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Abstract. In this paper we propose an identity(ID)-based signature
scheme using gap Diffie-Hellman (GDH) groups. Our scheme is proved
secure against existential forgery on adaptively chosen message and ID
attack under the random oracle model. Using GDH groups obtained from
bilinear pairings, as a special case of our scheme, we obtain an ID-based
signature scheme that shares the same system parameters with the ID-
based encryption scheme (BF-IBE) by Boneh and Franklin [BF01], and
is as efficient as the BF-IBE. Combining our signature scheme with the
BF-IBE yields a complete solution of an ID-based public key system.
It can be an alternative for certificate-based public key infrastructures,
especially when efficient key management and moderate security are re-
quired.
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1 Introduction

In 1984, Shamir asked for identity(ID)-based encryption and signature schemes
to simplify key management procedures of certificate-based public key infras-
tructures (PKIs) [Sha84]. Since then, several ID-based encryption schemes and
signature schemes have been proposed based on the integer factorization prob-
lem (IFP) [DQ86, Tan87, TI89, MY91]. Recently, Boneh and Franklin [BF01]
proposed an ID-based encryption scheme (BF-IBE) based on bilinear maps on
an elliptic curve. BF-IBE scheme is considered as the first practical ID-based
encryption, but it was not reported whether it is possible to design a signature
version of BF-IBE in [BF01]. Actually no concrete ID-based signature scheme
was proposed on elliptic curves. We remark that an ID-based signature scheme
based on pairings was proposed in [SOK01] but no security argument was given.
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In this paper, we propose an ID-based signature scheme using gap Diffie-
Hellman (GDH) groups. Its security is based on the hardness of computa-
tional Diffie-Hellman problem (CDHP). More precisely, under the random oracle
model, our scheme is proved to be secure against existential forgery on adap-
tively chosen message and ID attack, which is a natural ID-based version of the
standard adaptively chosen message attack (see Section 3 for details), assuming
CDHP is intractable.

Using GDH groups obtained from bilinear pairings, as a special case of our
scheme, we obtain an ID-based signature scheme that shares the same system
parameters with BF-IBE. It is as efficient as BF-IBE. We remark that BF-IDE is
indistinguishably secure against adaptively chosen ciphertext attack, assuming
the hardness of the bilinear Diffie-Hellman problem (BDHP), which is believed
to be more difficult than CDHP that our scheme is based on. BF-IBE and
our scheme form a provably secure system which fully enjoys the functionals
originally suggested by Shamir [Sha84].1 Our scheme can also be used to realize
proxy signatures by using the whole ID-based scheme for a single user, in a similar
way to delegation of duties on encryption [BF01].

A problem of ID-based signatures is the difficulty of providing non-repudia-
tion property. In all previous schemes based on IFP, one private key generator
(PKG) knows the whole secret and so can generate valid signatures of any user.
Thus non-repudiation property is obtained only when the PKG is completed
trusted. On the other hand, in our scheme the secret can be shared to several
parties through a threshold scheme. If we apply an (n, k)-threshold scheme to
our scheme, at least k-parties out of n PKG’s should collude to generate a valid
signature and the number k can be as large as we want. That is, our scheme
provides stronger non-repudiation property than previous ID-based schemes.

The rest of the paper is organized as follows: In Section 2, we introduce
related mathematical problems and describe our scheme. In Section 3, we present
a natural attack model and security proof of our signature scheme. In Section 4,
we discuss the implementation issues of BF-IBE and our scheme. We conclude
in Section 5.

2 Our Identity-Based Signature Scheme

In this section we propose an ID-based signature scheme that can be built on any
group whose computational Diffie-Hellman problem is hard but decisional Diffie-
Hellman problem is solved. We start with a formal definition of such groups.
1 After we had submitted an earlier version[CC01] of this paper, some other schemes
were also announced as preprints. Paterson’s scheme [Pat02] was proposed with
a brief security arguments but no rigorous proof. Hess’s scheme [Hes02] was claimed
to be provably secure with a proof in the case of fixed ID. It is interesting that all
of the schemes are different. In this version of our paper, the security proof of the
earlier version is extended to the case of adaptively chosen ID and the base problems
are clarified.
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2.1 Gap Diffie-Hellman (GDH) Groups

Let G be a cyclic group generated by P , whose order is a prime �. We assume
that multiplication and inversion in G can be computed in a unit time. We are
interested in the following mathematical problems. View G as an additive group,
and let a, b, and c be elements of Z/�.

1. Computation Diffie-Hellman Problem (CDHP). Given (P, aP, bP ),
compute abP .

2. Decisional Diffie-Hellman Problem (DDHP). Given (P, aP, bP, cP ),
decide whether c = ab in Z/�. (If so, (P, aP, bP, cP ) is called a valid Diffie-
Hellman tuple.)

We call G a GDH group if DDHP can be solved in polynomial time but no
probabilistic algorithm can solve CDHP with non-negligible advantage within
polynomial time [OP01, BLS01].

2.2 The Scheme

Let G be a group of prime order � in which DDHP can be solved.

1. Setup. Choose a generator P of G, pick a ramdom s ∈ Z/�, set Ppub = sP ,
and choose cryptographic hash functions H1 : {0, 1}∗ × G → Z/� and H2 :
{0, 1}∗ → G. The system parameter is (P, Ppub, H1, H2). The master key
is s. We remark that H1 and H2 will be viewed as random oracles in our
security proof.

2. Extract. Given an identity ID, the algorithm computes DID = sH2(ID) and
output it as the private key associated to ID. We remark that QID = H2(ID)
plays the role of the associated public key.

3. Sign. Given a secret key DID and a message m, pick a random number
r ∈ Z/� and output a signature σ = (U, V ) where U = rQID, h = H1(m,U),
and V = (r + h)DID.

4. Verify. To verify a signature σ = (U, V ) of a message m for an identity
ID, check whether (P, Ppub, U + hQID, V ), where h = H1(m,U), is a valid
Diffie-Hellman tuple.

This completes the description of our ID-based signature scheme. Consistency
is easily proved as follows: If σ = (U, V ) is a valid signature of a messagem for an
identity ID, then U = rQID and V = (r+ h)DID for r ∈ Z/� and h = H1(m,U).
Thus

(P, Ppub, U + hQID, V ) = (P, Ppub, (r + h)QID, (r + h)DID)
= (P, sP, (r + h)QID, s(r + h)QID)

as desired.
We will prove that if G is a GDH group, i.e., if CDHP is hard, then our

signature scheme is secure against existential forgery on a natural generaliza-
tion of the standard adaptively chosen message attack for ID-based schemes, in
Section 3 (see Theorems 3 and 5).
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2.3 Relationship with BF-IBE

Although we described our scheme as one that is built on a given GDH-group,
this can be easily transformed into one that can share the setup algorithm and
resulting system parameters with BF-IBE [BF01] in a formal manner. Indeed,
we will describe a variant of the Setup algorithm of our scheme and observe
that we can view that of BF-IBE as a special case of this variant. For this we
need to introduce a notion of a parameter generator which outputs GDH groups.

GDH Parameter Generator. A polynomial time probabilistic algorithm
IGGDH is called a GDH parameter generator if for a given positive integer k,
which plays the role of a security parameter, it outputs (descriptions of) a cyclic
group G of prime order and a polynomial time algorithm D which solves DDHP
in G. We will always view G as an additive group. We denote the output of
IGGDH by IGGDH(1k).

Gap Diffie-Hellman Assumption. Let IGGDH be a GDH parameter genera-
tor, and let A be an algorithm whose input consists of a group G of prime order
�, an algorithm D solving DDHP, a generator P of G, aP and bP (a, b ∈ Z/�)
and whose output is an element of G that is expected to be abP . As usual, the
advantage of A with respect to IGGDH is defined to be

Pr
[
A(G,D, P, aP, bP ) = abP

∣∣∣ (G,D)← IGGDH(1k), P R←− G∗, a, b R←− Z/�
]
.

IGGDH is said to satisfy the GDH assumption if any polynomial time algorithm
A has advantage ≤ 1/f(k) for all polynomial f , that is, no polynomial time
algorithm can solve CDHP with non-negligible advantage.

A Variant of Setup. Let IGGDH be a GDH parameter generator. We describe
another setup algorithm for our scheme as follows.

Setup′. Given a security parameter k, it works as follows:
1. Run IGGDH on input k and let (G,D) be the output.
2. Choose P , s, H1 and H2 as in the Setup algorithm described above,

and let Ppub = sP . The system parameter is (G,D, P, Ppub, H1, H2). The
master key is s.

In [BF01], Boneh and Franklin used a BDH parameter generator to build an
ID-based public key cryptosystem, which is defined to be an algorithm that runs
in polynomial time in a given security parameter k, and outputs (descriptions of)
two groups G1, G2 of prime order � and a computable non-degenerated bilinear
map ê : G1×G1 → G2. The scheme in [BF01] is proved to be secure if the bilinear
Diffie-Hellman problem (BDHP), which asks to compute ê(P, P )abc for a given
(P, aP, bP, cP ), is infeasible. Formally speaking, a BDH parameter generator
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IGBDH is said to satisfy the bilinear Diffie-Hellman (BDH) assumption if the
advantage

Pr


A(G1, G2, ê, P, aP, bP, cP ) = ê(P, P )abc

∣∣∣∣∣∣∣
(G1, G2, ê)← IGBDH(1k),
P

R←− G1 − {0},
a, b, c

R←− Z/�




is negligible for any polynomial time algorithm A.
We recall two well-known facts: (1) An algorithm D that solves DDHP in G1

can be obtained using the non-degenerated bilinear map ê, since ê(aP, bP ) =
ê(P, abP ) implies that (P, aP, bP, cP ) is a valid Diffie-Hellman tuple. (2) BDHP
is solved if so is CDHP. An immediate consequence is that a BDH parameter
generator IGBDH satisfying the BDH assumption can also viewed as a GDH pa-
rameter generator IGGDH satisfying the GDH assumption; IGGDH runs IGBDH

on the same security parameter k and outputs G(= G1) and D.
This shows that the setup algorithm of the ID-based encryption scheme de-

scribed in [BF01] can be shared with our scheme; the system parameters G1, P ,
Ppub, H1, and H2 generated by the setup algorithm of the scheme in [BF01] can
also be used for our scheme without any loss of security.

3 Security Proof

In this section we prove the security of our signature scheme, assuming the
hardness of CDHP.

3.1 Attack Model for ID-based Signature Schemes

The most general known notion of security of a non-ID-based signature scheme is
security against existential forgery on adaptively chosen message attacks; in this
model, an adversary wins the game if he outputs a valid pair of a message and
a signature, where he is allowed to ask the signer to sign any message except the
output. We consider the following natural generalization of this notion, which
is acceptable as a standard model of security for ID-based signature schemes.
We say that an ID-based signature scheme, which consists of four algorithms
Setup, Extract, Sign, and Verify playing the same role as ours, is secure
against existential forgery on adaptively chosen message and ID attacks if no
polynomial time algorithmA has a non-negligible advantage against a challenger
C in the following game:

1. C runs Setup of the scheme. The resulting system parameters are given
to A.

2. A issues the following queries as he wants:
(a) Hash function query. C computes the value of the hash function for the

requested input and sends the value to A.
(b) Extract query. Given an identity ID, C returns the private key corre-

sponding to ID which is obtained by running Extract.
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(c) Sign query. Given an identity ID and a messagem, C returns a signature
which is obtained by running Sign.

3. A outputs (ID,m, σ), where ID is an identity, m is a message, and σ is
a signature, such that ID and (ID,m) are not equal to the inputs of any
query to Extract and Sign, respectively. A wins the game if σ is a valid
signature of m for ID.

For notational purposes, in the proof of the security of our scheme, the result
of the Sign query (asked by A in Step 2) will be denoted by (ID,m, U, h, V )
where (U, V ) is the output of the signing algorithm of our scheme and h =
H2(m,U), similarly to the convention of [PS00].

3.2 Our Signature Scheme and CDHP

Consider the following variant of the above game: First we fix an identity ID.
In Step 1, C gives to A system parameters together with ID, and in Step 3, A
must output the given ID (together with a message and a signature) as its final
result. If no polynomial time algorithm A has non-negligible advantage in this
game, we say that the signature scheme is secure under existential forgery on
adaptively chosen message and given ID attacks. The first step of our proof is
to reduce the problem to this case.

Lemma 1 If there is an algorithm A0 for an adaptively chosen message and
ID attack to our scheme with running time t0 and advantage ε0, then there is
an algorithm A1 for an adaptively chosen message and given ID attack which
has running time t1 ≤ t0 and advantage ε1 ≤ ε0(1 − 1

� )/qH2 , where qH2 is the
maximum number of queries to H2 asked by A0. In addition, the numbers of
queries to hash functions, Extract, and Sign asked by A1 are the same as those
of A0.

Proof. We may assume that for any ID, A0 queries G(ID) and Extract(ID) at
most once, without any loss of generality. Our algorithm A1 is as follows:

1. Choose r ∈ {1, . . . , qH2} randomly. Denote by IDi the input of the i-th query
to H2 asked by A0. Let ID′

i be ID if i = r, and IDi otherwise. Define H ′
2(IDi),

Extract′(IDi), Sign′(IDi,m) to be H2(ID′
i), Extract(ID

′
i), Sign(ID

′
i,m),

respectively.
2. Run A0 with the given system parameters. A1 responds to A0’s queries

to H1, H2, Extract, and Sign by evaluating H1, H ′
2, Extract

′, and Sign′,
respectively. Let the output of A0 be (IDout,m, σ).

3. If IDout = ID and (ID,m, σ) is valid, then output (ID,m, σ). Otherwise
output fail.

Since the distributions produced by H ′
2, Extract

′, and Sign′ are indistin-
guishable from those produced by H2, Extract, and Sign of our scheme, A0

learns nothing from query results, and hence

Pr[(IDout,m, σ) is valid] ≥ ε.



24 Jae Choon Cha and Jung Hee Cheon

Since H2 is a random oracle, the probability that the output (IDout,m, σ) of A0

is valid without any query of H ′
2(IDout) is negligible. Explicitly,

Pr[IDout = IDi for some i | (IDout,m, σ) is valid] ≥ 1− 1
�
.

Since r is independently and randomly chosen, we have

Pr[IDout = IDr | IDout = IDi for some i] ≥ 1
qH2

.

Combining these,

Pr[IDout = IDr = ID and (ID,m, σ) is valid] ≥ ε ·
(
1− 1

�

)
· 1
qH2

as desired.

We remark that the algorithm A1 can be viewed as an adversary to the
non-ID-based scheme obtained by fixing an ID in our ID-based scheme, which
is allowed to access the extraction oracle to obtain secret keys associated to
identities different from the fixed one, as well as the signing oracle and hash
functions.

Now we are ready to construct an algorithm which solves CDHP, assuming
the existence of A1.

Lemma 2 If there is an algorithm A1 for an adaptively chosen message and
given ID attack to our scheme which queries H1, H2, Sign, and Extract at
most qH1 , qH2 , qS, and qE times, respectively, and has running time t1 and
advantage ε1 ≥ 10(qS +1)(qS +qH1)/�, then CDHP can be solved with probability
ε2 ≥ 1/9 within running time t2 ≤ 23qH1t1/ε1.

Proof. We may assume that for any ID, A1 queries H2(ID) and Extract(ID) at
most once as before, and A1 queries H2(ID) before ID is used as (part of) an
input of any query to H1, Extract, and Sign, by using a simple wrapper of A1.
Our algorithm A2 described below computes abP for a randomly given instance
(P, aP, bP ) where P is a generator of G.

1. Fix an identity ID, and put Ppub = aP . Choose randomly xi ∈ Z/�, yj ∈ Z/�,
and hj ∈ Z/� for i = 1, . . . , qG, j = 1, . . . , qS . Denote by IDi, IDik

, and
(IDij ,mj) the inputs of the i-th H2 query, the k-th Extract query, and
the j-th Sign query asked by A1, respectively. Define

H ′′
2 (IDi) =

{
bP, if IDi = ID
xiP, otherwise,

Extract′′(IDik
) = xik

(bP ),
Sign′′(IDij ,mj) = (IDij ,mj , Uj , hj, Vj)

where Uj = yjP − hjH
′′
2 (IDij ), Vj = yj(bP ).
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2. We apply the oracle replay attack which was invented by Pointcheval and
Stern in [PS96, PS00]. As done in [PS00, Lemma 4 and Theorem 3] for adap-
tively chosen message attacks to non-ID-based signature schemes, a collu-
sion of A1, H ′′

2 , Extract
′′, and Sign′′ defines a machine B performing a

“no-message attack” to the non-ID-based scheme obtained by fixing ID in
the original scheme. (B is still allowed to ask queries to H1.)
We need to take care of a nasty problem of collisions of the query result
of Sign′′ and H1, as mentioned in [PS00, Proof of Lemma 4]. Whenever
Sign′′(IDij ,mj) is queried, B stores the output hj as the value ofH1(mj , Uj).
This may cause some “collision”; a query result of Sign′′ may produce a value
of H1 that is inconsistent with other query results of Sign′′ or H1. In this
case B just outputs fail and exits.

3. If no collisions have appeared, B outputs a valid message-signature pair,
which is expected to be valid for the fixed ID, without accessing any oracles
exceptH1. Here P and Ppub are used as system parameters forA1. By replays
of B with the same random tape but different choices of H , as done in the
forking lemma [PS00, Lemma 2], we obtain signatures (ID,m, U, h, V )) and
(ID,m, U, h′, V ′) which are expected to be valid ones with respect to hash
functions H1 and H ′

1 having different values h �= h′ on (m,U), respectively.
4. If both outputs are expected ones, then compute (h − h′)−1(V − V ′) and

output it. Otherwise, output fail.

It is straightforward to verify that Extract′′ and Sign′′ produce “valid” se-
cret keys and signatures. Furthermore, since H ′′

2 , Extract
′′, and Sign′′ generate

random distribution and are indistinguishable from H2, Extract, and Sign of
the original scheme, A1 learns nothing from query results. Therefore B works as
expected if no collisions appear in Step 2. Intuitively, since Uj is random, the
possibility of collisions is negligible; in [PS00, Proof of Lemma 4], this probability
was computed explicitly, and furthermore, it was proved that the oracle replay
in Step 3 produces valid signatures (ID,m, U, h, V )) and (ID,m, U, h′, V ′) with
expected properties such that that m = m′, U = U ′, and h �= h′ with probability
≥ 1/9.

Now a standard argument for outputs of the forking lemma can be ap-
plied as follows: since both are valid signatures, (P, Ppub, U + hH ′′

2 (ID), V ) and
(P, Ppub, U +h′H ′′

2 (ID), V ′) are valid Diffie-Hellman tuples. In other words, V =
a(U + hbP ) and V ′ = a(U + h′bP ). Subtracting the equations, V − V ′ =
(h− h′)abP and abP = (h− h′)−1(V − V ′) as desired.

The total running time t2 of A2 is equal to the running time of the forking
lemma [PS00, Lemma 4] which is bounded by 23qH1t1/ε1, as desired.

Combining the above lemma, we have

Theorem 3 If there is an algorithm A0 for an adaptively chosen message and
ID attack to our scheme which queries H1, H2, Sign, and Extract at most
qH1 , qH2 , qS , and qE times, respectively, and has running time t0 and advantage
ε0 ≥ 10(qS + 1)(qS + qH1)qH2/(�− 1), then CDHP can be solved with probability

≥ 1/9 and within running time ≤ 23qH1qH2t0

ε0(1 − 1
� )

.
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Remark. Using another variant of the forking lemma [PS00, Theorem 3] instead
of [PS00, Lemma 4], we have the following results:

Lemma 4 If there is an algorithm A1 for an adaptively chosen message and
given ID attack to our scheme which queries H1, H2, Sign, and Extract at
most qH1 , qH2 , qS, and qE times, respectively, and has running time t1 and
advantage ε1 ≥ 10(qS +1)(qS +qH1)/�, then CDHP can be solved within expected
time ≤ 120686qH1t1/ε1.

Theorem 5 If there is an algorithm A0 for an adaptively chosen message and
ID attack to our scheme which queries H1, H2, Sign, and Extract at most
qH1 , qH2 , qS , and qE times, respectively, and has running time t0 and advantage
ε0 ≥ 10(qS + 1)(qS + qH1)qH2/(�− 1), then CDHP can be solved within expected

time ≤ 120686qH1qH2t0

ε0(1− 1
� )

.

4 Implementation Issues

At the present time, no candidate for GDH group is known except some (hy-
per)elliptic curves, which are equipped with a bilinear map such as the Weil
pairing or the Tate pairing. In this section, we discuss implementation issues for
these groups.

4.1 Bilinear Maps

Let E be an elliptic curve over Fq, q = pn, p a prime. Let E[�] = {P ∈ E|�P = O}
denote the �-torsion subgroup of E for a prime �. The Weil pairing is a map
e : E[�] × E[�] → F

∗
qα for the least positive integer α, called an exponent, such

that � divides qα − 1. Assume � divides E(Fq) with small cofactor. If we have
a non-Fq-rational map φ : E → E, then G = E(Fq)[�] is a group admitting an
efficiently computable non-degenerated bilinear map ê : G ×G → F

∗
qα , which is

defined by ê(P,Q) = e(P, φ(Q)). ê is called a modified Weil pairing in [BF01].
The Tate pairing has similar properties (see [Gal01] for more details). DDHP
in G can be solved using these pairings. In many cases, it is believed that CDHP
is hard, i.e., G is a GDH group.

We summarize well-known classes of elliptic curves which may contain a
GDH group in Table 1. Since the pairing computation becomes inefficient as the
exponent α becomes large, we only consider supersingular curves with α ≤ 6.
Note that the hardness of CDHP depends on the size of qα due to MOV’s attack
as well as the largest prime divisor � of #E(Fq).

Any supersingular curve has the form y2 + y = x3 + ax + b over a bi-
nary field. Due to the Weil descent attack, we consider only the case that m
is odd. In this case, all supersingular elliptic curves are isomorphic to one of
three curves [Men93]. The curves over trinary fields were introduced in [BLS01]
and used for generation of short signatures. The reason they used is that the ex-
ponent is largest among supersingular curves. Over finite fields of characteristic
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Table 1. Various curves and their properties

Char. Ext. Deg. Curve Order α φ

p = 2 Odd m y2 + y = x3 pm + 1 2 φ1

p = 2
m ≡ ±1(8)

y2 + y = x3 + x
pm + 1 +

√
2pm

4 φ2
m ≡ ±3(8) pm + 1−√

2pm

p = 2
m ≡ ±1(8)

y2 + y = x3 + x + 1
pm + 1−√

2pm

4 φ2
m ≡ ±3(8) pm + 1 +

√
2pm

p = 3
m ≡ ±1(12)

y2 = x3 + 2x + 1
pm + 1 +

√
3pm

6 φ3
m ≡ ±5(12) pm + 1−√

3pm

p = 3
m ≡ ±1(12)

y2 = x3 + 2x − 1
pm + 1−√

3pm

6 φ4
m ≡ ±5(12) pm + 1 +

√
3pm

p > 3 (p ≡ 2(3)) m = 1 y2 = x3 + 1 p + 1 2 φ5

p > 3 (p ≡ 2(3)) m = 1 y2 = x3 + x p + 1 2 φ6

φ1(x, y) = (ζx, y), ζ2 + ζ + 1 = 0

φ2(x, y) = (ζ2x + ξ + 1, y + ζ2ξx + η), ζ2 + ζ + 1 = 0, ξ4 + ξ + 1 = 0, η2 + η = ξ3

φ3(x, y) = (−x + r, iy), r3 + 2r + 2 = 0, i2 + 1 = 0

φ4(x, y) = (−x + r, iy), r3 + 2r − 2 = 0, i2 + 1 = 0

φ5(x, y) = (ix, y), i2 + 1 = 0

φ6(x, y) = (−x, iy), i2 + 1 = 0.

> 3, we do not have a special form for supersingular elliptic curves. But certain
curves are supersingular over almost half of primes (called a CM-curve). We have
two well-known families that were suggested in [BF01]. A detailed discussion on
the curves in Table 1 except the first and the last ones can be found in [Gal01].

4.2 Hash Functions

We used cryptographic hash functionsH1 andH2 in our scheme and viewed them
as random oracles in the security proof. Though it is a debating issue if currently-
used cryptographic hash functions can be considered as random oracles, standard
cryptographic hash functions onto fixed-length binary strings or a finite field are
accepted as random oracles in general. For the case of H2 whose range is a GDH
group G, however, we need to be careful since the elements of the group might
not be expressed uniformly as binary strings.

A known approach is to construct a hash function onto G from standard hash
functions onto finite fields. In [BLS01], they constructed one called MapToGroup
and showed that their short signature scheme with this hash function is secure
provided so is the scheme with a cryptographic hash function onto G, for GDH
groups given as subgroups of elliptic curves defined over a finite field with odd
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Table 2. The number of operations for BF-IBE and our signature scheme

Algorithm Bilinear map Point mul. Exp. in Fp2 Hash functions

Encrypt 1 1 1 2

Decrypt 1 0 0 1

Sign 0 2 0 1

Verify 2 1 0 2

characteristic. In [BF01, BKS02], similar results providing more efficiency were
proved for some other hash functions onto G in more restricted cases.

The main technique of the proofs of these results is as follows: Given an adver-
sary to a scheme with a (possibly non-cryptographic) hash function, to say H ′,
from standard hash functions onto finite fields, an adversary to the scheme with
a cryptographic hash function H can be constructed by simulating H ′ with the
help of H . This argument is not specific to a particular scheme, and indeed the
same conclusion can be drawn for our scheme: Our scheme with the hash func-
tions described in [BLS01, BF01, BKS02] is secure provided so is the scheme
with a cryptographic hash function.

4.3 Performance

We compare the performance of our scheme with BF-IBE in Table 2.
We can see that the verification is most expensive and the signing is least

expensive assuming the pairing computation costs several times expensive than
a point multiplication of E(Fq) or an exponentiation of an element of Fqα . (Very
recently, an efficient implementation of Tate pairing over an elliptic curve with
odd characteristic was announced in [BKS02].)

Note that the security of the scheme depends on the size of qα as long as �
has a small cofactor. Since the pairing computation is comparable to an expo-
nentiation in Fqα , the efficiency of all algorithms but Sign does not change as
the curve changes. Since binary fields have more efficient implementations, we
may expect that the curves over a binary field offer most efficient performance.
Sign algorithm, that does not perform any pairing computation, is most efficient
as the exponent is large. In this case, signature size also becomes small since the
signature consists of two elliptic curve points.

5 Conclusion

In this paper, we proposed an ID-based signature scheme from gap Diffie-
Hellman groups. Our scheme can share parameters with BF-IBE and is as effi-
cient as BF-IBE. Our scheme is secure against existential forgery on adaptively
chosen message and ID attacks, under the hardness assumption of CDHP, which
is believed to be weaker than the BDH assumption of BF-IBE. Combining our
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scheme with BF-IBE gives a practical complete solution of an ID-based public
key system.

The ID-based PKI obtained by combining BF-IBE and our scheme may be
considered as an alternative for certificate-based PKI. This ID-based PKI can be
used when we have an existing hierarchy for each users to distribute the secret key
securely and confidence on the key generation center, and offers advantages such
as simple key management procedure [Sha84] and built-in key recovery [BF01].
Applications may include email systems, cellular phone services, and groupwares
in private company where the key escrow is required.
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