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1. Introduction. An elementary identity involving a linear elliptic partial

differential operator L and its associated hermitian form will be used to obtain new

comparison theorems, oscillation theorems, and lower bounds for eigenvalues.

Comparison theorems will be obtained for both subsolutions and complex-valued

solutions in unbounded domains of Euclidean space, generalizing earlier results of

Hartman and Wintner [4], Protter [8], and the author [11], [12]. Oscillation

theorems of Kreith's type [6] will be extended to (i) unbounded domains; (ii) non-

self-adjoint operators ; and (iii) subsolutions.

Lower bounds for the eigenvalues of L arise naturally from the basic identity in

the case of bounded domains, and are extended to unbounded domains when the

coefficients of L satisfy suitable conditions. The form of the lower bounds is the

same as that obtained by Protter and Weinberger [9], [10] for bounded domains.

2. The main lemma.   The linear elliptic differential operator L defined by

n n

(1) Lv = 2   AC¿y.Dí») + 2 2 BiDfi+Cv

will be considered on unbounded domains R in w-dimensional Euclidean space En.

The boundary P of R is supposed to have a piecewise continuous unit normal vector

at each point. As usual, points in En are denoted by x=(xu x2,..., xn) and differ-

entiation with respect to xf is denoted by Dit i=l,2,...,». The coefficients

An, B¡, and C are assumed to be real and continuous in R u P and the matrix

(Ay) positive definite in R (ellipticity condition). The domain ^>L=^>L(R) of L is

defined to be the set of all complex-valued functions v e CX(R u P) such that all

derivatives of v involved in Lv exist and are continuous at every point in 7?.

Let Ta denote the «-disk {xe En : |jc—at0| <a} and let Sa denote the bounding

(« — l)-sphere, where x0 is a fixed point in En. Define

(2) Ra = Rt~\Ta,   Pa = PnTa,   Ca = Rn Sa.

Clearly there exists a positive number a0 such that Ra is a bounded domain with

boundary Pa u Ca for all a~Za0.
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Let Q[z] be the hermitian form in n +1 variables zx, z2,...,zn + 1 defined by

n n

(3) Q[z] =   2  Aaz¿i - 2 'ß'(Zif« +1 + z„+iZ()+G|zn+j 12
i,3 = l i = l

where G is any continuous function in R satisfying the inequality

(4) <? det (/<„)£ 2^*,

5/" denoting the cofactor of — R¡ in the matrix associated with Q[z]. Condition (4)

is known to be necessary and sufficient for Q[z] to be positive semidefinite [2], [12].

Let Ma be the quadratic functional defined by

Ma[u] = f   F[u] dx,(5)

where

(6) F[«] = 2 AvDpDß-l Re lu 2 BtDfi) + (G- C)\u\2.

Define M[u] = lima^œMa[u] (whenever the limit exists). The domain ®M=®M(R)

of M is defined to be the set of all complex-valued functions u e CX(R u P) such

that M[u] exists and u vanishes on P.

Define

(7) [u, v]a =       m 2 AijniDjV ds,

where («() denotes the unit normal to COJ and define

(8) [u, v] = lim [u, v]a,

whenever the limit on the right side exists. The notation M [u; R] will be used for

M [u] and [u, v; R] will be used for [u, v] in §5 when different domains are under

consideration.

An L-subsolution (-supersolution) is a real-valued function v e ^liR) which

satisfies Lv^O(Lv^O) at every point in R.

The following are extensions of results in [12] to subsolutions and supersolutions,

and to complex-valued functions u e ®M(R)-

Lemma 1. For every ueCi(R) and every real v e 1£>L(R) which does not vanish in R,

the following identity is valid at each point in R:

(9) 2 <Mi*i-2 Re ("2 ^i) + G|«l2 + 2 A(|«|2rO = F[u] + \u\av-iLv,

where
n

Xi - vDlulv),       y, = v-1 2 ¿»Djv,       i=l,2,...,n.

The proof is a direct calculation similar to that given in [12].
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Theorem 1. If there exists we®M(7?) not identically zero such that M[u]<0,

then there does not exist an L-subsolution (-supersolution) v satisfying [\u\2/v, v]^,0

which is positive (negative) everywhere in Ru P. In particular, every real solution

ofLv=0 satisfying [\u\2/v, v]^0 must vanish at some point of R UP. In the self-

adjoint case Bi=0, i= 1, 2,..., n, and G=0, the same conclusions are valid when the

hypothesis M[u]<0 is weakened to M[u]^0.

Proof. Suppose to the contrary that there exists such a positive 7,-subsolution.

Then integration of (9) over 7?a yields

(10) f   Flu]dxt f  2D¿\u\2Yddx
J Ra JRa    i

since the first three terms on the left side of (9) constitute a positive semidefinite

form by the hypothesis (4). Since w=0 on Pa, by the definition of S)M, it follows

from Green's formula that the right side of (10) is equal to

f    2 l"l2"» y * = f ^r 2 Á^Dfi ds = [l«l"M »].•
JpaucaT Jca   »   ¿j

Thus (7), (10), and the hypothesis [|w|2/t>, v]^0 imply that

M[u] = lim  f   F[u] dx^O.

The contradiction proves that a positive 7_-subsolution satisfying [\u\2/v,v]^0

cannot exist. The analogous statement for a negative L-supersolution v follows

from the fact that — v would then be a positive 7,-subsolution.

To prove the second statement of Theorem 1, suppose to the contrary that there

exists a real solution v ̂  0 in R u P. Then v would be either a positive L-subsolution

or a negative L-supersolution in R u P.

The proof in the self-adjoint case is similar to that given in [12, p. 281] and will

be omitted.

We remark that the condition [|u|2/î>, f]^0 of Theorem 1 is a mild "boundary

condition at co" generalizing the usual condition t>#0 on the boundary of bounded

domains.

3. Lower bounds for eigenvalues. Let Q be the Hubert space &\R), with inner

product <w, u>=JB u(x)v(x) dx and norm ||u|| = <«, «>1/2. Let 1) be the set of all

complex-valued functions ae®tn^ such that u vanishes on T^. In this section the

elliptic operator (1), with domain <S>, is assumed to have the self-adjoint form

under the conditions described below (1). In the case of the Schrödinger operator

—L= —A.+C(x), it is well-known [1], [3, p. 146] that the lower part of the spec-

trum contains only eigenvalues of finite multiplicity if C(x) is bounded from below.
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In the self-adjoint elliptic case, an assumption on the coefficients Atj is needed

as well.

Let A+(x) denote the largest eigenvalue of (Atj(x)) and define

a(r) =  max A+(x),

a0(r) = max fa(l), max |x|'2^+(x)],
L lSWSr J

which are nondecreasing functions of r. The following assumptions are special

cases of those given by Ikebe and Kato [5].

Assumptions, (i) C(x) is bounded from below;

(ii) J? K/>o(r)]-1/2 = °o.

It follows in particular from (i) and (ii) that the conditions u e £, Lu e § imply

that[w,M]=0[5].

Our purpose is to obtain a useful lower bound for the eigenvalues (if any) of — L.

In the case of bounded domains, Protter and Weinberger [10] recently obtained

results of this type by using a general form of the maximum principle. It will be

shown here in the case of unbounded domains that a lower bound is available as an

easy consequence of Lemma 1.

Theorem 2. Let A be the lowest eigenvalue and u be an associated normalized

eigenfunction of the problem —Lu=Xu, we®. Ifv is any function in ®L such that

v(x)>0for xeRvPand [\u\2¡v, v]^0, then

(11) A^ inf [-Lv(x)/v(x)l

Proof. With Bt=0, i= 1, 2,..., n and G=0, integration of (9) over Ra yields

(12) Ma[u]+¡   \u\h>-lLp dx ̂   f   T Dt(\u\z Yd dx
JRa JRa   1

where the positive-definiteness of (A(j) has been taken into account. Since «=0 on

Pa, it follows from Green's formula that

Ma[u] = —       ULudx+[u,u]a
JRa

i2dx+[u,u]a.■f Ms
JRa

However, lim [u, u]a=0 (a-+ao) is a general consequence of we§ and Lue&

under the above assumptions [5], and therefore

M[u] = lim Ma[u] = A||w||2 = A.
a-, oo

As in the proof of Theorem 1, the right member of (12) has the limit [|«|2/r, v] as

a ->oo, which is nonnegative by hypothesis. Thus

A+f \u\*v-lLvdx-Z 0,

which implies (11).
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In the bounded case, the condition [\u\2/v,v]^0 is vacuous and Theorem 2

reduces to a well-known result [9]. However, the proof given here is especially easy.

We remark that the extra condition [|«|2M v]^0 in the unbounded case is a con-

dition on the asymptotic behavior of v as |*| -»■ oo; it is roughly equivalent to the

usual hypotheses for bounded domains that u = 0 on the boundary, v > 0 in R u P,

and v £ C\R u P). In the case of the Schrödinger operator — A + C(x), it is known

[3, p. 179] that \u(x)\<Ke~Mxl, where K and ¡j. are constants, for every eigen-

function u, and hence various exponential functions can serve as the test functions

v. As an easy example, consider the one-dimensional harmonic oscillator problem

— -T3+x2u = Ah,       0 g x < co,
dx2

u(0) = 0.

The test function t> = exp (-x2/2) yields the lower bound 1 whereas the exact

lowest eigenvalue is known to be 3.

4. Comparison theorems. Consider, in addition to (1), a second elliptic operator

/defined by
n n

(13) lu = 2 A(a«7J»Jw) + 2 2 biDp+cu

in which the coefficients satisfy the same conditions as the coefficients in (1). In

addition to (5) consider the quadratic functional defined by

ma[u; Q] = f       [2 a^uDß-2 Re lu T b,D,ü\ -c\u\A dx

for every subdomain 0=7?, and let m[u; ö] = lim ma[u; Q] (a -*■ oo). The domain

®m(0 of m is the analogue of ®M(0 (defined in §2). The variation of L relative to

the domain Q is defined as V[u; Q]=m[u; Q]-M[u; Q], that is

V[u; Q] = Jo [2 (av-AJDvDfi-2 Re {u 2 (*,-*)As}

(14) -,
+ (C-c-G)|M|2   <&,

with domain ®y(ß)=®m(ß) n ®M(0-

The analogues of (7), (8) for the operator / relative to the domain Q are

(15) {u, v; Q}a =  f      2 a«"i Re («^) *;
JQr\Sa i.J

(16) {«, p; ß} = lim {u, v; Q}a.
a-.oo

When Q = R is the only domain under consideration, the abbreviations V[u],

{u, v) will be used for V[u; R], {u, v; R}, respectively.

The following comparison theorems of Sturm's type are easy extensions of those
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in [12] to £-subsolutions (-supersolutions) and to complex-valued solutions of

lu=0.

Theorem 3. Suppose G is a continuous function in R satisfying the inequality (4).

If there exists a nontrivial solution u e 1£)V(R) of lu = 0 such that {u, u}¿ 0 and V[u] > 0

then there does not exist an L-subsolution (-supersolution) which is positive (negative)

everywhere in AUP and satisfies [\u\2¡v, v]^0. In particular, every real solution

of Lv=0 satisfying [\u\2/v, i>]=0 must vanish at some point o/RuP. The same

conclusions hold if the hypotheses V[u]>0, [\u\2/v, v]^0 are replaced by V[u]^0,

[\u\2/v, v]>0, respectively.

Theorem 4. With G as in Theorem 3, if there exists a positive l-supersolution

u e®7(R) such that {u, «}^0 and V[u]>0, then the conclusions of Theorem 3 are

valid.

Theorem 5 (Self-adjoint case). Suppose ¿>j = R¡=0, i'=l, 2,.. .,n in (1) and

( 13) and G=0. If there exists either (i) a nontrivial complex-valued solution u e ©V(R)

of lu=0, or (ii) a positive l-supersolution u s 1)V(R), such that {«, u) = 0 and V[u] ̂  0,

then an L-subsolution (-supersolution) v satisfying [\u\2/v,v]^Q cannot be every-

where positive (negative) in RuP. In particular, every real solution of Lv=0

satisfying [|m|2M t;] = 0 must vanish at some point of R\J P.

Proof of Theorem 3. Since «=0 on Pa, it follows from Green's formula that

(17) ma[u] = - |    Re(ulu)dx+{u, u}a.
JRa

Since lu=0 and / has real-valued coefficients, also lü=0. Since {u, u}^0, we obtain

in the limit a->-oo that /«[w]=0. The hypothesis V[u]>0 is equivalent to M[u]

<m[u]. Hence M[u]<0 and Theorem 1 shows an L-subsolution (-supersolution)

cannot be everywhere positive (negative) in R u P under the hypothesis [|m|2/i>, v]

> 0. The second statement of Theorem 3 also follows from Theorem 1. The last

statement follows upon obvious modifications of the inequalities.

If m is a positive /-supersolution in R such that {«, u}¿ 0, it follows again from [17]

that m[u] ̂  0. The proof of Theorem 4 is then completed in the same way as that of

Theorem 3. The proof of Theorem 5 follows similarly from the statement in

Theorem 1 relative to the self-adjoint case.

It follows from (14) by partial integration that

V[u; ß] = J  [2(a«-¿«)A«i>íS+8Ma] dx+Cl(Q),

where

8=2 Dfa-Bd + C-c-G,
i = l

and

Q(ß)= lim  f      y(Bi-bi)\u\2nids,
O-00  jQnSa    i

whenever the limit exists.
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L is called a strict Sturmian majorant of / in Q when the following conditions are

fulfilled: (i) (fly—Ati) is positive semidefinite and 3^0 in Q; (ii) Q(0äO; and

(iii) either 8 > 0 at some point in Q or (ay—Ay) is positive definite and c^O at some

point. A function defined in Q is said to be of class C2,1(0 when all of its second

partial derivatives exist and are Lipschitzian in Q.

Theorem 6. Suppose that L is a strict Sturmian majorant of I and that all the

coefficients at1 involved in I are of class C2-1(R). If there exists a nontrivial solution

ueT>v(R) of lu=0 such that {w, m} = 0, then no L-subsolution (-supersolution) v

satisfying [\u\2/v, v]^0 can be everywhere positive (negative) in R u P. In particular,

every real solution of Lv=0 satisfying [\u\2/v, v]^0 must vanish at some point of

7? UP.

Theorem 7 (Self-adjoint case). Suppose ¿»¡ = £¡=0, /'= 1, 2,..., n in (1) and

(13), G=0, C= c, and(aij—Ai¡) is positive semidefinite in R u P. If there exists either

(i) a nontrivial complex-valued solution u €%V(R) oflu=0, or (ii) a positive l-super-

solution u e 1V(7J), such that {u, w} = 0, then the conclusion of Theorem 6 is valid.

Since the pointwise conditions (7=0, C^c, and (a^ — Ay) positive semidefinite

obviously imply that V[u]^0, Theorem 7 is an immediate consequence of Theorem

5. The fact that the hypotheses of Theorem 6 imply V[u]>0 was demonstrated in

[12, p. 283], and consequently the conclusion of Theorem 6 follows from Theorems

3 and 4.

In the special case of the Schrödinger operator —/= — A + c(x) with c(x) bounded

from below in R, the hypothesis {u, u} = 0 of Theorems 5 and 7 can be replaced by

u e £ and /«£§ since these conditions imply that {«, u} = 0 [3, p. 56]. In the self-

adjoint elliptic case, the same statement holds under quite general conditions on the

coefficients, e.g. those stated prior to Theorem 2, as shown by Ikebe and Kato [5].

Also, the conclusion of Theorem 7 is valid even if (Al}) is only positive semidefinite

provided L is a strict Sturmian majorant of / and all the coefficients aiy are of class

C2-X(R) [12, p. 283].

5. Oscillation theorems. In [6] Kreith obtained oscillation theorems for self-

adjoint elliptic equations of the form Lv=0 in the case that one variable xn is

separable. He considered the case of bounded domains for which part of the bound-

ary is singular. Here we shall obtain oscillation theorems of a general nature on

unbounded domains by appealing to the comparison Theorems 3-7.

Let T'a denote the complement of Ta in En. A function u is said to be oscillatory

in R at co, or simply oscillatory in R, whenever u has a zero in R n T'a for all

a>0.

A domain (not necessarily bounded) Q<=R is called a nodal domain of a function

u iff u=0 on 8 Q and {u, u ; Q} ̂  0. If Q is bounded, the latter condition is understood

to be void, and the definition reduces to the standard definition of a nodal domain.

If - /is the Schrödinger operator with potential c(x) bounded from below, sufficient
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conditions for ß to be a nodal domain of u e D¡(Q) are w=0 on dQ, u e £, and

lue|) [3, p. 56]. A function u is said to have the nodal property in R whenever u has

a nodal domain Q<=R n Ta for all a>0.

The following results are immediate consequences of Theorems 3-7.

Theorem 8. Suppose G is a continuous function in R satisfying (4). Suppose there

exists either (i) a nontrivial complex-valued solution u of lu=0, or (ii) a positive

l-supersolution u, with the nodal property in R such that V[u; Q]>0for every nodal

domain Q. Then every real solution ofLv=0 is oscillatory in Rprovided [|m|2/î;, v; Q]

^ 0 for every Q. If the nodal domains are all bounded, every solution of Lv = 0 is

oscillatory in R. In the self-adjoint case bi = Bi = 0, i = 1, 2,..., n, the same con-

clusions hold under the weaker condition V[u; ß]^0/or every nodal domain Q.

Theorem 9. Suppose that L is a strict Sturmian majorant of I and that all the

coefficients involved in I are of class C2,1(R). If there exists a nontrivial complex-

valued solution of lu=0 with the nodal property in R, then every real solution of

Lv = 0 is oscillatory in R provided [\u\2/v, v; ß]^0/or every nodal domain Q. If the

nodal domains are all bounded, every solution of Lv=0 is oscillatory in R. In

the self-adjoint case bi = Bi=0, i = 1, 2,..., n, the same conclusions hold under the

weaker hypotheses G=0, C¡zc, and (fly—Ay) positive semidefinite in Ru P.

Kreith has shown [6] that equations of the form

n-l

(18)    Dn[a(xn)D„u]+ 2  A[a¡,(*)£>;"] + c(x„)K==0,       x = (xux2,..., x,,.^,

have bounded nodal domains in the form of cylinders, under suitable hypotheses,

when J? is a bounded domain with an (n— l)-dimensional singular boundary. We

shall show that the analogous construction for unbounded domains is valid

provided R is limit cylindrical, i.e. contains an infinitely long cylinder. Without loss

of generality we can assume that R contains a cylinder of the form

G x {xn : 0 = xn < oo},

where G is a bounded (n— l)-dimensional domain.

Let ft be the smallest eigenvalue of the boundary problem

(19)

-2.AK(*)A4] = t4   iriG,
j> = 0    on dG.

Theorem 10. If there exists a positive number b such that

(20) £°A = 00   and   j^[c(,)-,*]<fc = GO,

then equation (18) has a solution u with the nodal property in R. If V[u; ß]^0/or

every nodal domain Q, every solution of Lv=0 is oscillatory in R. In particular,
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every solution of the self-adjoint equation Lv = 0 is oscillatory provided C^c and

(ay—Ay) is positive semidefinite in Rkj P.

Proof. The hypotheses (20) imply that the ordinary differential equation

Dn[a(xn)Dnw] + [c(Xn)-^]w = 0

is oscillatory at xn - co on account of well-known theorems of Leighton [7] and

Wintner [13]. Let w be a solution with zeros at xn = 8ly 82,..., Sm,..., where

Sm f oo. If <f> is an eigenfunction of (19) corresponding to the eigenvalue n, then the

function u defined by u(x) = w(xn)<f>(x) is a solution of (18) by direct calculation,

with nodal domains in the form of cylinders

Gm = Gx{xn: Sm < xn< 8m+1},       m = 1,2.

Thus u has a nodal domain (?„<= R n Ta for all a > 0. In fact, given a > 0, choose m

large enough so that Sm_ a. Then xe Gm implies |jc| S \xn\ > a so jc e T'a. Hence (18)

has a solution u with the nodal property. The second statement of Theorem 10

follows from Theorem 8 and the last statement follows from Theorem 9.
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