
An Identification Problem 

for an Elliptic Equation in Two Variables (*). 

GIOVANNI ALESSAIXDI~INI 

S u n t o .  - Si  studia il problema inverse di determinate i ! coe]]icie~te a nell'eguazioue e~littica iu 

due variabili 

( , )  div (a grad u) = 0,  

quando se ne conosee una sol@zione ~. S i  danno un  ris~Itato di di19endenza continua di a 

da u e un n*etodo di determinazione approssimata di a. Elemento chiave in questi risultati 

lo studio di proprieth dei pun t i  critici delle soluzivni u di ( , ) .  

I n t r o d u c t i o n .  

In  this paper  we will consider the elliptic equat ion 

(1) div (a(x) gradu(x))  = O, x e ~ ,  

in which the coefficient a has to be determined when one solution u is knowfi. 

Here  D is a bounded smooth domain in R 2. 

This is a nonlinear ill-posed problem ~0f iden t i f iCa t i6m 

In  recent  years, identification problems for elliptic equations have b e e n  object 

of many  studies. The results which are of main interest  are uniqueness, stabil i ty 

and algorithms. 

In  MAI~CELLI~I [16], a ra ther  thorough t r ea tmen t  is made in a one,dimensional 

ease. X o n ~  and VOGELIUS [12], [13], have t rea ted  a uniqueness problem raised b y  

CAI, DEI~OI% [5]. Uniqueness results are also present  in a paper  by  I~IS~DELL [19]. 

In  t~IOttTEI~ [17], and ALESSANDRII~-I [3], Certain stabil i ty results are given. Various 

types of algorithms have been devised, and are mainly found in the engineering 

l i terature (see e.g. YAX0W!Tz-DI:cXSTEIN [21] for references). Only few of them, 

however,  take  into account  the ill-posedness of the problem. Le t  us ment ion CI~A- 

VENT [6], !={ICttTEI~ [18], and HOFF~{AI~N-SPREKELS [10]. 
Here  we will discuss about  s tabi l i ty  and we will propose an algorithm. We must  

say tha t  our analysis is l imited to the two-dimensionM ease. 

(*) Entra~a in Redazione il 14 settelnbre 1985. 
Indirizzo dell'A. : Istituto Matelnafieo <, Ulisse Dini >>, UniversitY, Viale Morgagni 67/A, 

50134 Firenze, Italia. 
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I t  is a well established mat te r  tha t  the character of the problem depends on the 

behaviour of the modulus of the gradient of u 

[Dul 2 uu )+ --= (u~, § ~, . 

In  fact  it  is easily seen tha t  (1) can be interpreted as a first order part ial  dif- 

ferential equation for the unknown coefficient a 

(i ' )  D u . D a + A u a = O ,  in /2, 

and here the principal part  becomes singular at  the points where IDul = 0. 

A possible strategy is, therefore, the one of setting extra conditions which 

guarantee tha t  ]Dul never vanishes, (see [17], [3]). 

For  instance in [3], it  is t reated the problem of determining a when the Green 

function G(x, y) associated to the elliptic operator in (1) is known for a fixed point 

y e /2 .  There it is shown that ,  if /2 is simply connected, then IDG(., y)] is always 

positive. This fact  is used to obtain a stability result. 

In  the present case, however, i t  would not  be satisfactory to restrict the s tudy 

to the solutions of (1) which do not  posses critical points. We will show instead that~ 

in general, critical points of u have a particular structure which is governed by 

easily detectable properties of the boundary  values. 

Let  us assume tha t  a boundary  condition on ~ is prescribed 

(2) u = g ,  on ~D,  

where g is a smooth function which is precisely known. Moreover let us assume 

tha t  a satisfies the elhptieity condition 

(3) 0 <: ~ l < a ( x ) < ~ ,  x e / 2 ,  

and the following regulari ty hypothesis 

(~) IDa(x)[<E, xe /2 ,  

where 21, 2,, E are fixed positive numbers. 

We will prove that ,  if g has a finite number,  ZT, of relative maxima and minima 

on ~/2, then the gradient of u vanishes only at  a finite number  of interior points, 

and only with a finite multiplicity. Moreover, the number of critical points and 

their multiplicities are controlled in terms of ~ (see Theorem 1.2). 

Fur thermore  we determine a lower bound on IDul with an explicit non-negative 

f u n c t i o n ,  which has the same zeros as IDu] (see Theorem 1.3). 

These fact  are then used to obtain a stability estimate (Theorem 2.1)~ and in 

the development of an algorithm. 
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This algori thm consists of an ~pproxim~tion procedure.  We will show tha t  the 

solution a~ of the (well posed) elliptic boundary  value problem 

{ ~ ~ J a ~  div (a~gradu)  = 0 ,  in /2 ,  

(5) a~ = a ,  on ~/2, 

converges to a as s --~ 0. Here u is the given solution of (1), (2). Thus an approxi- 

mate  identification is performed solving problem (5) with a sui tably chosen value of e. 

I t  may  be useful to make a sketch of the hypotheses and of the main results. 

Data. 

(i) The solution u of (1), (2). 

(ii) The boundary  values alsa of a. 

A priori information. 

(i) The coefficient a satisfies the ellipticity condition: (3). 

(ii) The coefficient a has bounded first order derivatives:  (4). 

(iii) The funct ion g, appearing in (2), is C 2 smooth and has a finite number,  N, 

of relat ive maxima  and minima on ~/2. 

(iv) /2 is a simply connected,  C2-smooth, bounded domain in R 2. 

Results. 

(i) Stability. The mapping 

• (u, aJ .) a e L,o%(/2) 

is t t61der-continuous (Theorem 2.1). 

(ii) Convergence o/ the algorithm. As e tends to 0, the solution a~ of (5) con- 

verges to a in L~oc(D ) for every  p ~ c~. The rate  of convergence is of 

HSlder  type.  Moreover the algori thm is stable with respect to Z~-pertur - 

bations of u (Theorems 3.1, 4.1). 

Some comments are in order. 

I) We wish to point  out  t ha t  the above stabil i ty results depend only on the  

Z~-error on u. This is necessary if we are dealing with applications in which only 

noisy measurements  are available. I t  is also interesting to consider the case in which 

only a finite number  of da ta  is given, and we will show how the  above results can 

be adapted  to this case (see Section 5). 
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I I )  B y  the  use of the  me thod  of characteris t ics  on equat ion (1'), i t  can be 

argued tha t  the  coefficient a is uniquely de te rmined  when u is given in /2, and  the  

boundary  values of a are prescr ibed on the  so called inflow bounda ry  of /2 (i.e., the  

set of points  of 3/2 on which the inner normal  der ivat ive  of u is posit ive) see BON- 

GIOI~No-VALENTE [4], and [17]. I n  this respect,  our gssumpt ion t ha t  all the b o u n d a r y  

values of a are given, m a y  seem redundant .  However ,  i t  mus t  be noticed tha t ,  if 

only an approx imat ion  of u is known, then  the  de terminat ion  of the  inflow bounda ry  

is itself an ill-posed problem.  For  this reason, the  present  assumpt ion  seems to be 

r a the r  convenient  and  not  too expensive.  

I I I )  In  some respects the present  a lgor i thm has some resemblances  wi th  the 

me thod  of quasi-reversibil i ty,  see LA~TEs-LIo~s [14]. Essent ia l ly  this a lgor i thm is 

based on an elliptic singular pe r tu rba t ion  problem,  and, on this field, a wide 

l i tera ture  exists. Le t  us ment ion  LEYINSON [15], KAmN [11]. 

The paper  is organized as follows. 

I n  Section 1 the  propert ies  of the critical po in t s  of u are invest igated.  Theo- 

rem 1.2 gives an evaluat ion of the n u m b e r  and of the multiplicit ies of interior critical 

points  of u, the  solution of (1), (2). In  Theorem 1.3 a lower bound  on ]Du I is proved.  

Section 2 deals with the main  a-priori s tabi l i ty  result~ which is given in Theorem 2.1. 

Section 3 contains the  basic result  regarding the convergence of the  algori thm, 

Theorem 3.1. 

I n  Section 4 we describe a modified version of the algori thm, which applies when 

noisy da ta  are given. The s tabi l i ty  of such an a lgor i thm is p roved  in Theorem 4.1. 

The case of discrete da ta  is t r ea ted  in Section 5. An a-priori  error es t imate  is 

p roved  in Theorem 5.1. In  Theorem 5.2 an ad-hoc adap ta t ion  of the  a lgor i thm is 

t r ea t ed  and  an error es t imate  is given. 

I n  Section 6 we present ,  some useful regular i ty  es t imates  for the  direct  p rob lem 

(1), (2). These es t imates  are well-known and are collected here jus t  for the con- 

venience of the reader.  

Notation and definitions. 

1) B~(x) denotes the  disk centered a t  x e R 2 with radius d. 

2) ~9~ = {x E/2:  a(x, ~/2) > a}. 

3) d i a m / 2  denotes the d iameter  of /2. 

4) ]/21 denotes the area of /2. 

5) osc g = m a x  g --  rain g. 
Of 2 ~z9 ~ 

6) When  no other  ground domain  is specified: ]] "I]~ stands for the  L~-norm 

in /2, l < p < +  co. 

7) In  places we will assume t h a t  ~9 is C~-smooth. I n  such a case /2 satisfies 

an interior and  exter ior  sphere condition. We define do as the largest  posi t ive n u m b e r  
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such tha t ,  for every  x ~ R~ \~2 ,  there  exists a disk of radius do, which contains x 

and  does not  intersect  ~Q. 

8) For  the  sake of b rev i ty  we Will use the following convention.  Given a 

funct ion ] on a set A c R 2, we will refer to t h e  number  of m a x i m a  (minima) of ] as 

the num ber  of connected components  of the set of points  of re lat ive m a x i m u m  

(minimum) of / in A. :Note t h a t  if A is a simple closed curve, then  ] has the same 

n u m b e r  of m g x i m a  and minima.  

9) We will denote  b y  e absolute constants ,  which m a y  be different f rom line 

to line. Likewise we will denote  b y  % constants  depending only on the p a r a m e t e r  p. 

1. - Properties o f  the  critical points o f  u. 

We s ta r t  wi th  ~ theorem due to ]~ARTlV~AN and ~r the  proof  of which 

can be found in [9]. 

TB:EORE~I 1.1. Le t  u be a, non-constant~ 1.2 - W1or ) solution of (1), where a 

satisfies (3), (4). 

For  every  x~ ~Q there exists and  integer  n~> 1 and  a homogeneous harmonic  

po lynomia l  H~ of degree n, such t h a t  u satisfies, as x - >  x ~ 

(1.1) 
=  (x0) + nn(x _xo)  + o(Ix - xop), 

D u ( x )  z D H , , ( x  - -  x o) o ( I x  - -  xOl - ) . 

RE~AIr 1.1. -- We list some s t ra ight forward  consequences of Theorem 1.1, which 

will be repea ted ly  used in this section. 

(i) The interior critical points  are isolated. 

(ii) E v e r y  interior critical point  x ~ of u has a finite mult ipl ici ty,  t ha t  is 

IDu(x)l ---- O ( I x -  xOl.~) 

where m z n -  1, n being the  integer  given b y  Theorem 1.1. 

(iii) I f  x ~ is an interior  critical point  of mul t ip l ic i ty  m, then, in a nc ighbourhoo4 

of x ~ the  level line {x e ~ :  u(x) = u(x~ is made  of m + 1 regular  arcs intersect ing 

with  equal  angles a t  x ~ 

TtIEORE~ 1.2. -- Le t  ~Q be a bounded  s imply connected domain  in R ~. Le t  a 

sat isfy (3), (4). Le t  g be a cont inuous funct ion such t ha t  g ]~  has N max ima .  Le t  u 

be the  1,3 W1oo(~Q ) solution of (1) wi th  bounda ry  condition (2). 
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The interior critical points of u are finite in number  and, if m~,... ,ink are their  

multiplicities, then  the following inequal i ty  holds 

K 

(1.2) 1 .  
i = l  

TttEORE~ 1.3. -- Le t  the hypotheses of Theorem 1.2 be satisfied. Moreover, let 

us assume tha t  ~9 is C2-smooth and tha t  g e C~(~). 

There exist points x~, ..., x~ in Y2 and positive integers m~, ..., mK satisfying (1.2), 

such tha t  for every  x e ~9~, d > 0, 

K 

(1.3) [Du(x)]> C~ 1-[ ([ x -  xd/diam n )  m~ , 

where C~ is a positive eonstunt  depending only on d, Y2, ~ ,  E, osc g and []gl[c~(5)} 

I t  is convenient  to split the  proof of Theorem 1.2 into a sequence of three  lemmas. 

IJEi~I~IA i .1.  -- Le t  Y2 be bounded and simply connected. Le t  u be a Wlor (~ C(~) 

solution of (1) where a satisfies (3), (4). If  u has an infinite number  of interior critical 

points,  then  ul~ a has an infinite number  of relat ive maxima  and minima. 

PR00F (Outline). - We may  distinguish two cases. 

(i) There exists a critical point  x 0 E ~9 such tha t  an infinite number  of critical 

points of u is contained in the level line { x e  ~ :  u(x)-~ u(x~ 

(ii) There  exists a sequence {x~} of critical points in s such tha t  for every  

n, m, n ~ m, u(x~) ~ u(x~). 

Case (i). - ~ o t e  tha t  zP\{x  e tP: u(x)-~ u(x~ is made  of an infinite number  of 

connected components  At, A2, ..., A,~ ... such tha t ,  for every  i, on ~A~(~ Q~ u ~ u(x ~ 

and, on Ar ei ther u > u(x ~ or u < u(x~ 

Case (ii). - By  induct ion we m a y  find a subsequence {x~,} of {x~} and two se- 

quences of non-empty  open subsets of tP, {C~}, {B~} having the following propert ies  

(a) CT~D C,+1, for every  k ---- 1, 2, ...; 

(b) u[ov~n~ u(xn~), for every  k = 1, 2, ...; and:  x~je Ck, for every  j~>k + 1; 

(e) Bkc Ck\Ck+l, u[os~n~: u(x~+l); and:  u [ ~ >  u(x,~+~), or: u l ~ <  u(x~+,); for 

every  k : 1, 2, .... 

Therefore,  in bo th  cases (i) and (ii), u has an infinite number  of max ima  or 

minima in ~ .  By  the max imum principle all these maxima  and minima are a t ta ined 
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at  the boundary .  Thus ula~, the trace of ~, has an infinite number  of maxima  and 

minima, in fact,  since 8/2 is a simple closed curve, u]a ~ has as m an y  maximu as 

minima. 

RE~ARK 1.2. -- By  the above lemma, if the hypotheses of Theorem 1.2 are 

satisfied, then  u has only a finite number  of interior critical points. Thus, only the 

est imate (1.2) remains to be proved.  

L E ~ _  1.2. - Let  the hypotheses  of Theorem 1.2 be satisfied. If,  in addition, 

we assume tha t  u has a unique critical point  x~  then  its mult ipl ici ty m satisfies 

(1.4) m < z V - -  1 , 

PROOF. -- The level line {x e  ~ :  u ( x ) - ~  u(x~ splits ~ into at  least 2 (m-F  1) 

connected components,  and, on at  least m - F  1 of them, we have 

u > u(x  ~ 

t h a t  is, each of them contains a t  least one maximum,  which, b y  the  max imum 

principle, is a t ta ined  at  the  boundary .  

Thus g has a t  least m ~ 1 maxima,  or, which is the  same, (1.4) holds. 

L E n A  1.3. - Le t  the  hypotheses of Theorem 1.2 be satisfied. Le t  xl, ..., xx be 

the  interior critical points of u, and let m~, ..., m~ be their  respective multiplicities. 

I f  xl, . . . ,xK all belong to the same connected component  of the level line {x e / 2 :  

u(x) = u(x~ then  the est imate (1.2) holds. 

PROOF. -- By  induct ion on the number  K of critical points. I f  K --  1 then (1.2) 

holds by  Lemma  1.2. 

Le t  us assume (1.2) t rue  when K < / ~ .  Let  K - - ~ / ~  ~ 1. Let  us denote  t----- 

= u(xl) . . . . .  u(x~+l)  , and let y be the connected component  of {x e / 2 :  u(x) = t} 

containing xl ,  ..., x~+~. We can always find a critical point  such tha t  there  exists 

only one are in y, connecting it  to another  critical point.  Up to a renumbering,  we 

m a y  denote  these two critical points X~+l, x~ respectively, let ~ be the  arc in y 

connecting them. 

Now we see tha t  there  exist exact ly  two regions A +, A -  in /2, which are con- 

nected components  of the level sets {x e / 2 :  u(x) > t}, {x e / 2 :  u(x) < t} respectively,  

and which verify the condit ion 

hA +(~ hA----- ~ .  

We may  find a simple are fl in A + u  A - ~ ) ~ ,  which is a line of steepest descent  

of u, and has endpoints on hA+(~ h/2, h A - n  h/2, which we will d e n o t e y + ,  y - r e -  

spectively. 
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~o te  tha t  fl intersects a just  once, and, since D is simply connected, i t  splits ~2 

into�9 two simply connected domains D~, D~ such tha t  xl, ..., x ~ e D  1, x2+~e ~ .  Let  

~1,  27~ be the numbers of maxima of u on ~D ~, ~D ~ respectively. 

A detailed, bu t  simple, inspection shows tha t  271 ~ 27~ m a y  take only one of 

the three values: 27--:1, 27, 27 -~ 1, respectively whether both, one, or none of the 

following two facts  occur: 

(i) y+ is a point  of relative minimum for ulap; 

(ii) y-  is a point of relative maximum for ula ~ . 

In  conclusion, we always get 

271~- ~-<27 ~ 1 . 

Mow, by the induction hypothesis, 

.2 
m~<271-- I i 

i = 1  

and. hence, .finally, 

m~+i~27~-- I, 

i = l  

P R O O F  OF T H E O R E ~  1 . 2 .  -- Given the set 

K 

s = U {x e u(x) = 
i = 1  

let 71, ... ~ ~ bo the  connected components of S which contain at  least one o f  the 

critical points. Clearly l<~K. 

We proceed by  induction o n  1. I f  1 ~ -1  then (1.2) holds by Lemma 1.3. 

Assume tha t  (1.2) holds when l~<[. Le t  1 = i -~  1. Up to a renumbering, we 

choose ~ + i  in such a way tha t  ~l, ..., ~i all lie in the same connected component 

of D \ ~ + l .  Le t  A be such component.  Up to a change of sign, setting t ~ u],~+l, 

we assume u > t on a neighbourhood of ~?+~ ~ ~A in A. 

Mow it is immediately seen tha t  there exist e > 0 and a simple arc fl in A, with 

endpoints on ~2, which is contained in the level line {x e ~ :  u(x) = t ~ s }  and which 

separates ~i+~ f r o m  ~ , . . . ,  ~ .  Let  D1 D2 be the components of Q ~ ,  let ~'1,...~ 

. . . ,?-~cD ~, and ? i + ~ c ~  ~. Mow, if 2 7 1 , ~  are the numbers of maxima of u[~ , ,  

u[o a, respectively, then we find tha t  

271 ~ 27~ ~ 27 ~- 1 , 

in fact  fl is a connected set of points of relative maximum for D~ and of relative 

minimum for D~. 
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Therefore , by  the induction hypothesis, 

K 

~ m , =  ~ m,-[- ~ m, < ( /r  + ( N ~ - - I ) = N - - 1 .  

PROOF OF TEEOI~E~ 1.3. -- Let  x~, .... , xx be the critical points of u i n /2 ,  and let 

ml , . . .  , ink be the respective multiplicities. The following equation can be derived 

from (1) by  a lengthy,  bu t  not  difficult, computat ion 

A log IDul = - div (a-~[Dul-~(Da.Du) Du),  in O\{x~,  ..., x~}. 

The equation above has to b e  meant  in the weak sense. Mote tha t ,  by  the 

regulari ty properties of u, see Lemma 6.1, log IDu lis a W~1oVr function in /2 \{x~ ,  ..., xK} 

for every p < c~ and, b y  (4), the yector field aT~lDul-2(Da.Du) Du belongs to L~(/2). 

Let  G(x, y) be Green's function for Laplace's equation in /2, tha t  is 

A,G(x,y) = -- 8(x--  y ) ,  x, y e / 2 ,  

G(., y)l~---- 0 ,  y e / 2 .  

Let  us define 

(1.5) 
K 

io = log [Du I + 2~ ~, miG(., x,) , 
i = I  

note tha t ,  in ~ { x l ,  ..., xK}, 

(1.6) A~ ----- -- div (a-llDul-'(Da.Du) Du),  

moreover, note tha t ,  by  (1.5), ~ has finite limit a t  the points xl, ... ,xK. Therefore, 

since the right hand  side of (1.6) is the divergence of a bounded vector field, i t  turns 

out  tha t  xl, ..., xK arc removable singularities for ?. That  is (1.6) holds in all of /2 

and ~ is locally bounded in /2. By  (1.5) and by the est imate 

2~G(x, y ) < - -  log (Ix -- yl/diam /2) , 

we get 

IDu(x)]>~explmin q~l ~] (I x -  xi]/diam/2)~, ,  x ~/2~.  

The rest of the proof consists of the evaluation from below of f0 on/2~.  We will 

make use of equation (1.6) and of the boandary  condition 

(1.7) 9p -~ log IDul, on 8/2. 
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We will apply Z~-estimatcs and Harnack's inequality to such linear elliptic 

equation in divergence form (see GrLBA~, TRUDIS~GER [8]). 

Let us denote 

(1.8) M =  max q .  

The maximum principle tells us 

(1.9) M<max log IDul + vl~2l~t~-*. 
c3~ . . . . .  

~Ioreover~ since v ---- M - -  ~ is a non-negative solution of 

/iv ----- div (a-lIDut-~(Da..Du) Du) , in Q ,  

by Harnaek's inequality~ we have for every d<do/2~ 

(1.1o) maxg. (M-  + 

(see Remark 1.3 at the end of the proof). 

Therefore we get 

(1.11) min~>M--exp{eI~ld-2}{(M--maxq~) + [/2[�89 

We will evaluate separately M and M - - m a x  {~(x): x ~ ~ } .  

By (1.5)~ and since G(x~ y) is non-negative we have 

on the other hand~ note t h a t  

(1.12) 

M~>max log IDul, 

osc g<~ I~Ol max IDa I <~VlO]d~ 1 m a x  IDul, 

in fact: 1~/21 = perimeter of ~2~<el~ldo 1. Therefore we get 

(1.13) M > l o g  (edol~1-1 ose g) .  
0 9  

~ow note that  by (1.5)~ (1.9) we have 

(1.14) M -  max q < m a x  log [Du I ~ el~lt~,X-~ ~-  max log IDu]. 
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Let ~ e a~  be such that  

log IDu(~)t  = max log IDu[, 

let z e a ~  be such that  I.~- z] = d, hence we get 

(1.15) ~ m a x  log IDul- max log IDuI <log IDu(~)l l o g  IDu(z)l< 
0D ~ 

4 c~,d 1- ~1~]] D log IDa I I]L~(~(,)) < % dl-~Z~ll D,ull ~ (min IDu I)-x. 
�9 /~(~) 

Here, use has been made of ~orrey 's  inequality ([1]), an d p is any fixed number 

larger than 2. Again by Morrey's inequality 

rain IDul > 1Du(~)I - ~al-,~IlD~ll~ = ~Du~r ~al-"'~IlD~ll~. 

Now, since ilD,ul]~ can be bounded in terms of ligl]c.(a) (see Lemma 6.1) we may 

find d~ dx<do/2, independent of u, such that  

namely �9 ~ 

where /~ is given by (6.5). 

Thus, for every d < d ~  we obtain 

(1.17) m a x  l o g  1Dul - m a x  l og  IDul <2e~al:~'~l lD~ ~]l~llDulI~l < 1 �9 

Consequently, combining (1.14) and (1.17), we g e t  

(1.18) M -- max ~<~c]~[�89 ~ -}- 1,  

and henc% recalling (1.11)~ (1.13)~ we obtain 

(1,19) min ~> log  (odolQ]-! osc g ) e x p  {e[Dl:d-2}(1 + c]~21'/~2T1), 
D~ 6~ 

which implies (1.3) with 

(1.2o) c~ = e~ol~l-l(osc g) exp { -  (1 + e l ~ l ~ kV)  exp [cl~l(d~t)-=]}, 
aD 

where d~ is defined by (1.16): 
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REVAlUe 1.3. -- Roughly speaking, the constant  appearing in (1.10) is obtainod 

by the repeated use of t ta rnaek 's  inequali ty on ~ chain of disks in ~2 having radii 

all proportional to d. The number-of  such disks can be est imated as 0(l~[d-2), if 

d<do. By a more refined construction with disks of variable radii we are led to 

(1.10) with the constant  

(no a - ' )  ~ e x p  { c [ 9 [ a ; ' }  , 

Hence C: in (1.20) may  be replaced by 

(1.2o,) c;  dO).ol-:(oso:)e:p :- (i 
c%0 . . . . . .  . . : . . . . .  : 

2.  - S t a b i l i t y  e s t i m a t e s .  

THEORE~ 2.1. -- Let  ~2 be a C2-smooth, simply: connected bounded  domain. 

Zet  a, b be functions satisfying (3), (4), let g, k G C2(~) and let u, v be respectively 

the W:,2(f2) solutions of . . . . . .  :,. 

,[ d i v ( a D u ) = 0 ,  
(2.1) { u = g ,  

div (b Dr) = 0,  
(2.2) / v = k ,  

in D ,  

on ~ 2 ,  

in Q ,  

on ~Q,  

, . .  > 

Let  h r be any  positive integer. I f  g has at  most  2F maxima and 2V minima on 

~[2, then, for e v e r y  d} 0,, d > 0, 0 < 0 <;�89 t h e  following . estimate - holds 

(2.3) ll~- bl:~~ I a- bl + (I] u" vll~l-Qi:q~:~ !z<~'§ " - - 

here Ca depends only on d, O, Q, .Y, ~1, ),3, E, oseg and I[g]f~qS), [lkHv.(5) �9 

The theorem above is a straightforward consequence of the following two lemmas. 

L E ~  2.1. ~-:Let the  hypotheses of=Theorem 2.1 be satisfied-, :then the following 

estimate holds 

(2.4) �9 f [ a  -- b]lDu]~< C3{max [a -- b[ + �9149 :-  vl ~]DI-�89189176 �9 
2 -  . . 

Here C3 depends only on O, ~, ~:, ~ ,  E and I r : 
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LE~i~A 2.2. - I f  u is the solution of (2.1), where a , / 2  and g satisfy the hypotheses 

of Theorem 2.1~ then the following weighted interpolation inequali ty holds: 

(N-1)IZ~ 2 11zr 

Da D 

Here T is any/51o~(/2 ) function and C4 is a constant  which depends only on d, /2 ,  

3r, &, E, osc g and lIgll~(~). 

PI~0OF oF THEOREI~ 2.1. -- We may  combine (2.4), (2.5) with T = a - - b ,  and 

the interpolation inequali ty (see AD• [1]) 

IIq*HL~(~,)<~'{IIDTil2~(~,)MI~,(~,)-+- dofl]Tll~i(~,)} : 

whic h holds if d<do/2. In  fact  i n  such ~ case/2~ fulfils an interior sphere condition 

with spheres of radius do~2. If  d >  do~2, then we trivially majorize: ]]qIILo(z,)~< []TI[L~(z~~ 

Therefore (2.3) holds: with 

(2.6) (72 [[ E~ -~- ~lOltd-21 (Y]']3N/(2N+I)I~'II(2N+I) 
= " '21 ~ 1  ~ 0  J V 4 J  - - 3  " 

P~OOF OF LE~L~IA 2.1. -- Let  us denote T = a -  b, ~ = ~ a x  IT[. 
1 o 

we get~ for every ~ e We'"(/2), 

(2.7) f T  Du'D~ = " f b  D ( u - -  v ) 'D~ .  

For  any h > 0, consider 

(2.8) ~(x) = h-l([T(x)-- ~]+Ah)u(x),  x e / 2 ,  

(here: [t] + = positive par t  of t, tAs  = rain {t, s}). 

Let  us denote 

/2(t) = {x e 9 :  T(X) > t}.  

By (2.1), (2.2) 

We obtain 

(2.9) -- f T IDu[~h- ' ( (T - -~ )Ah) - -  f ~ h - I @ D T ) ' ( u D u )  : 

~(v) Q(v)\~(v +h) 

a(,7) ~(,~)\a( v +h) 

b D ( u -  v)'Dq~u. 
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Let  us examine  the  second integral  on the  lef t -hand side, and  let  us in tegra te  

b y  par t s  

h-if @ D~).(u Du) = (dh)-I f D~.Du~= 
~(~)\b(n + h) a(~)\~(~ + h) 

~a(,~) ~a(n +h) 

f @2 Au ~} . 

aiO\a(n + h) 

Here ,  in the  first two integrals) ds denotes the  arc- length element ,  n denotes 

the  outer  normal .  )Tow observe tha t ,  on ~(2(t), fP = t, therefore we get  

a(~)\a(n + h) a(n) t~(,~ +a) t~(n)/t2Cn + h) 

=.'>-'{- f 
~(n)\b(,7 + h) ~(n +lO 

Consequently,  we obta in  

]h-, f 
a(n)\a(,7 + h) . t~(n) 

. . . . .  <(,7 + hl2)f lullAul + fDul') �9 
.o(O 

Thus,  combining (2.9) and  (2,10), we g e t  

f~olD~l~< (,~ + hle)f(lull,dul + IDup) + ,hfI.D(u-- ,,)IID,~I + 

+ , z , h - , j l l ) ( , , -  ~)ll-O,ptl',l �9 
~9(n) 

)Tote tha t ,  replacing/o w i t h .  fP in (2.7) ~nd a t  all following stages) an analogous 

inequal i ty  is obtained.  

Final ly  we get  

f I~IIDup<(v + hl2)f(lullAul + IDup) + ~flD(u-- v)l(IDul + ~-'1-0~o11~1), 
I~l>~+i", I~l>n I~l>n 

und, consequently~ 

(2.11) f l ,pllDup<(~ + hl2)f lull~,l + (2~ + 3~/2)fiout~+ 
~' t2 t2 

+ ,~,flD(~-- v)t(ID~l + g-flD~ll~l) �9 
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In  turn  we get, for every p, 1 < :  p < 0% 

~l~ollDuP < (~ + h)[tlull~llzlutli + ~llDull~] § (2.12) 

and hence, by  the regulari ty estimates of Lemm~ 6.1 in the Appendix, 

(2,13) 

where 

(2.14) 

(2.15) 

(2.16) 

f l~otlDul~ <Q,(v + h) + (Q, + Q,h-~) I lZ~(u-  v)l l , ,  " 
t9 

Let  us now use the interpolation inequali ty (see ADAMS [1]) 

I ID(~-  v)ij~,<el~laff={lID~( u - ~)1t$11~- vll~-~ + ~o~/~11 ~ -  vH~}, 

which holds for ~ = 2 / ( 3 p -  2), p > 4/3. We get, by (6.1), (6.3) in the Appendix, 

I I D ( ~ -  v ) i [ ~ , < Q , ( ! I ~ -  ~ I I = / l ~ l+P  - =  , 

where 

(2.17) Q~ = e d-2lDI j+~(�89 0 

�9 [ l [D=gl]=-/-  }ID=#IJ=--F (# --F ~ ;=z~ 'q .01 -~+ '~ ) ( I l g l t =+  Nkll=)] ~ �9 

Therefore 

and picking h ---- ([]u -- vU~]~2[-�89 (1-~)m and fixing p such tha t  a = 20, we obtain (2.4) 

with 

<2.18) c~:  Q, + Q,(Q~(ilglt ~ + I] kll~)<l-~>/~ + Q,). 

PROOF OP LE~_A 2.2. - The hypotheses of Theorem 1.3 are satisfied, thus (1.3), 

(1.2) hold. 
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Therefore, for every positive r, we have 

. ( .  ) 

" ZEo.~,~,~,(r) f I~IIDuP < z G  , !)r~[[qq'.~(~.)+ C~-~(diam P./r)~(~-') f l~llDu ? . 
. ~2a  ~ a  

~ o w  we may  minimize this last expression�9 as r ranges over (0, + ~) .  There- 

fore (2.5) follows with 

(2.19) C, = 2 ( a ( / ~ -  1)(diam ~)2) (hr-1)/~ C12/2r  . 

3. - Convergence of  the algorithm. 

In  this section we areo:concerned with convergence properties of  t h e  W!.~(~2) 

solution a~ of the elliptic boundary  value problem 
�9 - . ,  . .  . 

e A a ~  div (a~grad u) = 0 ,  in T2, 
t3,~) 

a~ ---- a ~ on ~,.Q' 

Wo start  with ~ remark. 

RE~ARK 3.1. - The W~.~(~) solution a~ of (3.1) exists and is unique. 

for every ~ r 0, (3.1) is equivalent to 

In  f a e L  

::: :- d i v  e ::~* grad , , ( (e~/~a~)) 0 : i n  

[ eulsa~ -~- e~lsa ~ oil ~Y2 . 

Here we are dealing with a divergence structure elliptic equat ion with pure 

principal par t  in the unknown e~l~a~. The  coefficient e -~/~ is uniformly elliptic ~nd 

is W-~'~(~)--.regular:(see L e m m a  6.1), :The ~boundary valu% e,(6a~ is Lipschitz 

continuous. 

. :~It:fpl~0ws, by  :st~nda~d::regularity:resu!tS that-a~ is ~ Lips~hitz coatin~ous,:fmac- 

tions in ~ .  Note also that ,  if we fix s r 0, then the mapping Z~(Q) 9 u -+ a~e L~{:Q) 

is continuous. 

TK~EORn~ 3.1. - LeG ~ be a C2-smooth} s{mpiy connected-bounded domain in R ". 

Let:a-~saflisfy- (3)p (:4):~nd ]e~u::be t h e  W1,~(~2)~s0!utio_n of :(!),:{2)~=:where:gc=!C~(~) 

and g[a~ has at  most  5 r maxima. Let  a~ be the W~,~(Q) solution of (3.1). I f  e e  (0, t) ,  
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then the fOllowing est imate ho lds  for every  q~ [1, c~) 

Here  d > O r and C5 is a constant  which depends only on d, q, Q, N, 2~,:22, Ei 

o s c  g a n d  Ilgilo,(~). : 

~o The proof of Theorem 3,1 follows from the two lemmas below. 

L E n A  3 . t . - - :  Le t  a satisfy_ (3) ,  (4), Le t  u b e  the solution of ( 1 ) ,  ( 2 ) w i t h  g e 

C~(O). If  a~ is the  WI,~(~) solution :of ( 3 . 1 ) t h e n  

(304) 0 < a~(x)< C6a(x), x eft2, 

here 

(3.6) co= exp { ,i;1Blap}. 

L E n A  3.2. - If  the hypotheses of Lemma 3.1 are satisfied, then the  following 

est imate holds for every  e ~ (0, 1) 

(3.7) : f Ia-- a~]lDul2 < C, s�89 . 
~2 

',. : : . . ~  

Here  C, depends only on D, 21, 2~ E ana  Jlg]]c.-(5). 

..... PRo oF 2OF: T ~ o g ~ -  3 . t . -~  set-. u s  combine-(3 A)~ (3.7.). by- the- use .- of~Semma:: 2.2. 

w e  obtain . . . .  : :: ::: . . . . .  

(3.s) f < 
. O n  

where : 

(3.9) C s = C4(2 2 C6)(~-I)/ivC~/N, 

thus, applying H61der's inequal i ty  and (3.4), the est imate (3.3) follows with 

(3.10) : C 5 = 0~/~(2~ C,) 1-i/~ . 

P]~ooF oF LE~iYiA 3.1. - By  the use of the max imum principle;-equ~tion-(3.2) 

yields : : 

(3.11) as(x) ~> 21 exp {(rain u max  U)/s} > 0 ,  x c ~ .  
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Therefore only the upper bound on ae and (3.5)remain to be proved. 

Let us assume a e C~(Q), in such a ease it turns out that  also u, a~e C~(~). Now 

denoting 

9 = a - - a ,  

w e  have 

ez~ 9 + d i v ( q ~ D u ) = e / l a ,  in ~ ,  

(3.12) 9 = 0,  On ~ D .  

In the sequel we will make use of arguments coming from the method of rear- 

rangements for elliptic equations (see: TALE~TI [20]). 

Consider the following level sets for the function 9/a 

(3.13) ~ - ( 0  = {~ e ~ :  9 ( x ) / a ( * )  < - t }  . 

Note that,  for every t > 0, 

(3.14) fa i r  (9 Du) = o, 

in fact 

div (9 Du) = div (a(~o/a) Du) = a D((9/a) + t ) .Du,  

and, by (1), this last term has zero integral on ~9-(0. Therefore for every t > 0 

f a9 =fan. 
~-(0 ~-(0] 

Note that,  by  Sard's lemma, for almost every t, ~9-($) is a smooth closed curve 

and coincides with the level line {x e ~2: 9/a = -  t). 

Consequently, for almost every t > 0, by an integration by parts we get 

~ l a  = - -  t ~ / a  = - -  l, 

where n = ID(~/a)[-*D(9/a), and ds is the are-length element. 

, ~ / a =  - ~  ~ / a =  - ~ ,  

Let us define 

Consequently 

(3.16) 

(3.17) 

#(t) ----- measure of ~2-(t), 

P(t) ----- perimeter of ~2-(t). 
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For almost every t > 0 we have 

qD/a  ~ - -  t 

(see [20]). 
Iqow we have, by H61der's inequality and (3.15)~ 

--1 d 1 

(P( t ) ) '~  f IDOl ds f D~ ds< (--~/~<t));t~-E(1 + t ) P ( t ,  

q ~ / a  = - -  t ~P la  = - -  t 

therefore 

(3.18) 

or, as is the same, 

By the isoperimetrie inequality, we obtain 

d 

d 

thus, integrating on both sides~ 

V~ ~,E- '  log (1 + t)< (p(0))+-- (tt(t))+< [D[ + -  (tt(t))t. 

Therefore #(t) = 0, for every t such that  

that  is 

(3.19) -- min (q~/a) < exp {~-++~-~EI~lt} - 1 ,  
9 

which, together with (3.11), implies (3.4). 

Now note that  

fair (~ Du)@/a) 
D 

therefore we have 

= 0 ,  

f z~(~la) = f  Aa(~la) , 
t 2  
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now, writing: Aq~ = A(a(q~la)), and integrating b y  parts, we get <.  

Q O ,  : 

therefore, by  (3) and (3.19), we obtain 

flD(mla)l:<.E",~i~l~l exp {2~-Lt.;~.EI/21~}. 

And~ finally, we get 

(3.20) IiDq~ll~< Ila -D(~/a)h + II (~la)-Dah<E,~m~&-l~l~.exp:{~-~.Z~,l/2t ~} + 

+ EI/2p[exp {~-O.T'~l/2p } - !] 

which yields (3.5). 

The proof will be completed once we have removed the C~-smoothnesS hypothe- 

sis on a. 

This may be done by an approximation pr0cedure; 

Let a~e C~(/2), n----1, 2, ..., verifying (3), (4) be such that a~--~ a in W~,~(/2), 

2 <p < oo. . : 

Let u~ be the solution of 

div (a ~Du~) ---- 0, in /2, 
(3.21) ! u ~ =  g,  ' on 3/2, 

and let a~ be the solution of 

or, as is the same, 

(3.22) 

s Aa~ -{- div (a~ Du~) ----- 0 ,  in /2,  

a~ = a ~ , o n  3 / 2 ,  

air  (e-*~l~D(e~"i~anj) " 0 ; i n  /2 

a ~ = a ~ ,  . on ~/2.  

Obviously (3A), (3.5) hold, for every n if a is replaced with a~; an4 a~ with a~: 

Now note that, by (3.21), 
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and, by  (3.22), 

a: -+ a in W~;~(Q) 

thus, passing 'to the iimit, a~ verifies (3.4), (3.5). 

PRoo~ 0~ LE_~)[A 3.2. - Le t  9 = a -- a~. By  (3.12), we have, for every  ~ e W~o.:(Q) 

= 

Let  us pick $ ~ ~'~ W o , as follows 

~(x) = ~-~([q~(x)]+Ah)~(x), x e 9 ,  ~ > o .  

We obtain 

f ~[Du] 2 = -- h-If(q9 iD~)" (q~ ~u)- -  ,sf Das' ( h - l ~  .D(p) E ef Da~.Duh-l([qD]+ A h ) . 
v>o o<v<h o<~<h ~o>o 

Repeat ing the  argument  used during the proof of Lemma 2,1 in o rde r  to obtain 

(2.10) we are led to 

~ f ( ~  ~ ) ( ~  ~u) < (~/~)f,~ll~[ + I~l ~ 
O<r qo>O 

and thus 

: f~tDui~< (h/2)fiuilAul + ]Dul~§ [h-lflD~llD~Ilul § 
~>o ~>o ~>o ~>o 

A similar inequal i ty  is obta ined replacing 9 with ~o from the beginning. We get 

: Now, recalling an analogous est imate in Lemma 2.2, we have 

where Q~ is given by  (2.1g). Therefore by  (6.1), (6.2) in the Appendix,  and by  (3.5), 

we get 

hence, picking h = e ~, we obtain ~ (3.7) w i t h  

(3.25) 07 = [Q1/2 + 0~(1 + ~ZIA~)~EI~II[glI.+ 0.(1 + 27I~)AT~2~EI~I~ilDgl[~]. 
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4. - Approximate identification from noisy data. 

Let  us assume tha t  only an approximat ion ~ of u is known in [2. 

Assume also tha t  the following error est imate is given 

(4.1) 1/21-1fl _ as. 

We will evaluate the error between a and the solution to a problem like (3.1), 

in which u is replaced by  a suitable smoothing of g. 

To this purpose, let us introduce the following definitions. 

Le t  v 2 be a C~(R 2) non-negative funct ion such tha t  supp ~ _c/~(0) ; f~(x) dx : 1. 

We define the following smoothing operator  over /2 

(4.2) =fh- 'W((x-  v)/h)(/(y)- g(y)) ay + g(x) . 
Yt 

Here  g is the C~(~) funct ion which coincides with u on ~/2. 
h For  every e, h > 0, we define a~ as the solution of the problem 

(4.3) 
e Aa~+ div (a~D~q~[~]) = 0 ,  in /2 ,  

h _ _  a , -  a ,  on ~/2. 

The approximate  identification algori thm consists in solving problem (4.3) with a 

suitable choice of the  parameters  e, h. The following theorem tells how to choose e 

h is small when ~, the L~-error and h, is such a way tha t  the error between a and a, 

on u, is small. 

TttEORE~ 4.1. -- Le t  /2 be a C~-smooth, simply connected bounded domain in 

R a. Le t  a satisfy (3), (4), let  u be the solution of (1), (2) where g e C~(~) and gloa 

has h r maxima.  

Le t  ~ e Z~(/2) satisfy (4.1), and let  a~ be the solutiofi of (4.3), where ~ is given 

by  (4.2). Le t  0 z (0, �89 

There exists a number  (~1 > 0, depending only on 0, h r , /2 ,  21, 2~, E and }lg[Io,(~), 

such tha t  if 

and if we set 

h = (diam/2) ~+o12, 
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then  a ~ satisfies 

(4.4) 

Here  C9 is a constant  which depends only on d, O, N, f2, ),1, ~2,/~, ose g and 

]:~E~ARK 4.1. -- Some extensions of this theorem could be proved  with no ad- 

dit ional difficulties. For  instance, the case in which also the boundary  values of a 

are approximate ly  known could be t reated.  ~oreover ,  with the due changes, the 

LZ-norm appearing in (~.4)I could be replaced b y  any  L~-norm, p ~ c~. 

We premise the proof with two lemmas. 

L E ~  4.1. - Le t  the hypotheses of Theorem 4.1 be satisfied. Le t  v ~ C1(~2), 

and let  be be the  solution of 

{ ~ Abe-~ div (b, Dv) = 0 ,  in Q ,  

(4.5) b~= a ,  on ~ .  

Tho following est imate holds 

(4.6) Ila~-- bsll~< (C,-- 1)22E-~e-~]Ib~llc~]iD(u -- v)ll~, 

where C~ is given by  (3.6). 

L]~MA 4.2. - Le t  u be the solution of (1), (2)I where a satisfies (3)~ (4) and 

g e C~(~). 

Let  ~ e Z~(f2) satisfy (4.1). The following est imate holds for every  p > 2 

[/  h \~-~/~ h - 5  

where G~o is a constant  depending only on % p ,  ~21 E 1 211 22, and llgHo.(5). 

PRooP oF THEORE~ 4.1. -- Let  us apply Lemma 4.1 with v = Sh[~], we obtain 

I[a~ - a ~ l I ~ <  ( C 0 - - 1 ) ~ E - ~ s - ~ l l a ~ l ] ~ l l D (  ~ - -  S ~ [ ~ ] ) I I ~ ,  

and~ by  Lemma  4.21 
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here p > 2, and 

(4.8) Gil : :GlO(~6-- 1) ~ 2 . ~  - 1  . 

l~ow fixing p : 4/0 -~ ~, we get 

Let  us fix ~o~ (0, 1) such tha t  

(4.9) 

thus, if {}<{~oe 3/{~-3~}, then  we have 

and recalhng (3.4) we get 

(4.1o) 

tla,- a~II~ <4r ~-~ ~-~, 

Let  us now combine (4.10) with (3.8), 

(4.n) 

and, if we replace 

then we get (4.4) with 

(t.12) 

Finally,  recall the condition 

therefore, the theorem holds with 

s : ~(t-o)2~/(~N+l), 

~ <  ~o e8/(1-8~ , 

PROOF OP L E n A  4.1. -- Let  ~ = as-- b~. We obtain 

e A~ -~ div (~ D u )  -= - -  div (b~D(u - -  v)) , 

r  

in s 

on ~ .  
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We apply again the method used in Lemma 3.1. 

By  an approximation argument it could be shown once more that  we may 

assume a, ~ ~ C~(~2) without loss of generality. In such a case we have also a~, be, 

We denote, for every t > O, 

t2(t) = {x e #2: IqJ(x)/a(x)l > t } ,  if(t) = meas  Q ( t ) ,  

P(t) = perimeter of t2(t). 

Observe that, for every t > 0, we have 

fd iv  (~o Du) = 0 ,  
9(0 

therefore 

f Acp = - -  ~-~fdiv ( b . D ( u -  v)) , 
~(t) a(t) 

now, setting Aq := A(a@/a)), and integrating by parts, we get, for almost every t, 

f a  D(cp/a) ds : --tfDa.D(cp/a>lD(cl)/a)l-' d s -  e - t [ b e . D ( u _  --v)..D(cp/a)lD(cp/a)[ -1 ds 
Iqdal =t I~la I =t Iq#a I =t 

here, and below, integration with respect to the arc-length is understood. 

Consequently we get 

&~lD@la)l d~< f lD(~l~)l ds<P(t)[Bt Jr- ~- ' l lb,  l l= ! l -D(u- -  v) l lJ l  �9 
I~lal =t Iq#al =t 

By H61der's inequality we have 

P,(t)< f lD(q#a)l dsf lD(q,/a)l-' cZs 
l~lal =t Ir  

= f  lD(~la)l as(- ~ ' ( t ) ) ,  
191al = t  

therefore 

P(t) < A l l (  - #'(t))[Et + s-llIbl]~!iD(u -- v)] I ~],  

and, by the isoperimetric inequality 

t~(t) < (4n)-IPqt), 

we obtain 

d 
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An integration yields 

#( t )< D/21�89 ~- ,~lg�89 (s-~]Ib~[Ic~]lD(u- v)lI~ ) --  log (Et  ~- s-~]lbs][~llD(u-- v)[]~))] 2 , 

which implies #(t) ---- 0 for every t such tha t  

and thus (4.6) follows. 

P~ooP oF I~E~M_~ 4.2. - For  every x e f2 we have 

Du(x)  --  DSa[~](x)[< [Du(x) --  DSa[u](x) I ~- IDSh[u --  ~](x) l ---- 

]fh-2~((x- y)/h)(D(~- g)(x)- D(~-ig)(y)xo(y))~y + 
R ~ 

+ f D~(h-~V((x- y)/h))u(y)- ~(y))Z~(Y) dy, 
R ~ 

hence, applying u  inequali ty for convolutions two times, 

IDu(x)  --  DS~[~](x) I < max  ID(u - -  g)(x) --  D(u  --  g)(Y)I -[- 
y e D  

h , - , ~ l < a  , 

+ llD(h-~,~((x .. )lh))ll~,(~,)ll ~ - ~II~'(-) < 

here, use has been made of  Morrey's inequality. 

Hence, by  the use of regulari ty estimates on u (see Lemma 6.1), (4.7) follows 

with 

(4.13) C,o-~ e~[lID~g[l.+ #]Tgl]~](diam/2) + IID~pH~.(m)(diam ~2)-', 

here /~ is the constant  defined in (6.5). 

5.  - T h e  d i s c r e t e  d a t a  c a s e .  

We introduce the following definitions. 

A tr iangulation O ---- {T1, ..., TM} in f2, is a set of internally non overlapping 

triangles T1, ..., TM, whose union covers ~ and which have the following properties. 

Every  side of each triangle either is a (possibly curved) are of ~2,  or intersects 3/2 

at  most  in one vertex. The sides of the second type  are straight segments and each 

of them is a common side to two triangles in 0.  
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Two numbers  h, a are associated to a t r iangulat ion O :h is defined by  

h ---- max  diam T~, 
i = I , . . . , M  

and ~ is the largest number  such tha t  each T~ contains a ball of radius ah. We will 

refer to h as the  size of the t r iangulat ion O. 

Le t  P~, . . . ,P~.e ~ ,  be the vertices of the triangles i n  O. 

We define the  finite element interpolat ion o p e r a t o r / / a s s o c i a t e d  to the triangula- 

t ion O, an4 to the  nodes P~, . . . ,PL as follows. 

l~or every  Z-tuple v---- (v~, ..., v~), I Iv  is the continuous funct ion on ~2 which 

is l inear in every  tr iangle T~, .... , T ~  ~nd, at  the po in t s  P~, ..., P~, :at tains to the 

values vl, ..., v~, respectively.  

Tn-Eom~ 5.i .  - Le t  the  hypotheses of Theorem 2.1 be satisfied, and l e t / ~ ,  ... ~/)L 

be the vertices of a t r iangulat ion O as described above. The following est imate 

holds for every  0 e (0, �89 

(5.1) Ila- 

here C2 is the same constant  appearing in (2.3) and C1~ depends on Q, 2~, E and 

IYgIIo,( ), 

Consider the case tha t  measurements  ~1, ... ,uL of u are made at  the points 

P~, ... ,PL,  and assume tha t  the  following error est imate is known 

L 

j = l  

An approximate  identification of the coefficient a is performed b y  determining 

the solution ~ of the boundary  value problem 

s A ~ +  div (~ ,D]I~)  = 0 ,  in Q ,  
(5.3) / ~ = a ,  on ~ 2 .  

here ~ = (~1, ..., ~ ) .  

The following theorem yields an error estimate,  in terms of 5 and of h, the  size 

of the tr iangulation.  

THEORE~ 5.2. -- Le t  the hypotheses of Theorem 3.1 be satisfied. Le t  ~ - ~  

= (ul, ..., ~L) and 5 > 0, be such tha t  (5.2). holds. 

Le t  Y,e be the solution of (5.3). 
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For  every a e (0, 1) these exists a number 8, > 0 depending only on a, a, ~ 

21, ~ ,  E and [IgJ!c,(5) such tha t  if 

9) , ((h/diam ~)-~"8 ~- (h/diam ~-~ ~ ~+~r 

and if we choose 

s = ((h/diam ~) -~8  + (h/diam ~)~-~)~/(u~+~), 

then we have 

fin -- g,[ < (C8 § [~]C, 8;1) �9 ((h/diam/2) -2 8 + (h/diam (5.4) 1) 

here C~, 08 are the constants appearing in (3.6)~ (3.9) respectively. 

I~E~A~K 5.1. - The estimate (5.4) can be interpreted as follows. If  the measure- 

ments of u are such tha t  the root-mean-square error is 0(8) independently of the 

number  of the measurements (i.e. of the size h), then it is convenient tha t  the size h 

is 0(8~/(8-~))~ otherwise the precision in the approximation of a by  ~ m a y  be lost. 

This is a typical  feature of ill-posed problems with discrete data.  

P~ooF oF Tn~EO~E~ 5.1. - Jus t  combine (2.3) with the interpolation inequali ty 

and then make use of (6A) in Lemma (6.1). The theorem follows with 

(5.6) 

Inequal i ty  (5.5) follows easily once we have noticed tha t  if IID]!!~< c% then ] 

is Lipschitz continuous in Q with Lipsehitz constant  e(IID/[I~d~H]II~), se% for 

such type of estimates~ CI)~RLET [7]. 

PRooF Or T~EORE~ 5.2. -- We m a y  rephrase the proof of Theorem ~.1 replacing 

the est imate (4.7) of Zemma 4.2 with the finite element interpolation inequali ty 

which holds for every p > 2. 

The theorem follows, picking p = 2/ , ,  and 

(5.s) [c ,(diam  llgN=))] �9 
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The est imate (5.7) can be derived f rom Morrey's  inequal i ty  (see A ] ) ~ s  [I]) 

t/(x) - / ( Y ) I  < c,(]lD.f][, + g~-~llil[~)Ix - y l  ~ - ~  , 

which holds for every  x, y ~ ~ ,  p > 2, and the est imate 

(see C ~ E ~  E7]). 

6.  - A p p e n d i x .  

L ~ A  6.1. - Le t  f2 be a C~-smooth bounded domain in R 2. 

{4), let  g e C~(~). Le t  u be the  weak solution of (1), (2). 

u e W~.~(s and i t  satisfies the estimates 

6.1) 

(6.2) 

(6.3) 

(6.4) 

here 

(6.5) 

llutloo< llaIl=, 

ilDuh< ~?~ ~]lDgh , 

ll-D=~[] ~ < e~l~l'/~{lI-D=g[]oo-t -- ~llglloo}, 

fibrils< ~Jalq/[D=giir + ~ligll~}, 

Let  a satisfy (3), 

Then for every  T < c~  

= ( ) ~ ; ~ E - t -  dol)(2~-2)/(~-2)[O1 ~/(~-s), p > 2 .  

PROOF.- The est imate (6.1) is a consequence of max imum principle. 

qual i ty  (6.2) follows from the variat ional  principle 

fa[Du?< falDvl ~ , 
0 t2 

The ine- 

for every  v such tha t  v = u on ~Q. 

Le t  w = u - - g ,  we have  

f A w  = - -  a - 1 D a . D w - -  LJg-- a -~ D a . D g ,  in ~ .  
(6.6) / w ~ - O ,  on ~ 0 .  

Now by  the L~ regular i ty  est imate by  AGMON, DOUOLIS and NmENBE~G, [2], 

we have  

IrD~wil~<c,{Llawll~ + d;lllDwll, + d~21iwi[~} 
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for  eve ry  p e (1, cr Therefore  

(6.7) ]]D2w![~<%{(E~-~ ~ § d;~)]~l~/~]IDwlI=§ l]Agll~ § 

H e r e  we m a k e  use of the  in te rpo la t ion  inequa l i ty  

(6.8) ]IDII/ <   {l[-Dffll 'tl/ltL-' + 

which  holds  for  ~ = p/(p -- 2) ~nd for  eve ry  p > 2 (see [1]). 

W e  ob ta in  

llD~w![~<%{IlAg![~--FE)~;xlf2[1/~l[Dg[]=§ [ ( ( ~ ; . i - ~ - t  -- do~) l .Ql~/~) !~(~- , ; ) . / -  do lt p  Jllgl[ }, 

and  app ly ing  (6.8) wi th  ] = g (6.3) is obta ined .  A p p l y i n g  (6.8) wi th  ] = u (6.4) 

follows. 
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