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AN IDEAL-BASED ZERO-DIVISOR GRAPH
OF 2-PRIMAL NEAR-RINGS

Patchirajulu Dheena and Balasubramanian Elavarasan

Abstract. In this paper, we give topological properties of collection of
prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum
of prime ideals, is a compact space, and Max(N), the maximal ideals of
N, forms a compact T1-subspace. We also study the zero-divisor graph
ΓI(R) with respect to the completely semiprime ideal I of N. We show
that ΓP(R), where P is a prime radical of N, is a connected graph with
diameter less than or equal to 3. We characterize all cycles in the graph
ΓP(R).

1. Preliminaries

In [3], Beck introduced the concept of a zero-divisor graph of a commuta-
tive ring with identity, but this work was mostly concerned with coloring of
rings. In [2], Anderson and Livingston associated a graph (simple) Γ(R) to a
commutative ring R with identity with vertices Z(R)∗ = Z(R)\{0}, the set of
nonzero zero-divisor of R, and for distinct x, y ∈ Z(R)∗, the vertices x, and y
are adjacent if and only if xy = 0. They investigated the interplay between the
ring-theoretic properties of R and the graph-theoretics properties of Γ(R).

In [9], Redmond has generalized the notion of the zero-divisor graph. For
a given ideal I of R, he defined an undirected graph ΓI(R) with vertices {x ∈
R\I : xy ∈ I for some y ∈ R\I}, where distinct vertices x and y are adjacent
if and only if xy ∈ I.

In this paper, we study the undirected graph ΓI(N) of near-rings for any
completely semiprime ideal I of N. We extend the results obtained by K. Samei
[11] for reduced rings to 2-primal near-rings. Clearly, reduced rings are 2-primal
near-rings.

Let N be a near-ring with identity. Let J be a completely semiprime ideal of
N. The zero-divisor graph of N with respect to the ideal J, denoted by ΓJ(N),
is the graph whose vertices are the set {x ∈ N\J : xy ∈ J for some y ∈ N\J}
with distinct vertices x and y are adjacent if and only if xy ∈ J. If J = 0, then
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ΓJ(N) = Γ(N), and J is a non-zero completely prime ideal of N if and only if
ΓJ(N) = φ.

Example 1.1. Let N = ( F F
0 F ), where F = {0, 1} is the field under addition

and multiplication modulo 2. Then its prime radical P =
{
( 0 0

0 0 ), ( 0 1
0 0 )

}
is a

completely reflexive ideal of the near-ring N and its ideal based zero-divisor
graph Γ̂P (N) is: ( 1 00 0 )

( 1 10 0 )
( 0 00 1 )
( 0 10 1 )

Remark 1.2. In the above example, N is a 2-primal near-ring, but neither
reduced nor commutative.

Throughout this paper N is a zero symmetric near-ring with identity unless
otherwise stated, and its prime radical is not a prime ideal of N.

Let P denote the prime radical, and let N(N) denote the set of nilpotent
elements of N. For any vertices x, y in a graph G, if x and y are adjacent, we
denote it as x ≈ y. A near-ring N is called a 2-primal if P = N(N). A near-ring
N is said to be reduced if N(N) = 0. Clearly, reduced near-rings are 2-primal,
but the converse need not be true (See Example 1.3 of [5]). A near-ring N is
called pm if each prime ideal in N is contained in a unique maximal ideal of
N.

We use Spec(N), Max(N), and Min(N) for the spectrum of prime ideals,
maximal ideal and minimal prime ideals of N, respectively.

For any ideal J of N and a ∈ N, we define V (a) = {P ∈ Spec(N) : a ∈ P}
and D(J) = Spec(N)\V (J). Let V (J) = ∩a∈JV (a). Then F = {V (J) : J is
an ideal of N} is closed under finite union and arbitrary intersections, so that
there is a topology on Spec(N) for which F is the family of closed sets. This
is called the Zariski topology. Note that V (A) = (〈J〉) for any subset A of N.
Let B = {D(a) : a ∈ N}. Then B is a basis for a topology on Spec(N).

The operations cl and int denote the closure and the interior in Spec(N).
We also set V

′
(a) = V (a) ∩Min(N); D

′
(a) = D(a) ∩Min(N).

For any subset S of N, we define PS = {n ∈ N : nS ⊆ P}. We set Supp(a) =
∩x∈PaV (x).

For distinct vertices x and y of ΓP(N), let d(x, y) be the length of the
shortest path from x to y. The diameter of a connected graph is the supremum
of the distances between vertices. The associated number e(a) for a vertex a
in ΓP(R) is defined by e(a) = max{d(a, b) : a 6= b}.

A graph G is called triangulated (hyper-triangulated) if each vertex (edge)
of G is a vertex (edge) of a triangle.
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A point P of Spec(N) is said to be quasi-isolated if P is a minimal prime
ideal and P is not contained in the union of all minimal prime ideals of N
different from P.

If a and b are the two vertices in ΓP(N), by c(a, b) we mean the length of the
smallest cycle containing a and b. For every two vertices a and b, all possible
cases for c(a, b) are given in Theorem 3.9. In this paper the notations of graph
theory are from [4], the notations of near-ring are from [8], and the notations
of topology are from [6] and [7].

2. Topological space of Spec(N)

In this section, we associate the near-ring properties of N and the topological
properties of Spec(N). We start this section with the following useful lemma.

Lemma 2.1. Let N be a near-ring. If A is a subset of Spec(N), then there
exists an ideal J = ∩A of N with cl(A) = V (J). In particular, if A is a closed
subset of Spec(N), then A = V (J) for some ideal J of N.

Proof. Let P1 ∈ V (J) and let D(x) be any arbitrary element in B such that
P1 ∈ D(x). Suppose that D(x)∩A = φ. Then x ∈ J, and so P1 ∈ V (x), a con-
tradiction. Thus D(x)∩A 6= φ, and hence, the result follows from Theorem 17.5
of [7]. ¤

In view of above lemma, we have the following remarks.

Remark 2.2. Let N be a near-ring.
(i) The closure of P ∈ Spec(N) is V (P ).
(ii) A point P ∈ Spec(N) is closed if and only if P ∈ Max(N).
(iii) If P, Q ∈ Spec(N) with cl(P ) = cl(Q), then P = Q.

With the help of Lemma 2.1, we have the following some important charac-
terizations of Spec(N).

Theorem 2.3. Let N be a near-ring.
(i) If F ⊆ Spec(N) is a closed set and D(K) is an open set in Spec(N)

satisfying F ∩Max(N) ⊆ D(K), then F ⊆ D(K).
(ii) Spec(N) is a compact space.
(iii) Max(N) is a compact T1 subspace.
(iv) If Spec(N) is normal, then Max(N) is a Hausdorff space.
(v) If P = ∩Max(N) and Max(N) is a Hausdorff space, then Spec(N) is

normal.

Proof. (i) Suppose that there is P ∈ F with P /∈ D(K). Then K +L ⊆ P since
F = V (L) for some ideal L of N. Hence, each maximal ideal M containing P
is also in F. Then M ∈ F ∩Max(N), and so M ∈ D(K), a contradiction.

(ii) Let B = {D(si) : si ∈ J} be the basis of N, for any subset J of N,
and suppose that Spec(N) = ∪j∈JD(sj). Then φ = ∩j∈J(Spec(N)\D(sj)) =
∩j∈JV (sj) = V (〈sj ; j ∈ J〉) = V (

∑
j∈J〈sj〉) which gives

∑
j∈J 〈sj〉 = N. Then
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there exists K ⊂ J finite with 1 =
∑

k∈K s
′
k, where s

′
k ∈ 〈sk〉 which implies

Spec(N) = ∪k∈KD(s
′
k). Indeed, clearly ∪k∈KD(s

′
k) ⊆ Spec(N) and suppose

P ∈ Spec(N) with P /∈ ∪k∈KD(s
′
k). Then s

′
k ∈ P for all k ∈ K which implies

1 ∈ P, a contradiction. Hence Spec(N) is a compact space.
(iii) Let B = {D(si) : si ∈ J} be the basis of N, for any subset J of N,

and suppose that Max(N) = (∪i∈JD(si)) ∩Max(N). Then

φ = ∩i∈J(Max(N)\D(si)) = (∩i∈JV (si)) ∩Max(N)

= V (
∑

i∈I

〈si〉) ∩Max(N)

which imply
∑

i∈J〈si〉 = N. Then there exists J1 ⊂ J finite with 1 =
∑

j∈J1
sj ,

and so Max(N) = ∪j∈J1D(sj).
Let M1 and M2 be two distinct elements in Max(N). Then M1 ∈ D(M2)

and M2 ∈ D(M1), and so Max(N) is a T1 space.
(iv) Let M1 and M2 be distinct elements in Max(N). Then {M1} and {M2}

are closed subsets in both Spec(N) and Max(N). If Spec(N) is normal, then
there exist disjoint open sets D(I) and D(J) such that {M1} ⊆ D(I) and
{M2} ⊆ D(J) for some ideals I and J of N, respectively. So, M1 ∈ D(I) ∩
Max(N), and M2 ∈ D(J)∩Max(N), which imply Max(N) is a Hausdorff space.

(v) Let F1 and F2 be two disjoint closed subsets of Spec(N). Then F1 ∩
Max(N) and F2 ∩Max(N) are also disjoint subsets of Max(N). By Theorem
32.3 in [7], Max(N) is normal. So, there are open subsets D(J) and D(J1) of
Spec(N) such that F1∩Max(N) ⊆ A, F2∩Max(N) ⊆ B and A∩B = φ, where
A = D(J) ∩Max(N) and B = D(J1) ∩Max(N).

Assume P = ∩Max(N). Then JJ1 ⊆ ∩Max(N) = P since D(J) ∩D(J1) =
D(JJ1), and so D(J) ∩ D(J1) = φ. By (i), we have F1 ⊆ D(J) and F2 ⊆
D(J1). ¤

Theorem 2.4. Let N be a 2-primal near-ring. Then PS = ∩V (PS) for any
subset S of N.

Proof. Clearly, PS ⊆ ∩V (PS). Let a ∈ N\PS . Then as /∈ P for some P ∈
Spec(N) and s ∈ S which implies PS ⊆ P. Thus, a /∈ P ∈ V (PS), and hence,
∩V (PS) ⊆ PS . ¤

Lemma 2.5. Let N be a 2-primal near-ring and let a, b ∈ N. Then int V (a) ⊆
int V (b) if and only if Pa ⊆ Pb.

Proof. Let int V (a) ⊆ int V (b) for any a, b ∈ N and let x ∈ Pa. Then
Spec(N)\V (x) ⊆ int V (a) ⊆ int V (b) ⊆ V (b), which gives bx ∈ P, so x ∈ Pb.

Conversely, let Pa ⊆ Pb and let P ∈ int V (a). Suppose P /∈ V (b). By Lemma
2.1, if P /∈ Spec(N)\int V (a), then there is 0 6= c ∈ N with Spec(N)\int V (a) ⊆
V (c) and c /∈ P. Clearly ac ∈ P and bc /∈ P. Then c ∈ Pa and c /∈ Pb, a contra-
diction. ¤
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Lemma 2.6. Let N be a 2-primal near-ring. Then for every a ∈ N, cl(D(a)) =
V (Pa) = Supp(a) = Spec(N)\int V (a).

Proof. Let a ∈ N, P ∈ V (Pa), and let D(x) be any arbitrary basis element in
B such that P ∈ D(x). Let P /∈ D(a) and suppose D(a) ∩ D(x) = φ. Then
D(xa) ⊆ D(x)∩D(a) = φ, and so xa ∈ P which implies x ∈ P, a contradiction.
Thus, D(a) ∩D(x) 6= φ, and hence, V (Pa) = cl(D(a)).

Let P ∈ cl(D(a)) and suppose that P ∈ int V (a). Then there exists an open
set U of Spec(N) with P ∈ U ⊆ V (a), and so P /∈ Spec(N)\U, a contradiction.
Let P ∈ Spec(N)\int V (a) and let D(x) be any arbitrary element in B with
P ∈ D(x). Suppose that D(x) ∩ D(a) = φ. Then P ∈ D(Pa) ⊆ V (a), a
contradiction. ¤

The following result gives the condition under which a subset of Spec(N)
of 2-primal near-ring to be clopen, which will be used in our main result in
Section 3.

Lemma 2.7. Let N be a 2-primal near-ring. Then A is a clopen subset of
Spec(N) if and only if there exists an element a ∈ N with a ∈ P or −1+a ∈ P
for all P ∈ Spec(N) and A = V (a).

Proof. Suppose that A is a clopen subset of Spec(N). Let J = ∩A and J1 =
∩Ac. Then by Lemma 2.1 A = cl(A) = V (J) and Ac = V (J1). So, V (J) ∩
V (J1) = φ, which gives J + J1 = N. Then there exists a ∈ J and a

′ ∈ J1 such
that a + a

′
= 1. Therefore a(−1 + a) ∈ P. Thus, for every prime ideal P, we

have a ∈ P or −1 + a ∈ P. Consequently, A = V (J) = V (a). The converse is
trivial. ¤

Theorem 2.8. Let N be a 2-primal and pm near-ring. Then Max(N) is a
compact Hausdorff space.

Proof. By Lemma 2.3(iii), Max(N) is a compact space. Let M1,M2 ∈ Max(N)
and consider the multiplicative subset

S = {a1b1 · · · an−1bn−1anbn : ai /∈ M1, bi /∈ M2, n, i ∈ {1, 2, . . . , n}}.
Suppose that 0 /∈ S. Then there is a prime ideal P of N with P ∩ S = φ

and hence P ⊆ M1 ∩M2, a contradiction. So, there exist ai /∈ M1 and bi /∈ M2

such that a1b1 · · · anbn = 0. We now have elements x1 /∈ M1 and x2 /∈ M2 with
x1x2 ∈ P, which imply D(x1) and D(x2) are disjoint with M1 ∈ D(x1) and
M2 ∈ D(x2). ¤

The following is an immediate corollary of Theorem 2.8.

Corollary 2.9 ([12], Lemma 2.1). If R is a 2-primal and pm ring, then Max(R)
is a compact Hausdorff space.
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3. Distance and cycles in ΓP(N)

In this section, we associate the near-ring properties of N and the graph
properties of ΓP(N).

Theorem 3.1. Let N be a 2-primal near-ring. Then ΓP(N) is connected and
diam ΓP(N) ≤ 3.

Proof. Let x, y ∈ ΓP(N) be distinct. If xy ∈ P, then d(x, y) = 1. Otherwise,
there are a, b ∈ N\(P ∪ {x, y}) such that ax, by ∈ P.

If a = b, then x ≈ a ≈ y is a path of length 2. Thus, we assume that
a 6= b. If ab ∈ P, then x ≈ a ≈ b ≈ y is a path of length 3; and hence
d(x, y) ≤ 3. Otherwise, x ≈ ab ≈ y is a path of length 2; thus, d(x, y) = 2.
Hence, d(x, y) ≤ 3. ¤
Lemma 3.2. Let N be a 2-primal near-ring and let a, b ∈ ΓP(N). Then

(i) Supp(a)∪ Supp(b) 6= Spec(N) if and only if Supp(a)∪ Supp(b) ⊆ V (c)
for some c ∈ ΓP(N).

(ii) D(a) ∩ D(b) 6= φ if and only if there exists c ∈ ΓP(N) such that φ 6=
D(a) ∩D(b) ⊆ V (c).

Proof. (i) Suppose Supp(a)∪Supp(b) 6= Spec(N). Then there exists an element
P ∈ Spec(N) with x, y /∈ P for some x ∈ Pa and y ∈ Pb. So, xy /∈ P. It is easy
to see that Supp(a) ∪ Supp(b) ⊆ V (xy).

Conversely, suppose that Supp(a) ∪ Supp(b) = Spec(N). Then c ∈ P, a
contradiction. Hence, Supp(a) ∪ Supp(b) 6= Spec(N).

(ii) Straightforward. ¤
Now by Theorem 3.1, and Lemma 3.2, we have the following characteriza-

tions of the diameter of ΓP(N).

Theorem 3.3. Let N be a 2-primal near-ring and let a, b ∈ ΓP(N) be distinct
elements. Then

(i) For any c ∈ ΓP(N), we have c is adjacent to both a and b if and only
if Supp(a) ∪ Supp(b) ⊆ V (c).

(ii) d(a, b) = 1 if and only if D(a) ∩D(b) = φ.
(iii) d(a, b) = 2 if and only if D(a) ∩ D(b) 6= φ and Supp(a) ∪ Supp(b) 6=

Spec(N).
(iv) d(a, b) = 3 if and only if D(a) ∩ D(b) 6= φ and Supp(a) ∪ Supp(b) =

Spec(N).

Proof. (i) Let c ∈ ΓP(N). Then c is adjacent to both a and b if and only if
D(a) ∩D(c) = D(b) ∩D(c) = φ if and only if Supp(a) ∪ Supp(b) ⊆ V (c).

(ii) Trivial.
(iii) Let a, b ∈ ΓP(N). Then d(a, b) = 2 if and only if ab /∈ P and there

exists c ∈ ΓP(N) such that c is adjacent to both a and b if and only if D(a) ∩
D(b) 6= φ and Supp(a) ∪ Supp(b) ⊆ V (c) if and only D(a) ∩ D(b) 6= φ and
Supp(a) ∪ Supp(b) 6= Spec(N) by Lemma 3.2.
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(iv) By Theorem 3.1, d(a, b) = 3 if and only if d(a, b) 6= 1, 2 if and only if
D(a) ∩D(b) 6= φ and Supp(a) ∪ Supp(b) = Spec(N) by (i) and (ii). ¤

Since the reduced commutative ring is also a 2-primal near-ring, the following
corollary is immediate.

Corollary 3.4 ([11], Proposition 2.2). Let R be a commutative reduced ring
and let a, b, c ∈ Γ(R) be distinct elements. Then

(i) c is adjacent to both a and b if and only if Supp(a) ∪ Supp(b) ⊆ V (c).
(ii) d(a, b) = 1 if and only if D(a) ∩D(b) = φ.
(iii) d(a, b) = 2 if and only if D(a) ∩ D(b) 6= φ and Supp(a) ∪ Supp(b) 6=

Spec(R).
(iv) d(a, b) = 3 if and only if D(a) ∩ D(b) 6= φ and Supp(a) ∪ Supp(b) =

Spec(R).

The following theorem shows that every minimal prime ideal of 2-primal
near-ring that doesn’t contain both a and Pa for any a ∈ N.

Theorem 3.5. Let N be a 2-primal near-ring and let a ∈ N. Then V
′
(a) =

D
′
(Pa) and D

′
(a) = V

′
(Pa). In particular, V

′
(a) and V

′
(Pa) are disjoint clopen

subsets of Spec(N). Also, Min(N) is a Hausdorff space.

Proof. Let P ∈ V
′
(a) and suppose P /∈ D

′
(Pa). Let M = {a, a2, . . .} be mul-

tiplicative closed system and let S = {I/ N : I ⊆ P and I ∩M = φ}. Since
Pa ∈ S, S 6= φ. Then by Zorn’s Lemma, there exists a maximal ideal P in S
with P ⊆ P and P ∩M = φ. Let J and J1 be ideals of N such that P ⊂ J and
P ⊂ J1.

Case (i): If P ⊂ J and P ⊂ J1, then JJ1 * P. So JJ1 * P .
Case (ii): If J ⊆ P and J1 ⊆ P, then J ∩ M 6= φ and J1 ∩ M 6= φ. Then

there exist j ∈ J ∩ M and j1 ∈ J1 ∩ M with j
′
j
′
1 ∈ M for some j

′ ∈ J and
j
′
1 ∈ J1, which gives JJ1 ∩M 6= φ. So, JJ1 * P .

Case (iii): If J ⊆ P and P ⊂ J1, then by Case (ii), we have JP * P . So
JJ1 * P .

Thus, P is a prime ideal with P ⊂ P, contradicting the minimality of P.
Hence, V

′
(a) = D

′
(Pa). Similarly, we have D

′
(a) = V

′
(Pa).

Let P 6= P
′ ∈ Min(N) and a ∈ P\P ′

. Then V
′
(a) and V

′
(Pa) are disjoint

open sets containing P and P
′
, respectively. ¤

Lemma 3.6. Let N be a 2-primal near-ring and let a ∈ ΓP(N). If e(a) = 1,
then Pa is a completely prime ideal of N.

Proof. Straightforward. ¤

Theorem 3.7. Let N be a 2-primal near-ring and 2 /∈ P. Then
(i) ΓP(N) is a triangulated graph if and only if Spec(N) has no quasi-

isolated points.
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(ii) ΓP(N) is a hyper-triangulated graph if and only if Spec(N) is connected
space and for any a, b ∈ ΓP(N), we have that ab ∈ P and D(a)∪D(b) 6=
Spec(N) imply Supp(a) ∪ Supp(b) 6= Spec(N).

(iii) If 2 /∈ ΓP(N), then every vertex of ΓP(N) is a 4-cycle vertex.

Proof. (i) Let ΓP(N) be a triangulated graph and suppose Spec(N) has a quasi-
isolated point P. Then D

′
(Pa) = V

′
(a) = {P} for some a ∈ P. Clearly, a ∈

ΓP(N), and since ΓP(N) is a triangulated graph, there are b, c ∈ ΓP(N) such
that ab, ac, bc ∈ P. Thus, D

′
(a) ⊆ V

′
(b), and φ 6= D

′
(c) ⊆ V

′
(a)∩V

′
(b) = {P},

which gives V
′
(b) = Min(N), a contradiction. Hence, Spec(N) does not contain

quasi-isolated points.
Conversely, suppose that Spec(N) does not contain quasi-isolated points and

take a ∈ ΓP(N). Then there are two different points P, P
′ ∈ V

′
(a) = D

′
(Pa).

Since Pa * P
′
, there exists z ∈ Pa such that z /∈ P

′
. Also, there exists y ∈ P

with y /∈ P
′
. Clearly, zy /∈ P and P ∈ V

′
(zy) = D

′
(Pzy), which imply P /∈

Supp(zy). Thus Supp(a) ∪ Supp(zy) 6= Spec(N). Then by Lemma 3.2, there
exists c ∈ ΓP(N) such that Supp(a)∪ Supp(zy) ⊆ V (c), so by Theorem 3.3 (i),
c is adjacent to both a and zy.

(ii) Let ΓP(N) be a hyper-triangulated graph. If Spec(N) is not connected,
then by Lemma 2.7, there exists an element a ∈ ΓP(N). Since Supp(a) ∪
supp(−1 + a) = Spec(N), by Theorem 3.3, there is no vertex adjacent to both
a and −1 + a, a contradiction. The second part follows from Lemma 3.2 and
Theorem 3.3.

Conversely, let a ≈ b be an edge in ΓP(N). Since D(a) ∩ D(b) = φ and
Spec(N) is connected, D(a)∪D(b) 6= Spec(N). Thus by hypothesis, Supp(a)∪
Supp(b) 6= Spec(N). Therefore, by Lemma 3.2 and Theorem 3.3, there exists a
vertex adjacent to both a and b.

(iii) Let a ∈ ΓP(N). Then there exists b ∈ N\P such that ab ∈ P. Since
2 /∈ ΓP(N), we have 2a 6= b and a 6= 2b. So a, b, 2a and 2b are all distinct. Also,
ab, (2a)b, (2a)(2b) and a(2b) belong to P. Hence a, b, 2a and 2b is a cycle with
length 4 containing a. ¤

As an immediate application of Theorem 3.7, we have the following corollary.

Corollary 3.8 ([11], Theorem 3.1). Let R be a commutative reduced ring.
Then

(i) Γ(R) is a triangulated graph if and only if Spec(R) has no quasi-isolated
points.

(ii) Γ(R) is a hyper-triangulated graph if and only if Spec(R) is connected
space and for any a, b ∈ Γ(R), we have that ab ∈ P and D(a) ∪D(b) 6=
Spec(R) imply Spec(R) ∪ Spec(R) 6= Spec(R).

(iii) If 2 /∈ Z(R), then every vertex of Γ(R) is a 4-cycle vertex.

The next theorem will help to characterize all possible cycles in the ideal-
based zero-divisor graph.
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Theorem 3.9. Let N be a 2-primal near-ring, a, b ∈ ΓP(N) and 2 /∈ P. If
2 /∈ ΓP(N), then

(i) c(a, b) = 3 if and only if D(a) ∩ D(b) = φ and Supp(a) ∪ Supp(b) 6=
Spec(N).

(ii) c(a, b) = 4 if and only if either D(a) ∩ D(b) 6= φ and Supp(a) ∪
Supp(b) 6= Spec(N), or D(a) ∩ D(b) = φ, and Supp(a) ∪ Supp(b) =
Spec(N).

(iii) c(a, b) = 6 if and only if D(a) ∩ D(b) 6= φ and Supp(a) ∪ Supp(b) =
Spec(N).

Proof. (i) Follows from Lemma 3.2 and Theorem 3.3.
(ii) If D(a)∩D(b) = φ and Supp(a)∪Supp(b) = Spec(N), there exists a path

with vertices a, b, 2a and 2b, i.e., c(a, b) ≤ 4. Now (i) implies that c(a, b) = 4.
If D(a) ∩D(b) 6= φ and Supp(a) ∪ Supp(b) 6= Spec(N), then by Theorem 3.3,
there exists c ∈ ΓP(N) such that c is adjacent to both a and b. Thus, the path
with vertices a, c, b and 2c is a cycle with length 4.

(iii) If c(a, b) = 6, then parts (i) and (ii) imply that D(a) ∩ D(b) 6= φ and
Supp(a)∪ Supp(b) = Spec(N). Conversely, let D(a)∩D(b) 6= φ and Supp(a)∪
Supp(b) = Spec(N). Then by Theorem 3.3, d(a, b) = 3. Also, (i) and (ii) implies
that c(a, b) > 4. Hence, there are vertices c and d such that ac, cd, bd ∈ P.
Now, if some vertex e is adjacent to b, then be ∈ P. Therefore, Spec(N) =
Supp(a) ∪ Supp(b) ⊆ V (c) ∪ V (e). However, d(a, b) = 3 implies that a is not
adjacent to e, i.e., c(a, b) = 6. If we consider the vertices 2c and 2d, then we
have a cycle with vertices a, c, b, 2d and 2c, i.e., c(a, b) = 6. ¤

From Theorem 3.9, we have the following corollary.

Corollary 3.10 ([11], Theorem 3.4). Let R be a commutative reduced ring,
a, b ∈ Γ(R), and 2 /∈ Γ(R). Then

(i) c(a, b) = 3 if and only if D(a) ∩ D(b) = φ and Supp(a) ∪ Supp(b) 6=
Spec(R).

(ii) c(a, b) = 4 if and only if either D(a) ∩ D(b) 6= φ and Supp(a) ∪
Supp(b) 6= Spec(R) or D(a) ∩ D(b) = φ and Supp(a) ∪ Supp(b) =
Spec(R).

(iii) c(a, b) = 6 if and only if D(a) ∩ D(b) 6= φ and Supp(a) ∪ Supp(b) =
Spec(R).

As an immediate application of Theorem 3.9 or Corollary 3.10, we have the
following corollary.

Corollary 3.11 ([11], Corollary 3.5). Let R be a commutative reduced ring
and 2 /∈ Γ(R). Then every edge of a cycle with length 3 or 4.

Proof. Let a ≈ b be an edge in a cycle. Then ab ∈ P and D(a) ∩ D(b) = φ.
If Supp(a) ∪ Supp(b) 6= Spec(R), then by Corollary 3.10, we have c(a, b) = 3.
Otherwise, Supp(a) ∪ Supp(b) = Spec(R). Then by Corollary 3.10, we have
c(a, b) = 4. ¤
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