
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Departmental Papers (ESE) Department of Electrical & Systems Engineering 

1-1-2002 

An Idea for Thin Subwavelength Cavity Resonators Using An Idea for Thin Subwavelength Cavity Resonators Using 

Metamaterials With Negative Permittivity and Permeability Metamaterials With Negative Permittivity and Permeability 

Nader Engheta 
University of Pennsylvania, engheta@seas.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/ese_papers 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Nader Engheta, "An Idea for Thin Subwavelength Cavity Resonators Using Metamaterials With Negative 
Permittivity and Permeability", . January 2002. 

Copyright 2002 IEEE. Reprinted from IEEE Antennas and Wireless Propagation Letters, Volume 1, Issue 1, 2002, 
pages 10-13. 
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=21952&puNumber=7727 

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply 
IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this 
material is permitted. However, permission to reprint/republish this material for advertising or promotional 
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing 
to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ese_papers/12 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/ese_papers
https://repository.upenn.edu/ese
https://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fese_papers%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=21952&puNumber=7727
https://repository.upenn.edu/ese_papers/12
mailto:repository@pobox.upenn.edu


An Idea for Thin Subwavelength Cavity Resonators Using Metamaterials With An Idea for Thin Subwavelength Cavity Resonators Using Metamaterials With 
Negative Permittivity and Permeability Negative Permittivity and Permeability 

Abstract Abstract 
In this letter, we present and analyze theoretically some ideas for thin one-dimensional (1-D) cavity 
resonators in which a combination of a conventional dielectric material and a metamaterial possessing 
negative permittivity and permeability has been inserted. In this analysis, it is shown that a slab of 
metamaterial with negative permittivity and permeability can act as a phase compensator/conjugator 
and, thus, by combining such a slab with another slab made of a conventional dielectric material one can, 
in principle, have a 1-D cavity resonator whose dispersion relation may not depend on the sum of 
thicknesses of the interior materials filling this cavity, but instead it depends on the ratio of these 
thicknesses. In other words, one can, in principle, conceptualize a 1-D cavity resonator with the total 
thickness far less than the conventional λ/2. Mathematical steps and physical intuitions relevant to this 
problem are presented. 

Keywords Keywords 
Cavity resonator, metamaterials, negative index of refraction, negative permeability, negative permittivity, 
phase compensator, phase conjugation. 

Disciplines Disciplines 
Electrical and Computer Engineering 

Comments Comments 
Copyright 2002 IEEE. Reprinted from IEEE Antennas and Wireless Propagation Letters, Volume 1, Issue 1, 
2002, pages 10-13. 
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=21952&puNumber=7727 

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way 
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or 
personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution must 
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, 
you agree to all provisions of the copyright laws protecting it. 

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/ese_papers/12 

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=21952&puNumber=7727
https://repository.upenn.edu/ese_papers/12


10 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 1, 2002

An Idea for Thin Subwavelength Cavity
Resonators Using Metamaterials With Negative

Permittivity and Permeability
Nader Engheta, Fellow, IEEE

Abstract—In this letter, we present and analyze theoretically
some ideas for thin one-dimensional (1-D) cavity resonators in
which a combination of a conventional dielectric material and a
metamaterial possessing negative permittivity and permeability
has been inserted. In this analysis, it is shown that a slab of
metamaterial with negative permittivity and permeability can
act as a phase compensator/conjugator and, thus, by combining
such a slab with another slab made of a conventional dielectric
material one can, in principle, have a 1-D cavity resonator whose
dispersion relation may not depend on the sum of thicknesses of
the interior materials filling this cavity, but instead it depends on
the ratio of these thicknesses. In other words, one can, in principle,
conceptualize a 1-D cavity resonator with the total thickness far
less than the conventional /2. Mathematical steps and physical
intuitions relevant to this problem are presented.

Index Terms—Cavity resonator, metamaterials, negative index
of refraction, negative permeability, negative permittivity, phase
compensator, phase conjugation.

I. INTRODUCTION

I N the past several decades, the electromagnetic (EM)
properties of complex media have been the subject of

research study for many research groups [1]–[16]. Several
types of EM complex media such as chiral materials, omega
media, bianisotropic media, local, and nonlocal media to name
a few, have been studied. Recently, the idea of composite
materials in which both permittivity and permeability possess
negative values at certain frequencies has gained considerable
attention [17]–[21]. In 1967, Veselago theoretically investi-
gated plane wave propagation in a material whose permittivity
and permeability were assumed to be simultaneously negative
[22]. His theoretical study showed that for a monochromatic
uniform plane wave in such a medium, the direction of the
Poynting vector is antiparallel with the direction of phase
velocity, contrary to the case of plane wave propagation in
conventional simple media. Recently, Smith et al. constructed
such a composite medium for the microwave regime and
demonstrated experimentally the presence of anomalous re-
fraction in this medium [17], [18], [20], [21]. It is also worth
noting that previous theoretical study of EM wave interaction
with omega media reveals the possibility of having negative
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permittivity and permeability in omega media for a certain
range of frequencies [23]. For metamaterials with negative
permittivity and permeability, several names and terminologies
have been suggested such as “left-handed” media [17]–[22],
media with negative refractive index [17]–[22] “backward
media” (BW media) [24], “double negative metamaterials”
[25], [26], to name a few. The anomalous refraction at the
boundary of such media and the fact that for a plane wave
the direction of the Poynting vector is antiparallel with the
direction of phase velocity, provide us with features that can
be advantageous in design of novel devices and components.
Recently, we introduced and presented in a symposium [27]
one of our ideas for a compact cavity resonator. Here in this
letter, we describe the details of this idea and the mathematical
steps behind our analysis.

A. Metamaterials With Negative and as Phase
Compensators/Conjugators

When a lossless metamaterial possesses negative real permit-
tivity and permeability at certain frequencies, the index of re-
fraction in such a medium attains real values. So as theoreti-
cally predicted by Veselago, the EM wave can propagate in such
a medium [22]. However, for a monochromatic uniform plane
wave in such a medium the phase velocity is in the opposite di-
rection of the Poynting vector.

Consider a slab of conventional lossless material with real
permittivity , real permeability , and the index of
refraction , where and are the per-
mittivity and permeability of the free space. Here, is taken
to be a positive real quantity. The slab is infinitely extent in the

- plane and has the thickness along the axis. We tem-
porarily assume that the intrinsic impedance of the dielectric
material is the same as that of the outside re-
gion , i.e., , but its refractive index is
different from that of outside, i.e., . (We will soon re-
move the first part of this assumption.) Let us assume that a
monochromatic uniform plane wave is normally incident on this
slab. The wave propagates through the slab without any reflec-
tion (because for now we are still assuming ). As this
wave traverses this slab, the phase at the end of the slab is obvi-
ously different from the phase at the beginning of the slab by the
amount , where . Now, consider a slab of
a lossless metamaterial with negative real permittivity and per-
meability, i.e., and at certain frequencies. For
this slab, the index of refraction is a real quantity denoted by

1536-1225/02$17.00 © 2002 IEEE
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Fig. 1. A two-layer structure in which the left layer is assumed to be a
conventional lossless dielectric material with " > 0 and � > 0 and the
right layer is taken to be a lossless metamaterial with negative permittivity and
permeability. In the first layer, the direction of Poynting vector (S ) is parallel
with the direction of phase velocity or wave vector (k ), whereas in the second
layer, these two directions are antiparallel. With proper choice of ratio of d
and d , one can have the phase of the wave at the left (entrance) interface to be
the same as the phase at the right (exit) interface, essentially with no constraint
on the total thickness of the structure.

. It is important to note that here we do
not need to specify any sign for the operation of the square root
appearing in the expression of . We only need to state that
is a real quantity for the lossless metamaterial with and

for a given frequency. (Here, can, for example, be
taken to be a positive real quantity.) This slab is also infinitely
extent in the - plane, but has a thickness of in the direc-
tion. For now, we again assume that the intrinsic impedance of
this metamaterial is also the same as that of out-
side region, i.e., . We put this slab right next to the first
slab (Fig. 1). As the plane wave exits the first slab, it enters the
slab of metamaterial and finally it leaves this second slab. The
direction of power flow (i.e., the Poynting vector) in the first slab
should be the same as that in the second one, because the power
of the incident wave enters the first slab (without any reflection
at the first interface), traverses the first slab, exits the second in-
terface, enters the second slab and traverses it, and finally leaves
the second slab. In the first slab, the direction of the Poynting
vector is parallel with the direction of phase velocity; however,
in the second slab these two vectors are antiparallel (see Fig. 1).
Therefore, the wave vector is in the opposite direc-
tion of the wave vector . As a result, the phase at the
end of the second slab is different from the phase at the begin-
ning of it by the amount . (As was mentioned above,

here is taken to be positive.) So the total phase difference
between the front and back faces of this two-layer structure is

. Therefore, whatever phase difference is de-
veloped by traversing the first slab, it can be decreased and even
cancelled by traversing the second slab. If the ratio of and
is chosen to be , then the total phase difference
between the front and back faces of this two-layer structure be-
comes zero. (The total phase difference is not 2 , 4 , or 6 .

Fig. 2. An idea for a compact, subwavelength, thin cavity resonator. The
two-layer structure discussed in Fig. 1 is sandwiched between the two
reflectors. Our analysis shows that with the proper choice of ratio of d over
d , one can have a resonant cavity in which the ratio of d and d is the main
constraint, not the sum of thicknesses d + d .

But instead it is zero!) So indeed the slab of metamaterial with
and at given frequencies can act as the phase

compensator in this structure. This also resembles the process
of phase conjugation. It is important to note that such phase can-
cellation in this geometry does not depend on the sum of thick-
nesses ; rather it depends on the ratio of and . So,
in principle, can be any value as long as satis-
fies the above condition. Therefore, even though this two-layer
structure is present, the wave traversing this structure would not
experience the phase difference. This feature can lead to several
interesting ideas in design of some devices and components.

B. Compact Subwavelength 1-D Cavity Resonators Using
Metamaterials With and

What we described above can be used to conceptualize an ex-
citing possibility of designing a compact 1-D cavity resonator.
We can take the above two-layer structure and put two per-
fect reflectors (e.g., two perfectly conducting plates) at the two
open surfaces of this structure (Fig. 2). Here, we generalize
the problem by assuming that the intrinsic impedances of the
first layer (conventional material) and the second layer (meta-
material with and at specific frequencies) are
not taken to be the same as . So here, in general, we have

and . We are now interested to
solve for solutions of Maxwell equations in this cavity resonator.

C. Formulation of the Problem

We use the Cartesian coordinate system , where the
plane is taken to be at the perfectly conducting plate lo-
cated at the left face of the conventional material slab shown
in Fig. 2. The other perfectly conducting plate is placed at

, which is the right face of the metamaterial slab. Since
this is assumed to be a 1-D cavity resonator, all quantities are in-
dependent of the and coordinates. The time dependence for
the monochromatic solutions is taken to be . Without
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loss of generality, we take the electric and magnetic field vec-
tors to be oriented along the and direction, respectively. In
the region , where the material is a conventional
lossless material, the electric and magnetic fields can be written
as

(1)

and in the region , where the metamaterial
with and is located, the fields are written as

(2)

where subscripts “1” and “2” denote the quantities in the regions
“1” and “2,” which are the conventional slab and the metama-
terial slab, respectively. It is worth emphasizing that although
in the above equations the values of indexes of refraction are
taken to be positive quantities (and, hence, no ambiguities are
introduced through the sign of the operation of square root for

), as will be seen shortly the choice of
the sign for and will be irrelevant in the final results.
The choice of the solutions presented in (1) and (2) guarantees
the satisfaction of the boundary conditions at the perfectly con-
ducting plates at and . To satisfy the boundary
conditions at the interface between the two slabs we should have

(3)

which leads to

(4)

In order to have a nontrivial solution, i.e., to have and
, the determinant in (4) must vanish. That is

(5)

which can be simplified to

(6)

In the above dispersion relation, the quantities , , , ,
and are all generally frequency dependent. It is important to
note that the choice of sign for and does not affect this
dispersion relation. Either choice of sign (positive or negative
sign) for and will leave (6) unchanged. That is why we
specifically mentioned earlier that we did not need to introduce
any ambiguity regarding the choice of sign for in our anal-
ysis here. Since the first layer is assumed to be made of a loss-
less conventional material, its permeability is a positive real
quantity. The second layer is taken to be a lossless metamaterial

with and . Therefore, we can write and
. Substituting these expressions in (6), we obtain

(7)

This implies that for a given frequency , if , ,
, and , a nontrivial one-dimensional (1-D) solution

for this cavity is obtained when the thicknesses and satisfy
the relation

(8)

This relation does not show any constraint on the sum of thick-
nesses of and . It rather deals with the ratio of tangent of
these thicknesses (with multiplicative constants). So, in prin-
ciple, and can conceptually be as thin or as thick as oth-
erwise needed as long as the above ratio is satisfied. If we as-
sume that , and are chosen such that the small-argument
approximation can be used for the tangent function, the above
relation can be simplified as

(9)

This relation shows even more clearly how and should
be related in order to have a nontrivial 1-D solution with fre-
quency for this cavity. So conceptually, what is constrained
here is , not . Therefore, in principle, one can have
a thin subwavelength cavity resonator for a given frequency, if
at this frequency the second layer acts a metamaterial with neg-
ative permittivity and permeability and the ratio satisfies
the above condition. For example, for frequency of 2 GHz, if a
metamaterial with negative permittivity of and negative
permeability of can be constructed as the second slab
and if the conventional material slab is assumed to be air with
and , then and and, thus, the required ratio of

over should be . If, in principle, this metama-
terial slab can be made thin for this frequency, e.g., /10,
where is the free-space wavelength of operation, then the air
slab should be made with thickness /20. Thus, the total
thickness of such a thin cavity would be /20,
which for this example of 2-GHz frequency of operation would
be 2.25 cm! This is, of course, thinner than the conventional air
cavity size of /2, which would be 7.5 cm for 2 GHz.

The electric and magnetic field expressions for the nontrivial
solutions in this 1-D cavity are given as

(10)

where and .
It is worth noting that if both layers 1 and 2 had been made

of two conventional lossless dielectric materials, the form of
the dispersion relation in (6) would have remained unchanged.
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However, both quantities and would have been positive
real and, thus, if had been positive, the other term

must have been negative in order to fulfill the dis-
persion relation in (6). This implies that for such a case, if

for to be positive, then must have been
greater than in order to have negative,
which puts some limits on the sum of thicknesses and . In
the case under study in this letter, however, since and

, the two functions and can
be both positive (or both negative) and, as a result, there is no
constraint on the sum of and .

Finally, one notes that the electric field expressions may pos-
sess discontinuous first derivatives (with respect to ) at the
boundary between the two layers, i.e.,

This should not cause any concern since according to
the Maxwell equations, the tangential component of the
magnetic field in this problem, which is expressed as

are continuous at such a boundary. This implies
that . Since in our problem here,

and , the first -derivatives of electric field
and have opposite signs at the interface

between the two layers.

II. SUMMARY

We have introduced ideas for 1-D cavity resonators utilizing
the concept of lossless metamaterials in which both permittivity
and permeability possess negative real values at given frequen-
cies. We have shown that a slab of metamaterial having nega-
tive permittivity and permeability can function as a phase com-
pensator/conjugator. Our analysis has also shown that when the
cavity is filled with two layers of materials; the first layer as-
sumed to be a lossless conventional material and the second
layer is taken to be the metamaterial with negative permittivity
and permittivity, the nontrivial 1-D solutions for such a cavity,
in principle, depend on the ratio of thicknesses of the two layers,
not the sum of thicknesses. In other words, the cavity can con-
ceptually be thin and can still be resonant, as long as the ratio
of thicknesses is satisfied in the special dispersion relation. This
can, in principle, provide possibility for having subwavelength
thin compact cavity resonators. Such subwavelength cavity res-
onators can lead to very interesting designs for various compact
subwavelength devices and components.
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