purposes (Raptakis

et al. 2005; Manakou et al. 2007). The sediment thickness indeed

increases both to the West and the East of the central profile, which

corresponds to a buried pass between two thicker subbasins. For the

verification part of the EUROSEISTEST project, a smooth vertical

gradient without any lateral variation was considered. Inside the

basin, the velocities vary with the depth as follows

VP = 1000 + 100
√

d

VS = 200 + 32
√

d,

where VP and VS are expressed in m s−1, and d is the depth in m.

Table 6 summarizes the properties of the EUROSEISTEST model.

The ratio between the maximum and minimum S-wave velocities

is 17.2. This high factor favours the use of unstructured meshes, as

a large range of different element sizes is expected. Indeed, small

elements are required in the basin area while larger ones can be used

in the bedrock. The size of the model is 16 km × 15 km × 8 km

in the directions x, y and z, respectively. M-CPMLs of 2 km width

are applied at all edges of the model, except at the top, where a free

surface condition is used. The model topography is flat. Figs 16(a)

and (b) show the P- and S-wave velocities, respectively, on the free

surface in the xy plane. In these figures, the complex shape of the

basin and the abrupt contrast of velocity at the basin border can be

seen. The source is located 5 km below the basin, and it acts as a

double-couple mechanism that represents a small earthquake with a

corner frequency of 4 Hz (Fig. 17). The epicentre is indicated with

a yellow star in Fig. 16(a). The minimum propagated wavelength is

50 m, and the largest dimension of the model is 320 λ. We consid-

ered seven receivers, as marked with numbered green triangles in

Fig. 16(a), at strategic positions of the true EUROSEISTEST array.

All of these receivers lie on the free surface, except receiver #7,
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Figure 16. (a) View of the mesh in the xy plane at z = 0 m, showing the P-wave velocity associated with each element in the EUROSEISTEST model.

Numbered green triangles, the receivers; yellow star, source epicentre. (b) Same with the S-wave velocity associated with each element. The position of the

cross-section AB is indicated by the white line.

Table 6. The properties of the geological structures of the EUROSEISTEST model.

P-wave velocity (m s−1) S-wave velocity (m s−1) Density Ratio VP / VS Max. depth

Basin 1000–3027 200–848 2100 kg m−3 5.00–3.57 411 m

Bedrock 4500–6144 2600–3444 2600–2755 kg m−3 1.73–1.78 8 km

Figure 17. (a) Moment-rate function of the source used for the EUROSEISTEST modelling. (b) Amplitude spectrum of the source.

which is buried at 197 m depth just above the source. Receivers #1

and #4 are located on the bedrock, and the others are located within

the basin area.

7.2 Numerical results

For the SEM calculations, the size of the computational domain

was 16.14 km × 29.31 km × 7.86 km, and local absorbing bound-

ary conditions were imposed at the lateral and bottom boundaries,

following Komatitsch & Vilotte (1998). The mesh is based on a

conforming layer-cake topology (Komatitsch et al. 2004) where the

elements are deformed to follow the sediment-bedrock interface,

except for depths shallower than a threshold value, which was set

to 80 m for the basin. For the elements close to the valley edges,

the sediment-bedrock discontinuity is approximated by assigning

different material values to the collocation points inside the ele-

ments. Note that because of the large P-wave velocity in the shallow

bedrock, the choice of the threshold depth directly controls the time

step authorized by the CFL stability condition, and therefore the

total CPU time of the simulation. For the DG-FEM calculations,

the size of the numerical model was 20.14 km × 19 km × 8 km in

the directions x, y and z, respectively, including M-CPMLs of 2 km

width at all edges of the model, except at the top, where a free-

surface condition was used. We adopted the two-step refinement
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Figure 18. (a) Cross-section AB of the mesh at the first iteration of the h-refinement showing the S-wave velocity associated with each element in the

EUROSEISTEST model. (b) Same as (a) at the second iteration of the h-refinement. (c) Same as (a) at the sixth and last iteration of the h-refinement.

Figure 19. (a) View of the mesh in the xy plane at z = 0 m, showing the size of the elements (insphere radius) in the EUROSEISTEST model. (b) Same as (a)

with the approximation order associated with each element. White, P2 elements; grey, P1 elements; black, P0 elements.

approach explained in the previous section. In the first step, we

built an ad hoc tetrahedral mesh with TETGEN. A total of six

mesh refinement iterations were required to reach an adaptive dis-

cretization of three elements per λS . Figs 18(a), (b) and (c) show the

distribution of the S-wave velocity in the cross-section AB for the

first, second and last iterations of the h-refinement process, respec-

tively. Due to the extremely low velocities in the basin, the automatic

refinement process produced very small elements, which resulted in

a fine and regular discretization of the basin shape. Fig. 19(a) shows

the size of the elements (insphere radius) on the free surface. As ex-

pected, smaller elements are found in the basin area rather than in the

bedrock. In this example, we have taken advantage of the tetrahedral

mesh refinement. Indeed, the volume of the basin represents 0.8 per

cent of the complete volume of the model and it contains 72 per cent

of the total number of mesh elements. In the second step, we made

use of p-adaptivity to reduce the number of time steps. We adopted

the following criteria: if the insphere radius is between λS/120

and λS/40, the approximation order is downgraded to P1, and if

the insphere radius is smaller than λS/120, the approximation is

downgraded to P0. While most of the tetrahedral elements are

adequate for P2, the badly sized elements are computed with lower

approximation orders. We end up with a mesh that contains in total

16.3 million elements and 131.0 million DOF. The approximation

orders are distributed as follows: 67.04 per cent P2 elements, 32.67

per cent P1 elements (with 28.66 per cent elements in the M-

CPMLs), and 0.29 per cent P0 elements. This strategy is shown

in Fig. 19(b), where the approximation order is shown for each

element located on the free surface. Almost all of the elements are

P2 elements, except for those with inappropriate sizes, which are

downgraded to P1 or to P0 in the worst cases. Indeed, the contact
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Figure 20. (a) Seismograms of the component vx computed in the EUROSEISTEST model. Black line, with DG-FEM; red line, with SEM. (b) Same as (a)

with the component vz.

Table 7. Mesh statistics, computation time and memory allocation relative to the EUROSEISTEST modelling. the DG-FEM and SEM computations were

both performed with 18 bi-xeon Quadcore CPU IBM E5420 at 2.5 GHz (making a total of 144 cores).

Method Order Min. edge (m) Max. edge (m) Nb elem. Nb DOF Nb steps Nb CPUs Elapse time (hr) Memory (GB)

DG-FEM P2/P1/P0 2.5 399.8 16.3 × 106 131.0 × 106 122 565 144 52 ∼26

SEM P4 20.0 906.0 1.4 × 106 91.7 × 106 75 000 144 7 ∼25

between the basin and the bedrock produces a high velocity contrast

that is not ideally accommodated by the tetrahedra. Therefore, some

elements located in the bedrock have smaller sizes than expected,

and thus can be treated with lower approximation orders. These

latter are particularly visible in Fig. 19(b). Some P1 elements also

appear at the border in Fig. 19(b) where the M-CPMLs start.

The seismograms of the components vx and vz computed with

DG-FEM and with SEM are shown in Figs 20(a) and (b), respec-

tively. The fit between the DG-FEM and SEM solutions is almost

perfect for the vertical component vz, whatever the position of the

receivers, and even at long times. On the other hand, for the hori-

zontal component vx, good agreement is seen for short times, of up

to 6–7 s. At later times, some amplitude misfits are seen. Neverthe-

less, for all of the traces, the overall fit of the waveforms between

the two solutions is remarkable, which indicates that the same and

complex wave propagation phenomena are represented. Contrary to

the SEM, for the DG-FEM, constant physical properties per element

were assumed, given by the average of the properties at the four ver-

tices of the elements. Therefore, the amplitude misfits seen in the

DG-FEM seismograms might be the consequence of the approxi-

mations used in the model discretization, rather than the accuracy of

the numerical method itself. The statistics related to the DG-FEM

and SEM modelling are given in Table 7. Compared to DG-FEM,

the number of DOF used in the SEM modelling is 30 per cent lower,

and the number of time steps is nearly two-fold lower. Both of the

simulations were performed on the same computing platform with

18 bi-xeon Quadcore CPU IBM E5420 at 2.5 GHz (giving a total

of 144 cores). The methods required similar amounts of memory,

and to obtain 30 s of wave propagation, the computation time was

7 hr with SEM and 52 hr with DG-FEM. The computation time

per DOF and per step is on average 1.67 µs for DG-FEM, and

0.52 µs for SEM. Taking into account that the number of unknowns

per DOF is nine with DG-FEM (with first-order velocity–stress

formulation) and three with SEM (with second-order velocity for-

mulation), these two methods yield comparable computation times

per unknown. Therefore, the relative cost of the methods depends

mainly on the mesh characteristics. However, a detailed analysis is

required and goes beyond the scope of this study. We can expect,

that in more complicated cases (like a set of thin geological lay-

ers), the DG-FEM would be more efficient, due to the flexibility of

tetrahedral meshes. In the following, we present another compari-

son tool that allows for a study of the misfits on the complete free

surface of the model. An objective in earthquake engineering is to

predict the ground motion for a realistic scenario. The map of peak

ground velocity (PGV) provides a convenient representation that

shows the maximum value of the norm of the velocity vector for

each position on the free surface. PGV maps computed with 30 s of

seismic signals are shown in Fig. 21. The fit between the PGV map

computed with DG-FEM and the PGV map computed with SEM

is almost perfect. On these maps, the paths followed by energetic

bundles of surface waves can be seen. When they reach the basin

borders, these bundles are reflected and diffracted. This behaviour

can be be seen in the PGV map in the southeast part of the basin.

8 P E R S P E C T I V E S A N D C O N C LU S I O N S

We have proposed a DG-FEM with CPML absorbing boundary con-

dition that benefits most from hp-adaptivity combined with tetra-

hedral meshes. The gain obtained with this method in the context

of 3-D seismic elastic modelling is important when complex ge-

ological structures are considered, especially if the medium has

highly contrasting physical properties. In our approach, we favour

the use of low approximation orders which allows fine discretiza-

tion of the medium with piecewise constant properties per element.

From this point of view, an optimal compromise between precision,

computational cost and adequate discretization is achieved with the

P2 interpolation. For efficient reduction of the computation time,

CPMLs were designed with lower approximation orders and they

allowed a saving of between 40 and 60 per cent of CPU time on large
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Figure 21. (a) Peak ground velocity map computed for the EUROSEISTEST modelling with DG-FEM. Numbered white triangles, the receivers; yellow star,

the source epicentre. (b) Same as (a) computed with SEM.

clusters. Moreover, we mitigated the effects of ill-sized tetrahedral

elements by automatically choosing the appropriate approximation

order for each element, and hence we have kept the number of

time steps as low as possible. In our case, the so-called p-adaptivity

technique can reduce the number of time steps by a factor of five.

Consequently, when combined with the low-cost CPMLs, computa-

tion times are generally reduced by nearly one order of magnitude,

compared with the times observed with standard DG-FEM mod-

elling using a unique approximation order. The potential and the

perspectives concerning this method are numerous. For the limi-

tations of our formulation, we note the possibility of attributing

varying physical properties inside the elements. This would release

the discretization constraint and would allow the use of higher ap-

proximation orders, thus reducing the number of elements and the

computational cost of the simulations. For completeness, we note

another possible means of releasing the discretization constraint,

with non-conforming meshing, although the expected gain does not

appear as crucial in the case of tetrahedral meshes as it is with hex-

ahedral meshes. Apart from these possible evolutions, we intend to

include viscoelastic rheologies (Käser et al. 2007) and to apply the

method to realistic problems requiring appropriate discretizations

of geological structures and/or large material contrasts. Due to the

discontinuous nature of the method, rupture mechanisms, like earth-

quake dynamic rupture, might be modelled (BenJemaa et al. 2007,

2009; de la Puente et al. 2009). This method can also be applied to

seismic modelling in cases of complex topographies, or be used as

a forward modelling tool for FWI techniques (Tarantola 1987; Pratt

et al. 1998).
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A P P E N D I X A : L A G R A N G I A N B A S I S F U N C T I O N S

For the definition of the Lagrangian basis functions, the barycentric or tetrahedral coordinates (ζ 1, ζ 2, ζ 3, ζ 4) that are linked to the cartesian

coordinates (x , y, z) are defined inside an element as follows:

⎛
⎜⎜⎜⎝

1

x

y

z

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ζ1

ζ2

ζ3

ζ4

⎞
⎟⎟⎟⎠ ,

where (xj, yj, zj) are the coordinates of the jth node of the element. Then, the Lagrangian basis functions can be defined with a linear

combination of the tetrahedral coordinates depending on the approximation order. Following the node numbering convention given in Fig. 1,

these functions are given by for the P0 interpolation

ϕ1 = 1,

for the P1 interpolation

ϕ1 = ζ1 ϕ2 = ζ2 ϕ3 = ζ3 ϕ4 = ζ4,

and for the P2 interpolation

ϕ1 = (2ζ1 − 1)ζ1 ϕ2 = (2ζ2 − 1)ζ2 ϕ3 = (2ζ3 − 1)ζ3 ϕ4 = (2ζ4 − 1)ζ4

ϕ5 = 4ζ1ζ2 ϕ6 = 4ζ1ζ3 ϕ7 = 4ζ1ζ4 ϕ8 = 4ζ3ζ2 ϕ9 = 4ζ3ζ4 ϕ10 = 4ζ2ζ4.

A P P E N D I X B : M AT R I C E S U S E D I N T H E D G - F E M F O R M U L AT I O N

Mθ and Nθ are constant real matrices defined by

Mx =

⎛
⎜⎝

1 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎞
⎟⎠ Nx =

⎛
⎜⎝

1 2 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

⎞
⎟⎠

T

My =

⎛
⎜⎝

0 0 0 1 0 0

1 0 1 0 0 0

0 0 0 0 0 1

⎞
⎟⎠ Ny =

⎛
⎜⎝

0 0 0 1 0 0

1 −1 2 0 0 0

0 0 0 0 0 1

⎞
⎟⎠

T

Mz =

⎛
⎜⎝

0 0 0 0 1 0

0 0 0 0 0 1

1 −1 −1 0 0 0

⎞
⎟⎠ Nz =

⎛
⎜⎝

0 0 0 0 1 0

0 0 0 0 0 1

1 −1 −1 0 0 0

⎞
⎟⎠

T

.

For Pk , with k ≤ 2, the volume integral in eqs (9) and (10) can be computed with the 11 Gauss points integration rule for tetrahedra (Keast

1986) and the surface integral in eqs (11) and (12) can be computed with the six Gauss points integration rule for triangles (Dunavant 1985).
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Below, we give the expression of the matrices relevant for P1 elements following the node numbering convention given in Fig. 1(b).

Ki = vol i

20

⎛
⎜⎜⎜⎝

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

⎞
⎟⎟⎟⎠ , (B1)

with voli as the volume of element i.

Eiθ = 1

12

⎛
⎜⎜⎜⎝

Si1ni1θ
Si1ni1θ

Si1ni1θ
Si1ni1θ

Si2ni2θ
Si2ni2θ

Si2ni2θ
Si2ni2θ

Si3ni3θ
Si3ni3θ

Si3ni3θ
Si3ni3θ

Si4ni4θ
Si4ni4θ

Si4ni4θ
Si4ni4θ

⎞
⎟⎟⎟⎠ ∀θ ∈ {x, y, z}, (B2)

with Sik the surface of the face opposite to the kth node of element i and �nik = (nikx , nik y , nikz )T as the outward pointing unit normal vector

with respect to the surface Sik . For the computation of the flux matrices, we adopt a specific node numbering scheme. First, the neighbour

element k is given by the node number of element i which is not shared between elements i and k. For instance, in Fig. 1(b), the neighbour

element k = 1 is the element sharing the face (234) of element i. Second, the neighbour element nodes share the same node numbers

of element i on the common face. Therefore, the opposite nodes of element i and k have also the same number. With this node numbering

scheme, Fik and Gik are identical when both elements are P1. We use this property to perform an efficient computation of the flux. In that

case, we get

Fi1 = Si1

12

⎛
⎜⎜⎜⎝

0 0 0 0

0 2 1 1

0 1 2 1

0 1 1 2

⎞
⎟⎟⎟⎠ Fi2 = Si2

12

⎛
⎜⎜⎜⎝

2 0 1 1

0 0 0 0

1 0 2 1

1 0 1 2

⎞
⎟⎟⎟⎠

Fi3 = Si3

12

⎛
⎜⎜⎜⎝

2 1 0 1

1 2 0 1

0 0 0 0

1 1 0 2

⎞
⎟⎟⎟⎠ Fi4 = Si4

12

⎛
⎜⎜⎜⎝

2 1 1 0

1 2 1 0

1 1 2 0

0 0 0 0

⎞
⎟⎟⎟⎠ .

(B3)
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