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Abstract Mortalin/mthsp70/PBP74/Grp75 (called mortalin hereafter), a member of the Hsp70 family of chaperones,
was shown to have different subcellular localizations in normal and immortal cells. It has been assigned to multiple
subcellular sites and implicated in multiple functions ranging from stress response, intracellular trafficking, antigen
processing, control of cell proliferation, differentiation, and tumorigenesis. The present article compiles and reviews
information on the multiple sites and functions of mortalin in different organisms. The relevance of its differential
distributions and functions in normal and immortal cell phenotypes is discussed.

IDENTIFICATION, CLONING, AND MULTIPLE
SUBCELLULAR SITES

Mortalin/mthsp70/PBP74/Grp75 (mortalin) was first
identified as a member of the Hsp70 family of proteins
present in the cytoplasmic fractions of normal fibroblasts
from CD1-ICR mouse (Wadhwa et al 1993a). Immortal
fibroblasts from CD1-ICR, NIH Swiss, and Balb/c mice
lacked this protein in their cytoplasmic fractions. An an-
tibody raised against the full protein isolated from nor-
mal fibroblasts was highly specific to mortalin (did not
cross-react with any other heat shock proteins, Wadhwa
et al 1993a). Using this antibody for immunocloning, only
1 kind of mortalin complementary deoxyribonucleic acid
(cDNA; named mot-1) was isolated. Immunocytochemical
analysis with this antibody revealed a cytoplasmic stain-
ing of the protein in normal cells; immortal cells showed
the immunofluorescence in the perinuclear region (Wadh-
wa et al 1993b). Immunocloning of cDNA from immortal
cells led to the cloning of mortalin cDNA (named mot-2).
Its sequence comparison with the cDNA isolated from
normal mouse cells (mot-1) revealed a difference of 2
amino acids in the carboxy-terminus (Wadhwa et al
1993c). Genetic identities of 2 kinds of mortalin cDNAs
(mot-1 and mot-2) in mouse were obtained from mouse
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family studies. mot-1 and mot-2 showed segregation in 2
mouse generations (Kaul et al 2000a), which illustrates
that mot-1 and mot-2 are allelic in mouse, and were as-
signed to chromosome 18 (Kaul et al 1995; Ohashi et al
1995). Human normal and transformed cells also seem to
have differential staining of mortalin. Whereas normal
cells have pancytoplasmic staining, transformed cells
showed 4 types of nonpancytoplasmic staining patterns
that distinguished complementation groups of human
transformed cells (Pereira-Smith and Smith 1988; Wadh-
wa et al 1995). Subsequent studies with a variety of tech-
niques including confocal laser microscopy of the native
protein with protein-specific antibodies, localization of
the exogenously expressed protein by protein- and tag-
specific antibodies, density gradient cell fractionation,
and the use of organelle-specific markers assigned mor-
talin to different subcellular sites (Wadhwa et al 1995;
Ran et al 2000). These included mitochondria, endoplas-
mic reticulum, cytoplasmic vesicles, and cytosol (Doman-
ico et al 1993; Dahlseid et al 1994; Webster et al 1994;
Singh et al 1997; Soltys and Gupta 1999; Ran et al 2000).
Most recently, 3D reconstruction and deconvolution mi-
croscopical analyses confirmed the multiple subcellular
sites of mortalin in different human transformed cell lines
(Poindexter et al 2002). Mitochondria appeared to be the
primary niche that was dependent on the presence of the
leader sequence in the N-terminus of the protein, and
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Fig 1. Protein sequence comparisons
of human and mouse mortalins.

hence the protein was also called mthsp70 (Dahlseid et
al 1994; Webster et al 1994; Bhattacharyya et al 1995; Ran
et al 2000). Requirement of the leader sequence for trans-
location of mortalin in other organelles remains unclear
so far. In contrast to the mouse situation, where the 2
mortalin cDNAs, mot-1 and mot-2, were shown to code
for differentially distributed proteins (Wadhwa et al
1993c), cloning of human mortalin cDNA from various
human transformed cells showed identical sequences;
these varied from mouse mot-1 and mot-2 (Fig 1). These
data led to the speculation that there are, at least, 2 mech-
anisms operating for differential distributions of the mor-
talin protein. One is by distinct mortalin cDNAs, mot-1
and mot-2 found in mouse, and the other by as yet un-
defined protein modifications or cellular factors found in
mouse and human cells.

MULTIFUNCTIONAL ASPECTS OF MORTALIN

Mortalin is expressed in all cell types and tissues exam-
ined so far (Wadhwa et al 1995; Kaul et al 1997) and is
expected to perform some essential functions. Expression
levels of mortalin correlated with muscle activity, mito-
chondrial activity, and biogenesis (Ornatsky et al 1995;
Ibi et al 1996; Takahashi et al 1998). It was induced by

low levels of ionizing radiation (Sadekova et al 1997; Car-
ette et al 2002), glucose deprivation (Merrick et al 1997),
calcium ionophore (Resendez et al 1985), ozone (Wu et
al 1999), and hyperthyroidism (Craig et al 1998; Schnei-
der and Hood 2000). Many of the human transformed
and tumor-derived cells had a high level of mortalin ex-
pression (Takahashi et al 1994; Bini et al 1997; Takano et
al 1997; Kaul et al 1998; and Kaul and Wadhwa, unpub-
lished observations). In contrast to mot-1, which induced
senescence in NIH 3T3 cells (Wadhwa et al 1993c), an
overexpression of mot-2 cDNA resulted in malignant
transformation of the cells (Kaul et al 1998). Similar to the
mouse mot-2 cDNA, human mortalin cDNA induced ma-
lignant transformation of NIH 3T3 cells and was thus
called hmot-2 (Kaul et al 1998). Human lung fibroblasts
(MRC-5) when stably transfected with hmot-2 cDNA un-
derwent extended population doublings in vitro (Fig 2)
(Kaul et al 2000b). It was also shown that differentiation
of HL-60 promyelocytic leukemia cells was accompanied
by a decreased level of hmot-2/mthsp70 expression (Xu
et al 1999), whereas overexpression of hmot-2/mthsp70
imparts growth advantage and attenuates their differen-
tiation (Xu et al 1999).

Malignant transformation of NIH 3T3, lifespan exten-
sion of MRC-5, and attenuation of differentiation of HL-
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Fig 2. Lifespan extension of normal human lung fibroblasts by over
expression of mouse (mot-2) and human (hmot-2A and hmot2B)
mortalins in a mammalian expression vector, pSRa. hmot-2A and
hmot-2B are complementary deoxyribonucleic acid isolates from
HT1080 (human fibrosarcoma assigned to complementation group
A of immortalization) and HeLa (human cervical carcinoma assigned
to complementation group B of immortalization) cells, respectively.
The level of expression of mortalin was slightly higher in hmot-2B–
expressing cells than in the mot-2– or hmot-2A–expressing cells (ex-
perimental and technical details described in Kaul et al 2000b).

60 cells by overexpression of mot-2 can be explained, at
least in part, by its recently demonstrated p53 inactivation
function. mot-2 and p53 were shown to interact in the
cytoplasm, resulting in cytoplasmic retention and tran-
scriptional inactivation of the latter (Merrick et al 1996;
Wadhwa et al 1998, 1999). Nuclear exclusion of p53 as a
possible mechanism of its inactivation was proposed for
some tumors (Moll et al 1992, 1996; Takahashi and Suzuki
1994; Takahashi et al 1994; Moll and Schramm 1998). Such
nuclear exclusion of p53 was demonstrated in serum-
starved NIH 3T3 cells microinjected with green fluores-
cence protein (GFP)-tagged mot-2 (Fig 3A) (Wadhwa et
al 1998). mot-2 (amino-terminus region) was found to
bind to the carboxy-terminus region of p53 (Kaul et al
2001; Wadhwa et al 2002); therefore the p53 sequestration
activity of mot-2 was consistent with the studies that as-
signed a carboxy-terminus region of p53 as a cytoplasmic
sequestration domain (Moll et al 1996). Significantly, ab-

rogation of mot-p53 interactions by MKT-077 (a water-
soluble delocalized lipophilic cationic dye), which binds
to mot-2, restored nuclear translocation and activation of
p53 function, followed by growth arrest of tumor cells
(Fig 3B) (Wadhwa et al 2000). Other potential roles as-
signed to mortalin include antigen processing, in vivo
nephrotoxicity, radioresistance, and cell fate determina-
tion (Domanico et al 1993; Dahlseid et al 1994; Merrick
et al 1997; Sadekova et al 1997; Carette et al 2002; Rivolta
and Holley 2002). Mortalin-p53 complexes were also de-
tected in the mitochondria during p53-induced apoptosis
(Marchenko et al 2000), implicating its role in transcrip-
tionally independent apoptotic signaling. Its precise role
and mechanism in apoptotic pathways and phenotypes
warrant further investigations.

Mortalin was assigned to multiple subcellular sites
(Ran et al 2000; Poindexter et al 2002). In support of this,
it was shown to bind to residents of different organelles
by a variety of protocols. These included yeast and mam-
malian 2-hybrid interactive screens, affinity binding, and
in vitro and in vivo binding assays. It was shown to bind
to FGF-1 and aid in its intracellular trafficking (Mizukoshi
et al 1999), and this was mediated by its cell cycle–specific
phosphorylation (Mizukoshi et al 2001). Adenosine tri-
phosphate (ATP)–sensitive association of mortalin with
the interleukin-1 receptor type was also detected and pre-
dicted to have a role in receptor internalization (Sacht et
al 1999). It was shown to bind to GRP94 (a glucose reg-
ulated endoplasmic reticulum chaperone) by 2-hybrid as-
says and in vitro and in vivo coimmunoprecipiations
(Takano et al 2001). Other binding partners of mortalin
isolated by yeast interactive screen include mitochondrial
reduced form of nicotinamide adenine dinucleotide de-
hydrogenase (an inner mitochondrial membrane protein),
mevalonate pyruvate decarboxylase (a peroxisomal pro-
tein), and Tim23 (mitochondrial inner membrane translo-
case) (Wadhwa, Yaguchi and Kaul, unpublished obser-
vations). Their interactions with mortalin and their func-
tional significance remain to be known. The multiple sites
and proposed associated functions of mortalin are shown
in Figure 4. It remains to be clarified how, when, and
where exactly mortalin interacts with these different pro-
teins that have been assigned to different subcellular
sites. Multiple subcellular routing and docking of binding
partners of mortalin cannot be ruled out. It will be inter-
esting to resolve the functional aspects of such interac-
tions and their physiological relevance to biological phe-
notypes including cellular senescence, immortalization,
stress, and apoptosis. Nevertheless, it can be speculated
that mortalin routes through multiple subcellular sites
and may interact with different proteins therein. Such in-
teractions in different subcellular organelles may be im-
portant for its multiple functions.

An overexpression of a mortalin homologue in Caenor-
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Fig 3. (A) Abrogation of nuclear translocation of p53 by mot-2. NIH 3T3 cells were microinjected with green fluorescence protein (GFP)-
tagged mot-2 (green fluorescence) and serum-starved for 24 hours to induce nuclear translocation of p53 protein. Note that the cells micro-
injected with mot-2 (green fluorescence) lacked nuclear p53 (red fluorescence). Similar results were obtained by using N- or C-terminal GFP
fusion (experimental and technical details described in Wadhwa et al 1998). (B) Nuclear translocation of p53 (green) in MKT-077–treated
human breast carcinoma (MCF7) cells and mouse immortal fibroblasts (NIH 3T3) (Wadhwa et al 2000). Control and MKT-077–treated MCF7
and NIH 3T3 cells were double stained for mortalin (red) and p53 (green). Note that only a negligible number of cells showed nuclear p53
in control cells; MKT-077–treated culture exhibited nuclear p53 in more than 80% of cells.

habditis elegans (Hsp70F) resulted in lifespan extension
(Yokoyama et al 2002). The yeast homologue of mortalin,
SSC1p, is essential for cell viability (Craig et al 1989) and
has indispensable functions in mitochondrial import
(Voos et al 1999; Krimmer et al 2000; Geissler et al 2001).
It binds to Tim-44, an inner mitochondrial membrane an-
chor, and is an essential component of mitochondrial im-
port machinery (Voisine et al 1999; Krimmer et al 2000;
Strub et al 2001). Mutations in Tim-44 that result in in-
efficient recruitment of mthsp70/SSC1 are lethal in Sac-
charomyces cerevisiae (Merlin et al 1999; Schulke et al 1999).
On the basis of the studies in yeast at least 3 kinds of
activities can be hypothesized for mortalin. These include
(1) unfolding of proteins outside mitochondria, (2) uni-
directional translocation across mitochondrial mem-
branes initiated by membrane potential MDC, and (3)
completion of import by acting as an ATP-driven motor.
It was shown to bind to endonuclease, Endo. SceI, and it

confers on it broader sequence specificity, greater stability,
and higher activity (Mizumura et al 1999). It is also re-
quired for degradation of misfolded peptides by m-AAA
and PIM1 proteases in mitochondria (Lim et al 2001; Liu
et al 2001). Evidence suggests that it cooperates with
mthsp60 and CPN-10 chaperones for folding of imported
proteins to functionally competent forms in mitochondria
and for yet undefined roles of mthsp60 at extra-mito-
chondrial sites (Cechetto et al 2000; Strub et al 2001). Tak-
en together, these studies have shown that overexpression
of mot-2 confers proliferation-growth advantage to cells
in vitro and in vivo.

DIFFERENTIAL SUBCELLULAR DISTRIBUTION
IN NORMAL AND IMMORTAL CELLS

More than 60 different cell lines have been analyzed for
mortalin staining patterns; none of these have shown
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Fig 4. A model showing multiple subcellular sites, binding partners, and functions of mortalin.

pancytoplasmic staining. In sharp contrast, normal cells
have invariably shown widely distributed mortalin stain-
ing in the cytoplasm (Wadhwa et al 1995; Yaguchi, Kaul
and Wadhwa, unpublished observations). Induction of se-
nescence in transformed cells by introduction of a single
chromosome (Nakabayashi et al 1999), chromosome-frag-
ments, and genes (Bertram et al 1999) or chemicals (Mich-
ishita et al 1999) was accompanied by reversion of sub-
cellular distribution of mortalin from the nonpancyto-
plasmic type to the pancytoplasmic type. MKT-077 is a
rhodacyanine dye that is selectively toxic to cancer cells.
MKT-077–induced growth arrest of cancer cells was also
accompanied by a change in mortalin staining pattern
from the nonpancytoplasmic type (perinuclear) to the
pancytoplasmic type, characteristic of normal cells (Fig 3)
(Wadhwa et al 2000). This was accompanied by nuclear
translocation and activation of p53 as a result of abroga-
tion of its interactions with mortalin (Wadhwa et al 2000).
Heat shock treatment translocated mortalin from the pan-
cytoplasmic locale to the perinuclear one in normal cells,
which is typical in immortal cells (Kaul et al 1993). Of
the multiple subcellular sites of mortalin, mitochondria
are a dominant localization (Bruschi and Lindsay 1994;
Webster et al 1994; Ran et al 2000). Interestingly, the dis-
tribution of mitochondria was reported to change in re-

sponse to heat shock treatment (Collier et al 1993) in
chicken embryo fibroblasts and in response to virus in-
fection in mammalian cells (Rojo et al 1998; Murata et al
2000). At normal temperature, chicken embryo fibroblasts
exhibit evenly distributed mitochondria as elongated, tu-
bular, and dynamic organelles in the cell cytoplasm, but
upon heat shock they move to the perinuclear region and
form a tight ring of short swollen and in some cases fused
vesicles (Collier et al 1993). Rojo et al (1998) and Murata
et al (2000) reported that African swine fever virus– and
herpes simplex virus–infected cells show clustering of mi-
tochondria in the perinuclear sites. This migration of mi-
tochondria from the cytoplasm to the perinuclear region
requires microtubules because it is blocked in the pres-
ence of the microtubule-disassembling drug nocodazole.
Recently, it was shown that functional inactivation of
mthsp70 causes mitochondrial aggregation in yeast (Ka-
wai et al 2001). This was shown to be independent of the
defects in mitochondrial protein import or mitochondrial
translocases (Kawai et al 2001). It was proposed that
mthsp70 is essential for optimizing the functions of, yet
unidentified, heat-labile protein(s) in the mitochondrial
matrix in controlling mitochondrial morphology (Kawai
et al 2001). In light of these studies and the prominent
mitochondrial residence of mortalin protein (Bruschi and
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Lindsay 1994; Webster et al 1994; Ran et al 2000), it is
possible that the differential subcellular distribution of
hmot-2/mthsp70 in different human transformed cells
represents altered mitochondrial morphology, at least in
part. This would imply that changes in mitochondrial
morphology and distribution are consistent alterations
that occur with change of the cellular divisional pheno-
type from mortal to immortal. Because mitochondria play
essential roles in supply of energy, regulation of calcium
levels, and control of apoptotic cell death, it is plausible
that alterations in their morphology, localization, and
function would occur with cellular immortality. The
mechanism of such differential localizations, role of cy-
toskeleton elements, and downstream signal transduction
and its role in regulation of proliferation warrant further
studies.

PROSPECTIVES

Mortalin (mot-2/mthsp70/PBP74/GRP75) is an essential
protein belonging to the Hsp70 family of chaperones. It
sojourns in multiple subcellular sites although it resides
predominantly in mitochondria and performs multiple
functions including mitochondrial import, intracellular
trafficking, receptor internalization, and inactivation of
tumor suppressor protein p53. Differential staining pat-
terns of mortalin may predict its different functions in
normal and transformed cells. Some of these functions
such as inactivation of p53 can be employed as an advan-
tage in immortalization of human cells in vitro. Targeting
of other functions such as chaperoning mitochondrial bio-
genesis and intracellular trafficking may provide novel
tools for tumor therapy.
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