AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

PATCHIRAJULU DHEENA AND BALASUBRAMANIAN ELAVARASAN

ABSTRACT. In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that $\operatorname{Spec}(N)$, the spectrum of prime ideals, is a compact space, and $\operatorname{Max}(N)$, the maximal ideals of N, forms a compact T_1 -subspace. We also study the zero-divisor graph $\Gamma_I(R)$ with respect to the completely semiprime ideal I of N. We show that $\Gamma_{\mathbb{P}}(R)$, where \mathbb{P} is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph $\Gamma_{\mathbb{P}}(R)$.

1. Preliminaries

In [3], Beck introduced the concept of a zero-divisor graph of a commutative ring with identity, but this work was mostly concerned with coloring of rings. In [2], Anderson and Livingston associated a graph (simple) $\Gamma(R)$ to a commutative ring R with identity with vertices $Z(R)^* = Z(R) \setminus \{0\}$, the set of nonzero zero-divisor of R, and for distinct $x, y \in Z(R)^*$, the vertices x, and y are adjacent if and only if xy = 0. They investigated the interplay between the ring-theoretic properties of R and the graph-theoretics properties of $\Gamma(R)$.

In [9], Redmond has generalized the notion of the zero-divisor graph. For a given ideal I of R, he defined an undirected graph $\Gamma_I(R)$ with vertices $\{x \in R \setminus I : xy \in I \text{ for some } y \in R \setminus I\}$, where distinct vertices x and y are adjacent if and only if $xy \in I$.

In this paper, we study the undirected graph $\Gamma_I(N)$ of near-rings for any completely semiprime ideal I of N. We extend the results obtained by K. Samei [11] for reduced rings to 2-primal near-rings. Clearly, reduced rings are 2-primal near-rings.

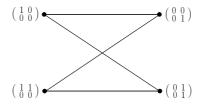
Let N be a near-ring with identity. Let J be a completely semiprime ideal of N. The zero-divisor graph of N with respect to the ideal J, denoted by $\Gamma_J(N)$, is the graph whose vertices are the set $\{x \in N \setminus J : xy \in J \text{ for some } y \in N \setminus J\}$ with distinct vertices x and y are adjacent if and only if $xy \in J$. If J = 0, then

Received November 1, 2007; Revised July 13, 2009. 2000 Mathematics Subject Classification. 16Y30, 13A99. Key words and phrases. graph, prime ideal, 2-primal, Zariski topology and cycle.

©2009 The Korean Mathematical Society

 $\Gamma_J(N) = \Gamma(N)$, and J is a non-zero completely prime ideal of N if and only if $\Gamma_J(N) = \phi$.

Example 1.1. Let $N = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where $F = \{0,1\}$ is the field under addition and multiplication modulo 2. Then its prime radical $P = \{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\}$ is a completely reflexive ideal of the near-ring N and its ideal based zero-divisor graph $\widehat{\Gamma}_P(N)$ is:



Remark 1.2. In the above example, N is a 2-primal near-ring, but neither reduced nor commutative.

Throughout this paper N is a zero symmetric near-ring with identity unless otherwise stated, and its prime radical is not a prime ideal of N.

Let \mathbb{P} denote the prime radical, and let N(N) denote the set of nilpotent elements of N. For any vertices x,y in a graph G, if x and y are adjacent, we denote it as $x \approx y$. A near-ring N is called a 2-primal if $\mathbb{P} = N(N)$. A near-ring N is said to be reduced if N(N) = 0. Clearly, reduced near-rings are 2-primal, but the converse need not be true (See Example 1.3 of [5]). A near-ring N is called pm if each prime ideal in N is contained in a unique maximal ideal of N.

We use $\operatorname{Spec}(N)$, $\operatorname{Max}(N)$, and $\operatorname{Min}(N)$ for the spectrum of prime ideals, maximal ideal and minimal prime ideals of N, respectively.

For any ideal J of N and $a \in N$, we define $V(a) = \{P \in \operatorname{Spec}(N) : a \in P\}$ and $D(J) = \operatorname{Spec}(N) \setminus V(J)$. Let $V(J) = \cap_{a \in J} V(a)$. Then $F = \{V(J) : J \text{ is an ideal of } N\}$ is closed under finite union and arbitrary intersections, so that there is a topology on $\operatorname{Spec}(N)$ for which F is the family of closed sets. This is called the Zariski topology. Note that $V(A) = (\langle J \rangle)$ for any subset A of N. Let $\mathcal{B} = \{D(a) : a \in N\}$. Then \mathcal{B} is a basis for a topology on $\operatorname{Spec}(N)$.

The operations cl and int denote the closure and the interior in $\operatorname{Spec}(N)$. We also set $V'(a) = V(a) \cap \operatorname{Min}(N)$; $D'(a) = D(a) \cap \operatorname{Min}(N)$.

For any subset S of N, we define $\mathbb{P}_S = \{n \in N : nS \subseteq \mathbb{P}\}$. We set $\mathrm{Supp}(a) = \bigcap_{x \in \mathbb{P}_a} V(x)$.

For distinct vertices x and y of $\Gamma_{\mathbb{P}}(N)$, let d(x, y) be the length of the shortest path from x to y. The diameter of a connected graph is the supremum of the distances between vertices. The associated number e(a) for a vertex a in $\Gamma_{\mathbb{P}}(R)$ is defined by $e(a) = \max\{d(a, b) : a \neq b\}$.

A graph G is called triangulated (hyper-triangulated) if each vertex (edge) of G is a vertex (edge) of a triangle.

A point P of $\operatorname{Spec}(N)$ is said to be quasi-isolated if P is a minimal prime ideal and P is not contained in the union of all minimal prime ideals of N different from P.

If a and b are the two vertices in $\Gamma_{\mathbb{P}}(N)$, by c(a, b) we mean the length of the smallest cycle containing a and b. For every two vertices a and b, all possible cases for c(a, b) are given in Theorem 3.9. In this paper the notations of graph theory are from [4], the notations of near-ring are from [8], and the notations of topology are from [6] and [7].

2. Topological space of Spec(N)

In this section, we associate the near-ring properties of N and the topological properties of $\operatorname{Spec}(N)$. We start this section with the following useful lemma.

Lemma 2.1. Let N be a near-ring. If A is a subset of $\operatorname{Spec}(N)$, then there exists an ideal $J = \cap A$ of N with $\operatorname{cl}(A) = V(J)$. In particular, if A is a closed subset of $\operatorname{Spec}(N)$, then A = V(J) for some ideal J of N.

Proof. Let $P_1 \in V(J)$ and let D(x) be any arbitrary element in \mathcal{B} such that $P_1 \in D(x)$. Suppose that $D(x) \cap A = \phi$. Then $x \in J$, and so $P_1 \in V(x)$, a contradiction. Thus $D(x) \cap A \neq \phi$, and hence, the result follows from Theorem 17.5 of [7].

In view of above lemma, we have the following remarks.

Remark 2.2. Let N be a near-ring.

- (i) The closure of $P \in \operatorname{Spec}(N)$ is V(P).
- (ii) A point $P \in \operatorname{Spec}(N)$ is closed if and only if $P \in \operatorname{Max}(N)$.
- (iii) If $P, Q \in \text{Spec}(N)$ with cl(P) = cl(Q), then P = Q.

With the help of Lemma 2.1, we have the following some important characterizations of $\operatorname{Spec}(N)$.

Theorem 2.3. Let N be a near-ring.

- (i) If $F \subseteq \operatorname{Spec}(N)$ is a closed set and D(K) is an open set in $\operatorname{Spec}(N)$ satisfying $F \cap \operatorname{Max}(N) \subseteq D(K)$, then $F \subseteq D(K)$.
- (ii) Spec(N) is a compact space.
- (iii) Max(N) is a compact T_1 subspace.
- (iv) If Spec(N) is normal, then Max(N) is a Hausdorff space.
- (v) If $\mathbb{P} = \bigcap \operatorname{Max}(N)$ and $\operatorname{Max}(N)$ is a Hausdorff space, then $\operatorname{Spec}(N)$ is normal.
- *Proof.* (i) Suppose that there is $P \in F$ with $P \notin D(K)$. Then $K + L \subseteq P$ since F = V(L) for some ideal L of N. Hence, each maximal ideal M containing P is also in F. Then $M \in F \cap \operatorname{Max}(N)$, and so $M \in D(K)$, a contradiction.
- (ii) Let $\mathcal{B} = \{D(s_i) : s_i \in J\}$ be the basis of N, for any subset J of N, and suppose that $\operatorname{Spec}(N) = \bigcup_{j \in J} D(s_j)$. Then $\phi = \bigcap_{j \in J} (\operatorname{Spec}(N) \setminus D(s_j)) = \bigcap_{j \in J} V(s_j) = V(\langle s_j; j \in J \rangle) = V(\sum_{j \in J} \langle s_j \rangle)$ which gives $\sum_{j \in J} \langle s_j \rangle = N$. Then

there exists $K \subset J$ finite with $1 = \sum_{k \in K} s_k'$, where $s_k' \in \langle s_k \rangle$ which implies $\operatorname{Spec}(N) = \bigcup_{k \in K} D(s_k')$. Indeed, clearly $\bigcup_{k \in K} D(s_k') \subseteq \operatorname{Spec}(N)$ and suppose $P \in \operatorname{Spec}(N)$ with $P \notin \bigcup_{k \in K} D(s_k')$. Then $s_k' \in P$ for all $k \in K$ which implies $1 \in P$, a contradiction. Hence $\operatorname{Spec}(N)$ is a compact space.

(iii) Let $\mathcal{B} = \{D(s_i) : s_i \in J\}$ be the basis of N, for any subset J of N, and suppose that $Max(N) = (\bigcup_{i \in J} D(s_i)) \cap Max(N)$. Then

$$\phi = \bigcap_{i \in J} (\operatorname{Max}(N) \backslash D(s_i)) = (\bigcap_{i \in J} V(s_i)) \cap \operatorname{Max}(N)$$
$$= V(\sum_{i \in I} \langle s_i \rangle) \cap \operatorname{Max}(N)$$

which imply $\sum_{i \in J} \langle s_i \rangle = N$. Then there exists $J_1 \subset J$ finite with $1 = \sum_{j \in J_1} s_j$, and so $\text{Max}(N) = \bigcup_{j \in J_1} D(s_j)$.

Let M_1 and M_2 be two distinct elements in Max(N). Then $M_1 \in D(M_2)$ and $M_2 \in D(M_1)$, and so Max(N) is a T_1 space.

- (iv) Let M_1 and M_2 be distinct elements in Max(N). Then $\{M_1\}$ and $\{M_2\}$ are closed subsets in both Spec(N) and Max(N). If Spec(N) is normal, then there exist disjoint open sets D(I) and D(J) such that $\{M_1\} \subseteq D(I)$ and $\{M_2\} \subseteq D(J)$ for some ideals I and J of N, respectively. So, $M_1 \in D(I) \cap Max(N)$, and $M_2 \in D(J) \cap Max(N)$, which imply Max(N) is a Hausdorff space.
- (v) Let F_1 and F_2 be two disjoint closed subsets of $\operatorname{Spec}(N)$. Then $F_1 \cap \operatorname{Max}(N)$ and $F_2 \cap \operatorname{Max}(N)$ are also disjoint subsets of $\operatorname{Max}(N)$. By Theorem 32.3 in [7], $\operatorname{Max}(N)$ is normal. So, there are open subsets D(J) and $D(J_1)$ of $\operatorname{Spec}(N)$ such that $F_1 \cap \operatorname{Max}(N) \subseteq A$, $F_2 \cap \operatorname{Max}(N) \subseteq B$ and $A \cap B = \phi$, where $A = D(J) \cap \operatorname{Max}(N)$ and $B = D(J_1) \cap \operatorname{Max}(N)$.

Assume $\mathbb{P} = \cap \operatorname{Max}(N)$. Then $JJ_1 \subseteq \cap \operatorname{Max}(N) = \mathbb{P}$ since $D(J) \cap D(J_1) = D(JJ_1)$, and so $D(J) \cap D(J_1) = \phi$. By (i), we have $F_1 \subseteq D(J)$ and $F_2 \subseteq D(J_1)$.

Theorem 2.4. Let N be a 2-primal near-ring. Then $\mathbb{P}_S = \cap V(\mathbb{P}_S)$ for any subset S of N.

Proof. Clearly, $\mathbb{P}_S \subseteq \cap V(\mathbb{P}_S)$. Let $a \in N \setminus \mathbb{P}_S$. Then $as \notin P$ for some $P \in \operatorname{Spec}(N)$ and $s \in S$ which implies $\mathbb{P}_S \subseteq P$. Thus, $a \notin P \in V(\mathbb{P}_S)$, and hence, $\cap V(\mathbb{P}_S) \subseteq \mathbb{P}_S$.

Lemma 2.5. Let N be a 2-primal near-ring and let $a, b \in N$. Then int $V(a) \subseteq int \ V(b)$ if and only if $\mathbb{P}_a \subseteq \mathbb{P}_b$.

Proof. Let $int\ V(a) \subseteq int\ V(b)$ for any $a,b \in N$ and let $x \in \mathbb{P}_a$. Then $\operatorname{Spec}(N) \backslash V(x) \subseteq int\ V(a) \subseteq int\ V(b) \subseteq V(b)$, which gives $bx \in \mathbb{P}$, so $x \in \mathbb{P}_b$.

Conversely, let $\mathbb{P}_a \subseteq \mathbb{P}_b$ and let $P \in int\ V(a)$. Suppose $P \notin V(b)$. By Lemma 2.1, if $P \notin \operatorname{Spec}(N) \setminus int\ V(a)$, then there is $0 \neq c \in N$ with $\operatorname{Spec}(N) \setminus int\ V(a) \subseteq V(c)$ and $c \notin P$. Clearly $ac \in \mathbb{P}$ and $bc \notin \mathbb{P}$. Then $c \in \mathbb{P}_a$ and $c \notin \mathbb{P}_b$, a contradiction.

Lemma 2.6. Let N be a 2-primal near-ring. Then for every $a \in N$, $cl(D(a)) = V(\mathbb{P}_a) = \operatorname{Supp}(a) = \operatorname{Spec}(N) \setminus \operatorname{int} V(a)$.

Proof. Let $a \in N$, $P \in V(\mathbb{P}_a)$, and let D(x) be any arbitrary basis element in \mathcal{B} such that $P \in D(x)$. Let $P \notin D(a)$ and suppose $D(a) \cap D(x) = \phi$. Then $D(xa) \subseteq D(x) \cap D(a) = \phi$, and so $xa \in \mathbb{P}$ which implies $x \in P$, a contradiction. Thus, $D(a) \cap D(x) \neq \phi$, and hence, $V(\mathbb{P}_a) = cl(D(a))$.

Let $P \in cl(D(a))$ and suppose that $P \in int\ V(a)$. Then there exists an open set U of $\operatorname{Spec}(N)$ with $P \in U \subseteq V(a)$, and so $P \notin \operatorname{Spec}(N) \setminus U$, a contradiction. Let $P \in \operatorname{Spec}(N) \setminus int\ V(a)$ and let D(x) be any arbitrary element in $\mathcal B$ with $P \in D(x)$. Suppose that $D(x) \cap D(a) = \phi$. Then $P \in D(\mathbb P_a) \subseteq V(a)$, a contradiction.

The following result gives the condition under which a subset of $\operatorname{Spec}(N)$ of 2-primal near-ring to be clopen, which will be used in our main result in Section 3.

Lemma 2.7. Let N be a 2-primal near-ring. Then A is a clopen subset of $\operatorname{Spec}(N)$ if and only if there exists an element $a \in N$ with $a \in P$ or $-1+a \in P$ for all $P \in \operatorname{Spec}(N)$ and A = V(a).

Proof. Suppose that A is a clopen subset of $\operatorname{Spec}(N)$. Let $J=\cap A$ and $J_1=\cap A^c$. Then by Lemma 2.1 A=cl(A)=V(J) and $A^c=V(J_1)$. So, $V(J)\cap V(J_1)=\phi$, which gives $J+J_1=N$. Then there exists $a\in J$ and $a'\in J_1$ such that a+a'=1. Therefore $a(-1+a)\in \mathbb{P}$. Thus, for every prime ideal P, we have $a\in P$ or $-1+a\in P$. Consequently, A=V(J)=V(a). The converse is trivial.

Theorem 2.8. Let N be a 2-primal and pm near-ring. Then Max(N) is a compact Hausdorff space.

Proof. By Lemma 2.3(iii), Max(N) is a compact space. Let $M_1, M_2 \in Max(N)$ and consider the multiplicative subset

$$S = \{a_1b_1 \cdots a_{n-1}b_{n-1}a_nb_n : a_i \notin M_1, b_i \notin M_2, n, i \in \{1, 2, \dots, n\}\}.$$

Suppose that $0 \notin S$. Then there is a prime ideal P of N with $P \cap S = \phi$ and hence $P \subseteq M_1 \cap M_2$, a contradiction. So, there exist $a_i \notin M_1$ and $b_i \notin M_2$ such that $a_1b_1 \cdots a_nb_n = 0$. We now have elements $x_1 \notin M_1$ and $x_2 \notin M_2$ with $x_1x_2 \in \mathbb{P}$, which imply $D(x_1)$ and $D(x_2)$ are disjoint with $M_1 \in D(x_1)$ and $M_2 \in D(x_2)$.

The following is an immediate corollary of Theorem 2.8.

Corollary 2.9 ([12], Lemma 2.1). If R is a 2-primal and pm ring, then Max(R) is a compact Hausdorff space.

3. Distance and cycles in $\Gamma_{\mathbb{P}}(N)$

In this section, we associate the near-ring properties of N and the graph properties of $\Gamma_{\mathbb{P}}(N)$.

Theorem 3.1. Let N be a 2-primal near-ring. Then $\Gamma_{\mathbb{P}}(N)$ is connected and diam $\Gamma_{\mathbb{P}}(N) \leq 3$.

Proof. Let $x, y \in \Gamma_{\mathbb{P}}(N)$ be distinct. If $xy \in \mathbb{P}$, then d(x, y) = 1. Otherwise, there are $a, b \in N \setminus (\mathbb{P} \cup \{x, y\})$ such that $ax, by \in \mathbb{P}$.

If a=b, then $x\approx a\approx y$ is a path of length 2. Thus, we assume that $a\neq b$. If $ab\in \mathbb{P}$, then $x\approx a\approx b\approx y$ is a path of length 3; and hence $d(x,y)\leq 3$. Otherwise, $x\approx ab\approx y$ is a path of length 2; thus, d(x,y)=2. Hence, $d(x,y)\leq 3$.

Lemma 3.2. Let N be a 2-primal near-ring and let $a, b \in \Gamma_{\mathbb{P}}(N)$. Then

- (i) $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$ if and only if $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \subseteq V(c)$ for some $c \in \Gamma_{\mathbb{P}}(N)$.
- (ii) $D(a) \cap D(b) \neq \phi$ if and only if there exists $c \in \Gamma_{\mathbb{P}}(N)$ such that $\phi \neq D(a) \cap D(b) \subseteq V(c)$.

Proof. (i) Suppose Supp $(a) \cup$ Supp $(b) \neq$ Spec(N). Then there exists an element $P \in$ Spec(N) with $x, y \notin P$ for some $x \in \mathbb{P}_a$ and $y \in \mathbb{P}_b$. So, $xy \notin \mathbb{P}$. It is easy to see that Supp $(a) \cup$ Supp $(b) \subseteq V(xy)$.

Conversely, suppose that $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) = \operatorname{Spec}(N)$. Then $c \in \mathbb{P}$, a contradiction. Hence, $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$.

(ii) Straightforward.

Now by Theorem 3.1, and Lemma 3.2, we have the following characterizations of the diameter of $\Gamma_{\mathbb{P}}(N)$.

Theorem 3.3. Let N be a 2-primal near-ring and let $a, b \in \Gamma_{\mathbb{P}}(N)$ be distinct elements. Then

- (i) For any $c \in \Gamma_{\mathbb{P}}(N)$, we have c is adjacent to both a and b if and only if $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \subseteq V(c)$.
- (ii) d(a,b) = 1 if and only if $D(a) \cap D(b) = \phi$.
- (iii) d(a,b) = 2 if and only if $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$.
- (iv) d(a,b) = 3 if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) = Spec(N)$.

Proof. (i) Let $c \in \Gamma_{\mathbb{P}}(N)$. Then c is adjacent to both a and b if and only if $D(a) \cap D(c) = D(b) \cap D(c) = \phi$ if and only if $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \subseteq V(c)$.

- (ii) Trivial.
- (iii) Let $a,b \in \Gamma_{\mathbb{P}}(N)$. Then d(a,b)=2 if and only if $ab \notin \mathbb{P}$ and there exists $c \in \Gamma_{\mathbb{P}}(N)$ such that c is adjacent to both a and b if and only if $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \subseteq V(c)$ if and only $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$ by Lemma 3.2.

(iv) By Theorem 3.1, d(a,b) = 3 if and only if $d(a,b) \neq 1,2$ if and only if $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) = \operatorname{Spec}(N)$ by (i) and (ii).

Since the reduced commutative ring is also a 2-primal near-ring, the following corollary is immediate.

Corollary 3.4 ([11], Proposition 2.2). Let R be a commutative reduced ring and let $a, b, c \in \Gamma(R)$ be distinct elements. Then

- (i) c is adjacent to both a and b if and only if $Supp(a) \cup Supp(b) \subseteq V(c)$.
- (ii) d(a,b) = 1 if and only if $D(a) \cap D(b) = \phi$.
- (iii) d(a,b) = 2 if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) \neq Spec(R)$.
- (iv) d(a,b) = 3 if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) = Spec(R)$.

The following theorem shows that every minimal prime ideal of 2-primal near-ring that doesn't contain both a and \mathbb{P}_a for any $a \in \mathbb{N}$.

Theorem 3.5. Let N be a 2-primal near-ring and let $a \in N$. Then $V'(a) = D'(\mathbb{P}_a)$ and $D'(a) = V'(\mathbb{P}_a)$. In particular, V'(a) and $V'(\mathbb{P}_a)$ are disjoint clopen subsets of $\operatorname{Spec}(N)$. Also, $\operatorname{Min}(N)$ is a Hausdorff space.

Proof. Let $P \in V'(a)$ and suppose $P \notin D'(\mathbb{P}_a)$. Let $M = \{a, a^2, \ldots\}$ be multiplicative closed system and let $S = \{I \leq N : I \subseteq P \text{ and } I \cap M = \phi\}$. Since $\mathbb{P}_a \in S$, $S \neq \phi$. Then by Zorn's Lemma, there exists a maximal ideal \overline{P} in S with $\overline{P} \subseteq P$ and $\overline{P} \cap M = \phi$. Let J and J_1 be ideals of N such that $\overline{P} \subset J$ and $\overline{P} \subset J_1$.

Case (i): If $P \subset J$ and $P \subset J_1$, then $JJ_1 \nsubseteq P$. So $JJ_1 \nsubseteq \overline{P}$.

Case (ii): If $J \subseteq P$ and $J_1 \subseteq P$, then $J \cap M \neq \phi$ and $J_1 \cap M \neq \phi$. Then there exist $j \in J \cap M$ and $j_1 \in J_1 \cap M$ with $j'j'_1 \in M$ for some $j' \in J$ and $j'_1 \in J_1$, which gives $JJ_1 \cap M \neq \phi$. So, $JJ_1 \nsubseteq \overline{P}$.

Case (iii): If $J \subseteq P$ and $P \subset J_1$, then by Case (ii), we have $JP \nsubseteq \overline{P}$. So $JJ_1 \nsubseteq \overline{P}$.

Thus, \overline{P} is a prime ideal with $\overline{P} \subset P$, contradicting the minimality of P. Hence, $V^{'}(a) = D^{'}(\mathbb{P}_{a})$. Similarly, we have $D^{'}(a) = V^{'}(\mathbb{P}_{a})$.

Let $P \neq P' \in \text{Min}(N)$ and $a \in P \setminus P'$. Then V'(a) and $V'(\mathbb{P}_a)$ are disjoint open sets containing P and P', respectively.

Lemma 3.6. Let N be a 2-primal near-ring and let $a \in \Gamma_{\mathbb{P}}(N)$. If e(a) = 1, then \mathbb{P}_a is a completely prime ideal of N.

Proof. Straightforward. \Box

Theorem 3.7. Let N be a 2-primal near-ring and $2 \notin \mathbb{P}$. Then

(i) $\Gamma_{\mathbb{P}}(N)$ is a triangulated graph if and only if $\operatorname{Spec}(N)$ has no quasiisolated points.

- (ii) $\Gamma_{\mathbb{P}}(N)$ is a hyper-triangulated graph if and only if $\operatorname{Spec}(N)$ is connected space and for any $a, b \in \Gamma_{\mathbb{P}}(N)$, we have that $ab \in \mathbb{P}$ and $D(a) \cup D(b) \neq \operatorname{Spec}(N)$ imply $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$.
- (iii) If $2 \notin \Gamma_{\mathbb{P}}(N)$, then every vertex of $\Gamma_{\mathbb{P}}(N)$ is a 4-cycle vertex.

Proof. (i) Let $\Gamma_{\mathbb{P}}(N)$ be a triangulated graph and suppose $\operatorname{Spec}(N)$ has a quasi-isolated point P. Then $D^{'}(\mathbb{P}_{a}) = V^{'}(a) = \{P\}$ for some $a \in P$. Clearly, $a \in \Gamma_{\mathbb{P}}(N)$, and since $\Gamma_{\mathbb{P}}(N)$ is a triangulated graph, there are $b, c \in \Gamma_{\mathbb{P}}(N)$ such that $ab, ac, bc \in \mathbb{P}$. Thus, $D^{'}(a) \subseteq V^{'}(b)$, and $\phi \neq D^{'}(c) \subseteq V^{'}(a) \cap V^{'}(b) = \{P\}$, which gives $V^{'}(b) = \operatorname{Min}(N)$, a contradiction. Hence, $\operatorname{Spec}(N)$ does not contain quasi-isolated points.

Conversely, suppose that $\operatorname{Spec}(N)$ does not contain quasi-isolated points and take $a \in \Gamma_{\mathbb{P}}(N)$. Then there are two different points $P, P' \in V'(a) = D'(\mathbb{P}_a)$. Since $\mathbb{P}_a \nsubseteq P'$, there exists $z \in \mathbb{P}_a$ such that $z \notin P'$. Also, there exists $y \in P$ with $y \notin P'$. Clearly, $zy \notin \mathbb{P}$ and $P \in V'(zy) = D'(\mathbb{P}_{zy})$, which imply $P \notin \operatorname{Supp}(zy)$. Thus $\operatorname{Supp}(a) \cup \operatorname{Supp}(zy) \not= \operatorname{Spec}(N)$. Then by Lemma 3.2, there exists $c \in \Gamma_{\mathbb{P}}(N)$ such that $\operatorname{Supp}(a) \cup \operatorname{Supp}(zy) \subseteq V(c)$, so by Theorem 3.3 (i), c is adjacent to both a and zy.

(ii) Let $\Gamma_{\mathbb{P}}(N)$ be a hyper-triangulated graph. If $\operatorname{Spec}(N)$ is not connected, then by Lemma 2.7, there exists an element $a \in \Gamma_{\mathbb{P}}(N)$. Since $\operatorname{Supp}(a) \cup \sup (-1+a) = \operatorname{Spec}(N)$, by Theorem 3.3, there is no vertex adjacent to both a and -1+a, a contradiction. The second part follows from Lemma 3.2 and Theorem 3.3.

Conversely, let $a \approx b$ be an edge in $\Gamma_{\mathbb{P}}(N)$. Since $D(a) \cap D(b) = \phi$ and $\operatorname{Spec}(N)$ is connected, $D(a) \cup D(b) \neq \operatorname{Spec}(N)$. Thus by hypothesis, $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$. Therefore, by Lemma 3.2 and Theorem 3.3, there exists a vertex adjacent to both a and b.

(iii) Let $a \in \Gamma_{\mathbb{P}}(N)$. Then there exists $b \in N \setminus \mathbb{P}$ such that $ab \in \mathbb{P}$. Since $2 \notin \Gamma_{\mathbb{P}}(N)$, we have $2a \neq b$ and $a \neq 2b$. So a, b, 2a and 2b are all distinct. Also, ab, (2a)b, (2a)(2b) and a(2b) belong to \mathbb{P} . Hence a, b, 2a and 2b is a cycle with length 4 containing a.

As an immediate application of Theorem 3.7, we have the following corollary.

Corollary 3.8 ([11], Theorem 3.1). Let R be a commutative reduced ring. Then

- (i) $\Gamma(R)$ is a triangulated graph if and only if $\operatorname{Spec}(R)$ has no quasi-isolated points.
- (ii) $\Gamma(R)$ is a hyper-triangulated graph if and only if $\operatorname{Spec}(R)$ is connected space and for any $a, b \in \Gamma(R)$, we have that $ab \in \mathbb{P}$ and $D(a) \cup D(b) \neq \operatorname{Spec}(R)$ imply $\operatorname{Spec}(R) \cup \operatorname{Spec}(R) \neq \operatorname{Spec}(R)$.
- (iii) If $2 \notin Z(R)$, then every vertex of $\Gamma(R)$ is a 4-cycle vertex.

The next theorem will help to characterize all possible cycles in the ideal-based zero-divisor graph.

Theorem 3.9. Let N be a 2-primal near-ring, $a, b \in \Gamma_{\mathbb{P}}(N)$ and $2 \notin \mathbb{P}$. If $2 \notin \Gamma_{\mathbb{P}}(N)$, then

- (i) c(a,b) = 3 if and only if $D(a) \cap D(b) = \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$.
- (ii) c(a,b) = 4 if and only if either $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$, or $D(a) \cap D(b) = \phi$, and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) = \operatorname{Spec}(N)$.
- (iii) c(a,b) = 6 if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) = Spec(N)$.
- Proof. (i) Follows from Lemma 3.2 and Theorem 3.3.
- (ii) If $D(a) \cap D(b) = \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) = \operatorname{Spec}(N)$, there exists a path with vertices a,b,2a and 2b, i.e., $c(a,b) \leq 4$. Now (i) implies that c(a,b) = 4. If $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(N)$, then by Theorem 3.3, there exists $c \in \Gamma_{\mathbb{P}}(N)$ such that c is adjacent to both a and b. Thus, the path with vertices a,c,b and 2c is a cycle with length 4.
- (iii) If c(a,b)=6, then parts (i) and (ii) imply that $D(a)\cap D(b)\neq \phi$ and $\operatorname{Supp}(a)\cup\operatorname{Supp}(b)=\operatorname{Spec}(N)$. Conversely, let $D(a)\cap D(b)\neq \phi$ and $\operatorname{Supp}(a)\cup\operatorname{Supp}(b)=\operatorname{Spec}(N)$. Then by Theorem 3.3, d(a,b)=3. Also, (i) and (ii) implies that c(a,b)>4. Hence, there are vertices c and d such that $ac,cd,bd\in\mathbb{P}$. Now, if some vertex e is adjacent to b, then $be\in\mathbb{P}$. Therefore, $\operatorname{Spec}(N)=\operatorname{Supp}(a)\cup\operatorname{Supp}(b)\subseteq V(c)\cup V(e)$. However, d(a,b)=3 implies that a is not adjacent to e, i.e., c(a,b)=6. If we consider the vertices 2c and 2d, then we have a cycle with vertices a,c,b,2d and 2c, i.e., c(a,b)=6.

From Theorem 3.9, we have the following corollary.

Corollary 3.10 ([11], Theorem 3.4). Let R be a commutative reduced ring, $a, b \in \Gamma(R)$, and $2 \notin \Gamma(R)$. Then

- (i) c(a,b) = 3 if and only if $D(a) \cap D(b) = \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(R)$.
- (ii) c(a,b) = 4 if and only if either $D(a) \cap D(b) \neq \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(R)$ or $D(a) \cap D(b) = \phi$ and $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) = \operatorname{Spec}(R)$.
- (iii) c(a,b) = 6 if and only if $D(a) \cap D(b) \neq \phi$ and $Supp(a) \cup Supp(b) = Spec(R)$.

As an immediate application of Theorem 3.9 or Corollary 3.10, we have the following corollary.

Corollary 3.11 ([11], Corollary 3.5). Let R be a commutative reduced ring and $2 \notin \Gamma(R)$. Then every edge of a cycle with length 3 or 4.

Proof. Let $a \approx b$ be an edge in a cycle. Then $ab \in \mathbb{P}$ and $D(a) \cap D(b) = \phi$. If $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \neq \operatorname{Spec}(R)$, then by Corollary 3.10, we have c(a,b) = 3. Otherwise, $\operatorname{Supp}(a) \cup \operatorname{Supp}(b) = \operatorname{Spec}(R)$. Then by Corollary 3.10, we have c(a,b) = 4.

Acknowledgement. The second author is grateful to D. F. Anderson, Mathematics Department, The University of Tennesse, for his kind help. The authors express their sincere thanks to the referee for his/her valuable comments and suggestions which improve the paper a lot.

References

- D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), no. 2, 500-514.
- [2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447.
- [3] I. Beck, Coloring of commutative rings, J. Algebra $\bf 116$ (1988), no. 1, 208–226.
- [4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
- [5] P. Dheena and B. Elavarasan, On strong IFP near-ring, Submitted.
- [6] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [7] J. R. Munkres, Topology, Prentice-Hall of Indin, New Delhi, 2005.
- [8] G. Pilz, Near-Rings, North-Holland, Amsterdam, 1983.
- [9] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), no. 9, 4425–4443.
- [10] K. Samei, On summand ideals in commutative reduced rings, Comm. Algebra 32 (2004), no. 3, 1061–1068.
- [11] ______, The zero-divisor graph of a reduced ring, J. Pure Appl. Algebra 209 (2007), no. 3, 813–821.
- [12] S. H. Sun, Noncommutative rings in which every prime ideal is contained in a unique maximal ideal, J. Pure Appl. Algebra 76 (1991), no. 2, 179–192.

PATCHIRAJULU DHEENA

DEPARTMENT OF MATHEMATICS

Annamalai University

Annamalainagar - 608002, Tamilnadu, India

 $E ext{-}mail\ address: dheenap@yahoo.com}$

Balasubramanian Elavarasan

DEPARTMENT OF MATHEMATICS

Annamalai University

Annamalainagar - 608002, Tamilnadu, India

(PRESENT ADDRESS)

DEPARTMENT OF MATHEMATICS

SCHOOL OF SCIENCE AND HUMANITIES

KARUNYA UNIVERSITY

Coimbatore - 641114, Tamilnadu, India

 $E ext{-}mail\ address: belavarasan@gmail.com}$