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AN IDEAL-BASED ZERO-DIVISOR GRAPH
OF 2-PRIMAL NEAR-RINGS

PATCHIRAJULU DHEENA AND BALASUBRAMANIAN ELAVARASAN

ABSTRACT. In this paper, we give topological properties of collection of
prime ideals in 2-primal near-rings. We show that Spec(NN), the spectrum
of prime ideals, is a compact space, and Max(N), the maximal ideals of
N, forms a compact Tj-subspace. We also study the zero-divisor graph
I';(R) with respect to the completely semiprime ideal I of N. We show
that T'p(R), where P is a prime radical of N, is a connected graph with
diameter less than or equal to 3. We characterize all cycles in the graph
I'p(R).

1. Preliminaries

In [3], Beck introduced the concept of a zero-divisor graph of a commuta-
tive ring with identity, but this work was mostly concerned with coloring of
rings. In [2], Anderson and Livingston associated a graph (simple) I'(R) to a
commutative ring R with identity with vertices Z(R)* = Z(R)\{0}, the set of
nonzero zero-divisor of R, and for distinct x,y € Z(R)*, the vertices z, and y
are adjacent if and only if zy = 0. They investigated the interplay between the
ring-theoretic properties of R and the graph-theoretics properties of I'(R).

In [9], Redmond has generalized the notion of the zero-divisor graph. For
a given ideal I of R, he defined an undirected graph I';(R) with vertices {z €
R\I : zy € I for some y € R\I}, where distinct vertices « and y are adjacent
if and only if zy € I.

In this paper, we study the undirected graph I';(N) of near-rings for any
completely semiprime ideal I of N. We extend the results obtained by K. Samei
[11] for reduced rings to 2-primal near-rings. Clearly, reduced rings are 2-primal
near-rings.

Let N be a near-ring with identity. Let J be a completely semiprime ideal of
N. The zero-divisor graph of N with respect to the ideal J, denoted by " ;(N),
is the graph whose vertices are the set {x € N\J : zy € J for some y € N\J}
with distinct vertices  and y are adjacent if and only if xy € J. If J = 0, then
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T'j(N)=T(N), and J is a non-zero completely prime ideal of N if and only if
['y(N) = ¢.

Example 1.1. Let N = (§ £), where F = {0,1} is the field under addition
and multiplication modulo 2. Then its prime radical P = {(§§),(5)} is a
completely reflexive ideal of the near-ring N and its ideal based zero-divisor

graph I?(W) is:

(50)s »(31)

(56)e *(91)

Remark 1.2. In the above example, N is a 2-primal near-ring, but neither
reduced nor commutative.

Throughout this paper N is a zero symmetric near-ring with identity unless
otherwise stated, and its prime radical is not a prime ideal of .

Let P denote the prime radical, and let N(N) denote the set of nilpotent
elements of V. For any vertices x,y in a graph G, if x and y are adjacent, we
denote it as « &~ y. A near-ring N is called a 2-primal if P = N(N). A near-ring
N is said to be reduced if N(NN) = 0. Clearly, reduced near-rings are 2-primal,
but the converse need not be true (See Example 1.3 of [5]). A near-ring N is
called pm if each prime ideal in IV is contained in a unique maximal ideal of
N.

We use Spec(N), Max(N), and Min(NN) for the spectrum of prime ideals,
maximal ideal and minimal prime ideals of N, respectively.

For any ideal J of N and a € N, we define V(a) = {P € Spec(N) : a € P}
and D(J) = Spec(N)\V(J). Let V(J) = NagesV(a). Then F = {V(J) : Jis
an ideal of N} is closed under finite union and arbitrary intersections, so that
there is a topology on Spec(N) for which F is the family of closed sets. This
is called the Zariski topology. Note that V(A) = ((J)) for any subset A of N.
Let B={D(a) : a € N}. Then B is a basis for a topology on Spec(N).

The operations ¢l and int denote the closure and the interior in Spec(V).
We also set V' (a) = V(a) " Min(N); D'(a) = D(a) N Min(N).

For any subset S of N, we define Pg = {n € N : nS C P}. We set Supp(a) =
Q$GPQV(:U).

For distinct vertices « and y of I'p(N), let d(z, y) be the length of the
shortest path from x to y. The diameter of a connected graph is the supremum
of the distances between vertices. The associated number e(a) for a vertex a
in T'p(R) is defined by e(a) = max{d(a, b) : a # b}.

A graph G is called triangulated (hyper-triangulated) if each vertex (edge)
of G is a vertex (edge) of a triangle.
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A point P of Spec(N) is said to be quasi-isolated if P is a minimal prime
ideal and P is not contained in the union of all minimal prime ideals of N
different from P.

If a and b are the two vertices in I'p(N), by ¢(a, b) we mean the length of the
smallest cycle containing a and b. For every two vertices a and b, all possible
cases for ¢(a, b) are given in Theorem 3.9. In this paper the notations of graph
theory are from [4], the notations of near-ring are from [8], and the notations
of topology are from [6] and [7].

2. Topological space of Spec(INV)

In this section, we associate the near-ring properties of N and the topological
properties of Spec(N). We start this section with the following useful lemma.

Lemma 2.1. Let N be a near-ring. If A is a subset of Spec(N), then there
exists an ideal J = NA of N with cl(A) =V (J). In particular, if A is a closed
subset of Spec(N), then A =V (J) for some ideal J of N.

Proof. Let Py € V(J) and let D(x) be any arbitrary element in B such that
Py € D(x). Suppose that D(x) N A = ¢. Then z € J, and so P; € V(x), a con-
tradiction. Thus D(x)NA # ¢, and hence, the result follows from Theorem 17.5
of [7]. O

In view of above lemma, we have the following remarks.

Remark 2.2. Let N be a near-ring.
(i) The closure of P € Spec(N) is V(P).
(ii) A point P € Spec(N) is closed if and only if P € Max(N).
(iii) If P, @ € Spec(N) with cl(P) = cl(Q), then P = Q.

With the help of Lemma 2.1, we have the following some important charac-
terizations of Spec(N).

Theorem 2.3. Let N be a near-ring.
(i) If F C Spec(N) is a closed set and D(K) is an open set in Spec(N)

satisfying F' N Max(N) C D(K), then F' C D(K).
) Spec(N) is a compact space.
) Max(N) is a compact Ty subspace.
v) If Spec(N) is normal, then Max(N) is a Hausdorff space.

) If P = NMax(N) and Max(N) is a Hausdorff space, then Spec(N) is
normal.

Proof. (i) Suppose that there is P € F with P ¢ D(K). Then K+ L C P since
F = V(L) for some ideal L of N. Hence, each maximal ideal M containing P
is also in F. Then M € F N Max(N), and so M € D(K), a contradiction.

(ii) Let B = {D(s;) : s; € J} be the basis of N, for any subset J of N,
and suppose that Spec(N) = UjcsD(s;). Then ¢ = Njcs(Spec(N)\D(s;)) =
NjeaV(sj) = V((sj;j € J)) = V(3 ,cs(s;)) which gives 3, ;(s;) = N. Then

—~
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there exists K C J finite with 1 = 3, _ s, where s, € (s;;) which implies
Spec(N) = Ukex D(s,,). Indeed, clearly UperD(s,) C Spec(N) and suppose
P € Spec(N) with P ¢ UgegD(s,). Then s, € P for all k € K which implies
1 € P, a contradiction. Hence Spec(NN) is a compact space.

(iii) Let B = {D(s;) : s; € J} be the basis of N, for any subset J of N,
and suppose that Max(N) = (U;esD(s;)) N Max(N). Then

¢ = Nics(Max(N)\D(s;)) = (NiesV (s:)) N Max(N)
= V(> _(si)) N Max(N)

i€l
which imply °;c ;(s;) = N. Then there exists J; C J finite with 1 =3, ; s;,
and so Max(N) = Ujez, D(s;).

Let M; and Ms be two distinct elements in Max(N). Then M; € D(M>)
and My € D(M;), and so Max(N) is a T} space.

(iv) Let M7 and My be distinct elements in Max(N). Then {M;} and {Ms}
are closed subsets in both Spec(N) and Max(N). If Spec(N) is normal, then
there exist disjoint open sets D(I) and D(J) such that {M;} C D(I) and
{Mz} C D(J) for some ideals I and J of N, respectively. So, M; € D(I)N
Max(N), and M € D(J)NMax(N), which imply Max(N) is a Hausdorff space.

(v) Let Fy and F» be two disjoint closed subsets of Spec(N). Then Fy N
Max(N) and Fy N Max(N) are also disjoint subsets of Max(N). By Theorem
32.3 in [7], Max(N) is normal. So, there are open subsets D(J) and D(J;) of
Spec(N) such that F; "1Max(N) C A, Fo,NMax(N) C B and ANB = ¢, where
A = D(J)NMax(N) and B = D(J;) N Max(N).

Assume P = NMax(N). Then JJ; € NMax(N) = P since D(J) N D(Jy)
D(JJy), and so D(J) N D(J;) = ¢. By (i), we have F; C D(J) and F;
D(Jy).

O

Theorem 2.4. Let N be a 2-primal near-ring. Then Pg = NV (Pg) for any
subset S of N.

Proof. Clearly, Ps C NV (Pg). Let a € N\Pg. Then as ¢ P for some P €
Spec(N) and s € S which implies Pg C P. Thus, a ¢ P € V(Pg), and hence,
ﬁV(Ps) C Pg. U

Lemma 2.5. Let N be a 2-primal near-ring and let a,b € N. Then int V(a) C
int V(b) if and only if P, C Py.

Proof. Let int V(a) C int V(b) for any a,b € N and let x € P,. Then
Spec(N)\V (z) C int V(a) Cint V(b) C V(b), which gives bx € P, so z € P,
Conversely, let P, C Py, and let P € int V(a). Suppose P ¢ V (b). By Lemma
2.1,if P ¢ Spec(N)\int V(a), then thereis 0 # ¢ € N with Spec(N)\int V(a) C
V(e) and ¢ ¢ P. Clearly ac € P and bc ¢ P. Then ¢ € P, and ¢ ¢ Py, a contra-
diction. g
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Lemma 2.6. Let N be a 2-primal near-ring. Then for everya € N, cl(D(a)) =
V(P,) = Supp(a) = Spec(N)\int V(a).

Proof. Let a € N, P € V(P,), and let D(x) be any arbitrary basis element in
B such that P € D(z). Let P ¢ D(a) and suppose D(a) N D(z) = ¢. Then
D(za) C D(z)ND(a) = ¢, and so za € P which implies z € P, a contradiction.
Thus, D(a) N D(x) # ¢, and hence, V(P,) = cl(D(a)).

Let P € cl(D(a)) and suppose that P € int V(a). Then there exists an open
set U of Spec(N) with P € U C V(a), and so P ¢ Spec(N)\U, a contradiction.
Let P € Spec(N)\int V(a) and let D(x) be any arbitrary element in B with
P € D(z). Suppose that D(x) N D(a) = ¢. Then P € D(P,) C V(a), a
contradiction. O

The following result gives the condition under which a subset of Spec(N)
of 2-primal near-ring to be clopen, which will be used in our main result in
Section 3.

Lemma 2.7. Let N be a 2-primal near-ring. Then A is a clopen subset of
Spec(N) if and only if there exists an element a € N witha € P or —1+a € P
for all P € Spec(N) and A =V (a).

Proof. Suppose that A is a clopen subset of Spec(N). Let J = NA and J; =
NA¢. Then by Lemma 2.1 A = cl(A) = V(J) and A° = V(J;). So, V(J) N
V(J1) = ¢, which gives J + J; = N. Then there exists a € J and a € Ji such
that @ +a = 1. Therefore a(—1+ a) € P. Thus, for every prime ideal P, we
have a € P or —1 + a € P. Consequently, A = V(J) = V(a). The converse is
trivial. (I

Theorem 2.8. Let N be a 2-primal and pm near-ring. Then Max(N) is a
compact Hausdorff space.

Proof. By Lemma 2.3(iii), Max (V) is a compact space. Let M;, My € Max(N)
and consider the multiplicative subset

S ={a1by - an_1bp_1apby : a; & My, by & Mo, n, i € {1,2,...,n}}.

Suppose that 0 ¢ S. Then there is a prime ideal P of N with PNS = ¢
and hence P C M; N Ms, a contradiction. So, there exist a; ¢ My and b; ¢ Mo
such that a1b; - - - apb, = 0. We now have elements x1 ¢ M; and xo ¢ Mo with
x129 € P, which imply D(z1) and D(z2) are disjoint with M; € D(x1) and
M, € D(SL‘Q) O

The following is an immediate corollary of Theorem 2.8.

Corollary 2.9 ([12], Lemma 2.1). If R is a 2-primal and pm ring, then Max(R)
is a compact Hausdorff space.



1056 P. DHEENA AND B. ELAVARASAN

3. Distance and cycles in I'p(IN)

In this section, we associate the near-ring properties of N and the graph
properties of I'p(N).

Theorem 3.1. Let N be a 2-primal near-ring. Then T'p(N) is connected and
diam Tp(N) < 3.

Proof. Let z,y € T'p(N) be distinct. If xy € P, then d(x,y) = 1. Otherwise,
there are a,b € N\(P U {z,y}) such that ax,by € P.

If a = b, then x = a =~ y is a path of length 2. Thus, we assume that
a # b. If ab € P, then x = a = b = y is a path of length 3; and hence
d(z,y) < 3. Otherwise,  ~ ab ~ y is a path of length 2; thus, d(z,y) = 2.
Hence, d(z,y) < 3. O

Lemma 3.2. Let N be a 2-primal near-ring and let a,b € T'p(N). Then
(i) Supp(a)USupp(b) # Spec(N) if and only if Supp(a) U Supp(b) C V(c)
for some ¢ € T'p(N).
(ii) D(a) N D(b) # ¢ if and only if there exists ¢ € T'p(N) such that ¢ #
D(a)ND(b) CV(c).

Proof. (i) Suppose Supp(a)USupp(b) # Spec(N). Then there exists an element
P € Spec(N) with z,y ¢ P for some z € P, and y € P,. So, zy ¢ P. It is easy
to see that Supp(a) U Supp(b) C V (zy).

Conversely, suppose that Supp(a) U Supp(b) = Spec(N). Then ¢ € P, a
contradiction. Hence, Supp(a) U Supp(b) # Spec(N).

(ii) Straightforward. O

Now by Theorem 3.1, and Lemma 3.2, we have the following characteriza-
tions of the diameter of I'p(N).

Theorem 3.3. Let N be a 2-primal near-ring and let a,b € T'p(N) be distinct
elements. Then

(i) For any c € Tp(N), we have c is adjacent to both a and b if and only
if Supp(a) U Supp(b) € V(c).
(i1) d(a,b) =1 if and only if D(a) N D(b) = ¢.
(iii) d(a,b) = 2 if and only if D(a) N D(b) # ¢ and Supp(a) U Supp(b) #
Spec(N).
(iv) d(a,b) = 3 if and only if D(a) N D(b) # ¢ and Supp(a) U Supp(b) =
Spec(N).
Proof. (i) Let ¢ € T'p(N). Then ¢ is adjacent to both a and b if and only if
D(a) N D(c) = D(b) N D(c) = ¢ if and only if Supp(a) U Supp(b) C V(c).

(ii) Trivial.

(ii) Let a,b € T'p(N). Then d(a,b) = 2 if and only if ab ¢ P and there
exists ¢ € I'p(IV) such that ¢ is adjacent to both a and b if and only if D(a) N
D(b) # ¢ and Supp(a) U Supp(b) C V(c) if and only D(a) N D(b) # ¢ and
Supp(a) U Supp(b) # Spec(N) by Lemma 3.2.
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(iv) By Theorem 3.1, d(a,b) = 3 if and only if d(a,b) # 1,2 if and only if
D(a) N D(b) # ¢ and Supp(a) U Supp(b) = Spec(N) by (i) and (ii). O

Since the reduced commutative ring is also a 2-primal near-ring, the following
corollary is immediate.

Corollary 3.4 ([11], Proposition 2.2). Let R be a commutative reduced ring
and let a,b,c € T'(R) be distinct elements. Then
(i) ¢ is adjacent to both a and b if and only if Supp(a) U Supp(b) C V(c).
(ii) d(a,b) =1 if and only if D(a) N D(b) = ¢.
(iii) d(a,b) = 2 if and only if D(a) N D(b) # ¢ and Supp(a) U Supp(b) #
Spec(R).
(iv) d(a,b) = 3 if and only if D(a) N D(b) # ¢ and Supp(a) U Supp(b) =
Spec(R).

The following theorem shows that every minimal prime ideal of 2-primal
near-ring that doesn’t contain both a and P, for any a € N.

Theorem 3.5. Let N be a 2-primal near-ring and let a € N. Then V' (a) =
D'(P,) and D'(a) = V' (Py). In particular, V' (a) and V' (Py) are disjoint clopen
subsets of Spec(N). Also, Min(N) is a Hausdorff space.

Proof. Let P € V'(a) and suppose P ¢ D'(P,). Let M = {a,a?,...} be mul-
tiplicative closed system and let S = {I< N : I C P and I N M = ¢}. Since
P, € S, S # ¢. Then by Zorn’s Lemma, there exists a maximal ideal P in S
with P C P and PN M = ¢. Let J and J; be ideals of N such that P C J and
PcC Ji.

Case (i): If P C J and P C Jy, then JJ; € P. So JJ; ¢ P.

Case (ii): If J C P and J; C P, then JN M # ¢ and Jy N M # ¢. Then
there exist j € JN M and j; € J; N M with j,jll € M for some j/ € J and
41 € Ji, which gives J.J; N M # ¢. So, JJ,  P.

Case (iii): If J C P and P C Jp, then by Case (ii), we have JP ¢ P. So
JJy ¢ P.

Thus, P is a prime ideal with P C P, contradicting the minimality of P.
Hence, V' (a) = D' (P,). Similarly, we have D'(a) = V' (P,).

Let P # P' € Min(N) and a € P\P'. Then V'(a) and V'(P,) are disjoint
open sets containing P and Pl, respectively. ([

Lemma 3.6. Let N be a 2-primal near-ring and let a € Tp(N). If e(a) = 1,
then P, is a completely prime ideal of N.

Proof. Straightforward. O

Theorem 3.7. Let N be a 2-primal near-ring and 2 ¢ P. Then
(i) Tp(N) is a triangulated graph if and only if Spec(N) has no quasi-
1solated points.
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(ii) Tp(N) is a hyper-triangulated graph if and only if Spec(N) is connected
space and for any a,b € T'p(N), we have that ab € P and D(a)UD(b) #
Spec(N) imply Supp(a) U Supp(b) # Spec(V).

(iii) If 2 ¢ T'p(N), then every vertex of Tp(N) is a 4-cycle vertex.

Proof. (i) Let T'p(N) be a triangulated graph and suppose Spec(V) has a quasi-
isolated point P. Then D'(P,) = V'(a) = {P} for some a € P. Clearly, a €
I'p(N), and since I'p(N) is a triangulated graph, there are b, ¢ € I'p(N) such
that ab, ac,be € P. Thus, D' (a) C V' (b), and ¢ # D' (c) C V' (a)NV' (b) = {P},
which gives V' (b) = Min(N), a contradiction. Hence, Spec(N) does not contain
quasi-isolated points.

Conversely, suppose that Spec(N) does not contain quasi-isolated points and
take a € Tp(N). Then there are two different points P, P € V' (a) = D' (P,).
Since P, ¢ P’ there exists z € P, such that z ¢ P Also, there exists y € P
with y ¢ P'. Clearly, zy ¢ P and P € V'(2y) = D'(P.,), which imply P ¢
Supp(zy). Thus Supp(a) U Supp(zy) # Spec(N). Then by Lemma 3.2, there
exists ¢ € I'p(IV) such that Supp(a) U Supp(zy) € V(c), so by Theorem 3.3 (i),
c is adjacent to both a and zy.

(ii) Let I'p(N) be a hyper-triangulated graph. If Spec(V) is not connected,
then by Lemma 2.7, there exists an element a € I'p(IN). Since Supp(a) U
supp(—1+ a) = Spec(N), by Theorem 3.3, there is no vertex adjacent to both
a and —1 + a, a contradiction. The second part follows from Lemma 3.2 and
Theorem 3.3.

Conversely, let a ~ b be an edge in I'p(N). Since D(a) N D(b) = ¢ and
Spec(N) is connected, D(a) U D(b) # Spec(N). Thus by hypothesis, Supp(a)U
Supp(b) # Spec(NN). Therefore, by Lemma 3.2 and Theorem 3.3, there exists a
vertex adjacent to both a and b.

(iii) Let a € Tp(N). Then there exists b € N\P such that ab € P. Since
2 ¢ T'p(N), we have 2a # b and a # 2b. So a, b, 2a and 2b are all distinct. Also,
ab, (2a)b, (2a)(2b) and a(2b) belong to P. Hence a,b,2a and 2b is a cycle with
length 4 containing a. O

As an immediate application of Theorem 3.7, we have the following corollary.

Corollary 3.8 ([11], Theorem 3.1). Let R be a commutative reduced ring.
Then

(i) T(R) is a triangulated graph if and only if Spec(R) has no quasi-isolated
points.

(ii) T(R) is a hyper-triangulated graph if and only if Spec(R) is connected
space and for any a,b € T'(R), we have that ab € P and D(a) U D(b) #
Spec(R) imply Spec(R) U Spec(R) # Spec(R).

(i) If 2 ¢ Z(R), then every vertex of T'(R) is a 4-cycle vertex.

The next theorem will help to characterize all possible cycles in the ideal-
based zero-divisor graph.
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Theorem 3.9. Let N be a 2-primal near-ring, a,b € I'p(N) and 2 ¢ P. If
2 ¢ T'p(N), then

(i) e¢(a,b) = 3 if and only if D(a) N D(b) = ¢ and Supp(a) U Supp(b) #
Spec(N).

(ii) ¢(a,b) = 4 if and only if either D(a) N D(b) # ¢ and Supp(a) U
Supp(b) # Spec(N), or D(a) N D(b) = ¢, and Supp(a) U Supp(b) =
Spec(N).

(iii) ¢(a,b) = 6 if and only if D(a) N D(b) # ¢ and Supp(a) U Supp(b) =
Spec(N).

Proof. (i) Follows from Lemma 3.2 and Theorem 3.3.

(ii) If D(a)ND(b) = ¢ and Supp(a)USupp(b) = Spec(N), there exists a path
with vertices a,b,2a and 2b, i.e., ¢(a,b) < 4. Now (i) implies that c(a,b) = 4.
If D(a) N D(b) # ¢ and Supp(a) U Supp(b) # Spec(N), then by Theorem 3.3,
there exists ¢ € T'p(N) such that ¢ is adjacent to both a and b. Thus, the path
with vertices a, c,b and 2c is a cycle with length 4.

(iii) If c¢(a,b) = 6, then parts (i) and (ii) imply that D(a) N D(b) # ¢ and
Supp(a) USupp(b) = Spec(N). Conversely, let D(a) N D(b) # ¢ and Supp(a) U
Supp(b) = Spec(N). Then by Theorem 3.3, d(a, b) = 3. Also, (i) and (ii) implies
that c(a,b) > 4. Hence, there are vertices ¢ and d such that ac,cd,bd € P.
Now, if some vertex e is adjacent to b, then be € P. Therefore, Spec(N) =
Supp(a) U Supp(b) C V(c) U V(e). However, d(a,b) = 3 implies that a is not
adjacent to e, i.e., ¢(a,b) = 6. If we consider the vertices 2¢ and 2d, then we
have a cycle with vertices a, ¢, b, 2d and 2¢, i.e., ¢(a,b) = 6. O

From Theorem 3.9, we have the following corollary.

Corollary 3.10 ([11], Theorem 3.4). Let R be a commutative reduced ring,
a,b e T(R), and 2 ¢ T'(R). Then

(i) c(a,b) = 3 if and only if D(a) N D(b) = ¢ and Supp(a) U Supp(b) #
Spec(R).

(ii) c(a,b) = 4 if and only if either D(a) N D(b) # ¢ and Supp(a) U
Supp(b) # Spec(R) or D(a) N D(b) = ¢ and Supp(a) U Supp(b) =
Spec(R).

(iii) ¢(a,b) = 6 if and only if D(a) N D(b) # ¢ and Supp(a) U Supp(b) =
Spec(R).

As an immediate application of Theorem 3.9 or Corollary 3.10, we have the
following corollary.

Corollary 3.11 ([11], Corollary 3.5). Let R be a commutative reduced ring
and 2 ¢ T'(R). Then every edge of a cycle with length 3 or 4.

Proof. Let a =~ b be an edge in a cycle. Then ab € P and D(a) N D(b) = ¢.
If Supp(a) U Supp(b) # Spec(R), then by Corollary 3.10, we have c¢(a,b) = 3.
Otherwise, Supp(a) U Supp(b) = Spec(R). Then by Corollary 3.10, we have
c(a,b) = 4. O
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