
978-1-4244-9228-2/10/$26.00 ©2010 IEEE

An IEEE 802.11 MAC Software Defined Radio

Implementation for Experimental Wireless

Communications and Networking Research
Juan R. Gutierrez-Agullo, Baldomero Coll-Perales and Javier Gozalvez

Uwicore, Ubiquitous Wireless Communications Research Laboratory, http://www.uwicore.umh.es

University Miguel Hernández of Elche, Avda. de la Universidad, s/n, 03202, Elche, Spain, j.gozalvez@umh.es

Abstract— Wireless ad-hoc networking will be a fundamental

component of emerging technologies such as multi-hop cellular

networks, vehicular ad-hoc networks and wireless mesh

networks, with most of these technologies based on evolved

versions of the 802.11 standard. To achieve their expected

benefits, and address their challenges, in terms of energy

efficiency, reliability or reconfigurability, advanced

cooperative and cross-layer communications and networking

techniques need to be investigated. Most of the studies

conducted to date are based on analytical and simulation

techniques, and the use of commercial hardware equipment

usually lacks the flexibility needed to conduct advanced

research studies. In this context, this paper presents a fully

programmable Software Defined Radio implementation of the

IEEE 802.11 MAC that can be used, configured and fully

modified, to develop advanced cross-layer communications and

networking techniques.

Keywords-component: software defined radio; IEEE 802.11

Medium Access Control(MAC); hardware prototype

I. INTRODUCTION

Wireless ad-hoc networks [1] can enable the radio

connectivity of multiple cooperative nodes. Nodes within the

radio range of each other can communicate directly over

wireless links, and those that are far apart can use

intermediate/cooperative nodes as relays to establish a multi-

hop wireless link. For this purpose, multiple networking

functions are controlled and managed by the nodes

themselves, including the network association process, the

multi-hop route establishment, and the regulation to access

the shared wireless channel, among others. The interest in

wireless ad-hoc networks is continuously increasing, and its

potential to improve the communications range and

perceived Quality of Service (QoS) has resulted in that ad-

hoc networking is a fundamental aspect of emerging

technologies such as multi-hop cellular, vehicular ad-hoc and

wireless mesh networks [1], among others. The acceptance

and capabilities of the IEEE 802.11 standard [2] results in

that many of these emerging technologies use evolved

versions of 802.11 to support its ad-hoc communications.

The benefits of wireless ad-hoc networks, in terms of

capacity improvement, coverage extension, lower

infrastructure cost and power saving, have already been

widely investigated based on both analytical and simulation

studies. However, the ad-hoc performance advantages shown

in these studies need to be validated through hardware

testbed platforms that eliminate the generally made

assumptions and simplifications regarding the real world

operating environment. To this end, the research community

is moving towards the implementation of wireless ad-hoc

functionalities in testbeds using either commercial 802.11

cards provided with open source drivers, or Software

Defined Radio (SDR) platforms.

Open source driver platforms use commercial 802.11

cards, and control their functionalities through modifiable

drivers such as ath9k. In this open source driver architecture,

the physical layer (PHY) is integrated into the chip of the

card, and is therefore not accessible to users. The features

specified in the MAC layer are logically partitioned in two

different modules, based on the time-critical aspect of the

tasks to be conducted. The lower MAC module, which

operates on the wireless card and depends on the proprietary

Hardware Abstraction Layer (HAL), controls the time

critical functions. On the other hand, the upper MAC

module, which operates on the driver, is responsible for more

delay-tolerant control plane functions. Consequently, the ad-

hoc protocol implementations and potential communications

and networking proposals to be tested are restricted to the

upper part of the MAC layer. Although open source driver

platforms ensure the compatibility with commercial 802.11

equipments, the limited access to the MAC layer and the

nonexistent control of the PHY layer prevent the

development of advanced cross-layer communications and

networking techniques.

A viable alternative to provide hardware platforms with

full access and reconfigurability of communication protocols

is SDR. SDR is a class of radio system which uses

programmable digital devices to perform the signal

processing necessary to transmit and receive baseband

information at radio frequency. SDR systems substitute

hardware components by software implementations on

embedded computing devices and Personal Computers

(PCs). The SDR architecture is totally accessible, which

provides the sufficient flexibility to facilitate the design of

novel communications and networking techniques. In this

context, this paper presents a fully programmable SDR

implementation of the IEEE 802.11 MAC that can be used,

configured, and fully modified, to develop advanced cross-

layer communications and networking techniques. The

current work is developed in the context of a research project

focused on the study of 802.11-based multi-hop cellular

networks based on mobile relays, where for example novel

energy-efficient and cross-layer multi-hop routing [3] and

mesh networking [4] techniques are being investigated. Once

these protocols have been analyzed and optimized through

computer simulations, the target is now to validate them

through experimental SDR-based hardware platforms, which

requires the SDR MAC implementation described in this

paper. However, it is important to note that the proposed

802.11 MAC SDR implementation allows the further

integration with additional 802.11 amendments such as

802.11 a/g/n, 802.11s for mesh functionalities and 802.11p

for vehicular communications.

II. SOFTWARE DEFINED RADIO PLATFORMS

A. Wireless Open-Access Research Platform (WARP)

WARP is a scalable, extendable and programmable

wireless community platform created at Rice University [5]

for prototyping and researching next-generation wireless

networks. WARP uses a Field Programmable Gate Array

(FPGA) for digital signal processing, while its multiple

daughtercard slots support a wide range of Input or Output

(I/O) radio devices. WARP also provides programming

tools, application libraries and open-access repositories to

handle the hardware, and develop advanced wireless

projects. A fast processing of the digital signals is achieved

thanks to its embedded Central Processing Unit (CPU),

although the evolution of the platform is restrained by the

embedded nature of the CPU.

B. Universal Software Radio Peripheral (USRP)

USRP version 1 (USRP1) is a basic SDR platform,

developed by Ettus Research, that implements the front-end

functionality, and the Analog to Digital (A/D) and D/A

conversion on a FPGA. However, the physical layer

processing is done on a PC where the USRP1 is plugged.

The USRP1 connects to the PC through an Universal Serial

Bus version 2.0 (USB 2.0) which restricts the transfer speed

to 60MB/sec or 15Msamples/sec, therefore producing a

maximal spectral bandwidth of 7.5MHz. Since the

802.11a/b/g standards have wider bandwidth channels

(20MHz), USRP1 was not a feasible SDR platform to

develop 802.11-compliant ad-hoc testbeds. To overcome this

limitation, the USRP2 was released and it replaced the USB

interface with a Gigabit Ethernet one that supports

simultaneous I/O signals of 50MHz radio frequency

bandwidth. USRP2 also provides faster and more precise

AD/DA converters, and a FPGA optimized for Digital Signal

Processing (DSP) applications. It allows processing complex

waveforms at higher sample rates, turning USRP2 into an

appropriate platform for researching wireless ad-hoc

functionalities. The improvements carried out in the USRP2

platform prevent the compatibility with the USRP1

developments, although an Universal Hardware Driver

(UHD) is being developed to solve it.

C. GNU Radio toolkit
GNU Radio is a free collection of signal processing

blocks used for building SDR platforms. In fact, GNU Radio

is the primary software platform supporting the PC drivers

for USRP1 and USRP2. The basic principle behind the use

of GNU Radio is to build a Flow-Graph (FG) composed of

various signal processing blocks that perform specific radio

functionalities. The main limitation of GNU Radio is the

flow of information through the software processing blocks.

Currently, the FG’s processing must be done using a

continuous flow of samples from one block to the next one.

If a block does not receive a data stream, the FG is stuck

until a new stream is ready to be processed. This issue

introduces a delay compared with hardware implementations

where bits are independently processed [6].

D. Related implementations
There is a growing interest in the research community to

design and develop SDR hardware platforms to investigate

the potential, performance and operation of advanced ad-hoc

communication systems. A practical demonstration of the

potential of cooperative ad-hoc mechanisms is shown in [7],

where the authors propose a cross-layer mechanism for

802.11 along with a MAC protocol that allows selecting

neighboring helper stations for MAC layer forwarding. This

work has been conducted under the CoopMAC (Cooperative

MAC) project that it is aimed at building an open-source

architecture for rapid prototyping of PHY and MAC layer by

leveraging existing open-source radio platforms. The project

was first based on the USRP1 board, although its USB

limitation resulted in a final implementation on WARP. The

PHY layer radio platform provides a wideband radio front-

end covering the unlicensed frequency bands at 2.4GHz and

5GHz. However the lack of detailed MAC implementations

leads to CoopMAC to build a simplified version of the MAC

protocol (Carrier Sense Multiple Access, CSMA). Another

interesting SDR initiative is Hydra [8], developed by the

University of Texas at Austin and Drexel University. Hydra

is a multi-hop wireless testbed used to investigate MIMO ad-

hoc networking. Hydra nodes consist of a flexible USRP1

front-end and a PC that executes the software-defined MAC

and PHY layers. Hydra is one of the major cooperative ad-

hoc research initiatives, although its use of USRP1 results in

the limitations previously described.

To overcome the USRP1 limitations, while maintaining

the flexibility to design ad-hoc communications and

networking techniques, BBN Technologies established the

Adaptive Dynamic Radio Open-source Intelligent Team

(ADROIT) project. The ADROIT project is building an

open-source software-defined data radio intended to be

controlled by cognitive applications. The ADROIT project

implemented the PHY layer of the IEEE 802.11b standard1

on USRP2, although a single node could only operate as

either transmitter or receiver. The MAC layer

implementation is yet limited since the only functions

available are the formation and fragmentation of the MAC

Protocol Data Unit (MPDU) frames, and carrier sensing

mechanisms. Another SDR wireless platform implemented

using the USRP2 platform is being developed by the FTW

research centre to demonstrate that flexible platforms are

also capable of generating truly standard-compliant OFDM

frames. Indeed, FTW presents in [9] a fully functional IEEE

802.11a/g/p transmitter that represents a very valuable

building block for upcoming SDR projects. However, to

1 The BBN PHY layer available is only able to decode low rate

802.11b data packets at 1 and 2 Mbps.

achieve a fully interactive software-defined 802.11 node,

some basic functionalities need yet to be implemented,

including the complementary OFDM frame-decoder and the

MAC mechanism.

III. 802.11 MAC SDR IMPLEMENTATION

Due to the flexibility offered by the USRP2 SDR

platform, the multi-hop communications and networking

hardware testbed currently being developed by the authors is

based on the USRP2 platform. The previous section has

shown that innovative research activities are currently

underway to create SDR platforms over which to investigate

advanced ad-hoc communications and networking

techniques. However it is important to note the lack of a

generic 802.11 MAC protocol implementation that can be

used independently of the PHY layer. This contribution is

then aimed at introducing an 802.11 MAC implementation,

with the implemented code being available for the research

community at http://www.uwicore.umh.es/mhop.html. In

order to ensure its portability and facilitate cross-layer

developments, the implemented MAC communicates with

other OSI layers through sockets. This allows easily re-using

and integrating our MAC implementation with other 802.11-

based SDR research testbeds. The Radio Frequency (RF)

front-end is the USRP2 board that incorporates a XCVR2450

dual band (2.4-2.5 GHz, 4.9-5.85 GHz) transceiver and a

VER2450 antenna.

The PHY layer used is the one developed by FTW [9],

although some slight functional modifications have been

incorporated through the addition of carrier sensing functions

and the capability of transmitting packets of different sizes.

The carrier sensing function has been designed following the

USRP spectrum sense example provided by GNU Radio, but

adjusted to the 802.11 sensing requirements. Using the

USRP2 as data source, the captured samples go through a

Fast Fourier Transform (FFT) and a complex to squared

magnitude block to obtain the signal’s Power Spectral

Density (PSD). The signal level is then computed though the

integration of the PSD. This value is sent to the MAC layer

which will decide the channel state (idle or busy).

Additionally, the PHY layer is set up to transmit any packet

generated at the MAC layer, including data, Request To

Send (RTS), Clear To Send (CTS), Acknowledgement

(ACK) and Beacon 802.11 frames. For this purpose, the

OFDM modulator is reconfigured during the runtime

execution when a packet with different number of OFDM

symbols is going to be sent, contrary to the original FTW

implementation that has a fixed number of OFDM symbols.

Since the OFDM receiver is still under development by

FTW, the authors emulated its behavior through a queue at

the PHY layer that generates packets to simulate their

reception and passes them to the MAC layer trough the MAC

to PHY Interface (MPI) interface. The implementation of

this queue has been necessary to test the correct operation of

the MAC layer when a packet is received as it will be shown

in the next section.

The implemented MAC layer performs the contention

service or Distributed Coordination Function (DCF), which

is based on CSMA with Collision Avoidance (CA)

technique, to regulate the access to the shared wireless

channel. The MAC layer has been fully implemented in

Python language following the state machine proposed by

Cisco in [10], but adding additional functionalities such as

retransmission and fragmentation. The resulting finite-state

machine is depicted in Figure 1, where the top of the figure

represents the MAC state transition upon receiving a frame

from the PHY layer, while the bottom part of the figure

illustrates the MAC layer contention processes required to

transmit a frame over the wireless channel. As it can be

appreciated in the figure, the proposed MAC implements

both the carrier sense function to determine whether the

channel is idle during a DCF Inter Frame Space period

(WAIT_FOR_DIFS), and the back off process to avoid

packet collisions when several nodes try to send a packet at

the same time (BACKING_OFF). In addition, the RTS/CTS

mechanism is implemented to solve the hidden and exposed

terminal problems of wireless networks, and to reserve the

channel through the virtual carrier sensing or Network

Allocation Vector (NAV). The current implementation also

includes the network discovery process of mesh networks.

This process is enabled through the periodic (with

configurable intervals) broadcast exchange of beaconing

messages among neighboring nodes.

Figure 1. Finite state machine of the implemented 802.11 MAC

Assuming an initial IDLE state, three different options are

possible: MAC detects that an upper layer application wants

to send a packet (green states in Figure 1), the MAC notices

that the PHY layer has a RTS or DATA frame received

which needs to be processed (yellow states), or the MAC

requires to send a beacon frame. For the first option, the node

waits until the NAV value is equal zero. This NAV

parameter is constantly updated by reading the duration field

of incoming RTS or CTS frames. When the NAV value is

equal zero, the station waits a DCF Inter-Frame Spacing

(DIFS) time while performing the carrier sensing. If the

channel is idle, the MAC switches to BACKING_OFF state.

On the other hand, if the channel is not idle, the MAC will

return to the IDLE state because another transmission has

been detected and it would cause a packet collision. After

performing the pseudo-random backoff algorithm, if the

channel is not busy, the MAC changes to

TRANSMITTING_RTS state, otherwise it will return to

IDLE. In TRANSMITTING_RTS state, the node initiates the

RTS/CTS protocol. If the packet length is greater than the

RTS threshold, the MAC sends the RTS frame and waits for

the CTS frame reception in WAITING_FOR_CTS state.

Once the CTS frame has been received, the node transmits

the DATA packet and waits for the ACK response of the

destination node in the WAITING_FOR_ACK state. If the

packet length is greater than the IEEE 802.11 fragmentation

threshold, the MPDU will be fragmented and sent in smaller

packets. When the ACK arrives, the station switches to IDLE

state, the packet is deleted from the upper layer queue and

the transmission is marked as correct. When a DATA or RTS

frame is received and an IDLE state is assumed, the MAC

reception procedure is initiated. After waiting a NAV time

(once the channel is idle), the station sends the proper CTS

frame and waits for the incoming data. After receiving the

DATA frame, independently of whether it is a fragmented

packet or not, it generates and sends an ACK frame to the

transmitter data station. If the destination station sends only

the DATA packet instead of sending a RTS frame, the MAC

detects the DATA packet and sends back the proper ACK.

Once the packet is acknowledged and defragmented, it is

sent to upper layer and the reception is marked as correct.

IV. VALIDATION RESULTS

Although a FPGA or an Application-Specific Integrated

Circuit (ASIC) implementation would provide better timing

performance, using high-level programming languages (C++

and Python) on a PC makes the system more flexible and

easier to change and implement by researchers with no

hardware design background. Therefore, there is a trade-off

between design flexibility and software processing delay that

would be partially solved with more powerful CPUs. In any

case, the implemented MAC needs to be validated to

demonstrate its compliance with the 802.11 standard. In this

context, this section validates the implemented IEEE 802.11

MAC mechanisms using Linux debugging tools and over-

the-air measurements at 5GHz (802.11a). The code is

executed on a general purpose PC with 2GBytes of RAM

and an Intel Core 2 CPU clocked at 2.0GHz. The PC

operates under Ubuntu 9.10 with the 2.6.31-16 kernel

version and the GNU Radio and Python’s versions 3.3 and

2.6.4 respectively. Given the current lack of a receiver PHY

layer, the implemented MAC mechanism is validated using

the Wireshark packet sniffer, which allows not only to

capture the transmitted frames, but also to ensure that the

transmitted frames are 802.11 standard-compliant.

A. Timing characterization

The USRP2’s sampling rate is faster enough to support

the demanding data rates of the 802.11a standard. However,

the software processing of the MAC and PHY layers

necessary to allow for the capability to fully reconfigure and

develop novel cross-layer mechanisms, results in important

processing delays that currently prevent reaching the 802.11a

commercial performance using the USRP2 SDR-based

implementation. However, the USRP2-based platform still

represents a unique and invaluable testbed over which to

develop and test novel cooperative and cross-layer

techniques through comparative SDR-based performance

studies. Table I summarizes the characterization of the

processing delays incurred by the transmission of a data

frame. At the PHY layer, it is possible to differentiate

between the USRP2 signal forming, which represents the

OFDM modulation delay of the packet, and the PHY

processing delay, which measures the time from the

reception of a packet at the PHY layer to its delivery to the

OFDM modulator. At the MAC layer, the Carrier sensing

and the MAC processing delays are analyzed. The former

represents the delay between the time at which the MAC

requests the PHY layer to sense the channel, and the time at

which the PHY layer replies with the measured value. The

MAC processing delay measures the MAC state transitions

until a packet is being transmitted 2 (see Figure 1). The

processing delays shown in Table I require scaling

synchronization parameters, such as time-slot and DIFS. The

processing delays, and consequently the scaled timings, are

highly dependent on the processing power capacity of the

PC’s CPU. Increasing such power will further reduce the

characterized delays

TABLE I. PROCESSES DELAY CHARACTERIZATION

USRP2 signal forming 16.665 µs/bit

PHY processing delay 0.942 µs/bit

Socket MAC – PHY delay 1.827 ms

MAC-Data processing delay 103.232 ms

MAC-CS processing delay 20.692 ms

B. Validation trials

A set of over-the-air tests have also been conducted to

validate the SDR implementation of the 802.11 MAC

presented in this paper. The first one is conducted to validate

that the packets generated at the MAC layer are well formed

and correctly captured with the sniffer, and consequently

802.11 standard-compliant. For this purpose, an USRP2 node

is configured to force the states that generate the

transmission of the required packets. The USRP2

communicates using the IEEE 802.11a technology, the

frequency is set up at 5.3 GHz (channel 60) and the data

transmission is fixed at 6Mbps. Figure 2 shows the eight

different packets that are generated at the MAC layer with

the MAC SDR implementation, and detected by the wireless

sniffer, including fragmented packets (Number –No.- 1 and

2), the acknowledgment of the data transmission (No. 3), the

RTS and CTS frames (No. 4 and 5), the beacon frame (No.

6) and the data packet and the retransmitted packet (No. 7

and 8). The capture illustrated in Figure 2 shows that the

configuration parameters (frequency, protocol, transmission

rate) are correctly detected by the sniffer, which runs on the

PC that is equipped with the commercial wireless card. The

second trial focuses on demonstrating the correct behavior of

the implemented MAC protocol during the process of

sending a data packet. In particular, this section compares the

sequence of messages exchanged between two commercial

wireless cards, and the messages handshake between two

USRP2s configured with the implemented SDR MAC. The

results illustrated in Figure 3.a and 3.b confirm that the

implemented MAC generates the same packets as the

commercial cards, although with the previously explained

processing delay.

2 To measure the MAC processing delay, the back off and carrier

sensing processes are disabled to avoid the exponential random

delay.

Figure 2. Frames generated at the MAC layer

a) Commercial wireless card

b) Implemented SDR 802.11 MAC

Figure 3. Message exchange sequence

0 50 100 150 200
-40

-20

0

Carrier Sensing Level (dBm) - Tx Power 5dBm

0 50 100 150 200
-40

-20

0

Carrier Sensing Level (dBm) - Tx Power 15dBm

0 50 100 150 200
-40

-20

0

0 50 100 150 200
-40

-20

0

0 50 100 150 200
-40

-20

0

Time (ms)
0 50 100 150 200

-40

-20

0

Time (ms)

TL= 128 KBps TL= 128 KBps

TL= 512 KBpsTL= 512 KBps

TL= 8192 KBps TL= 8192 KBps

Figure 4. Carrier sensing level detected at 5.2GHz

Finally, Figure 4 aims at validating the performance of

the carrier sensing mechanism since it is a critical function

that detects whether a channel is idle or busy, and therefore

whether an ad-hoc node is allowed to initiate the

transmission of a packet. To this end, two PCs communicate

with each other in ad-hoc mode in an area free of 802.11

interference, while an USRP2 is placed in the middle of both

PCs and periodically senses the channel. Figure 4 shows the

sensed signal level for two different PC’s output

transmission power and traffic loads (TL). The depicted

results show that the implemented USRP2 carrier sensing

function is capable to correctly detect the variations in both

the transmission power and traffic load.

V. CONCLUSIONS

This work has proposed and evaluated an 802.11 MAC

SDR implementation for experimental communications and

networking research, with the code made available to the

research community. The implemented MAC can be fully

configured and modified, enabling the development of

advanced cross-layer and cooperative communications and

networking techniques. The trials carried out to validate the

DCF MAC implementation have confirmed the timing

restrictions of the SDR platform, but it has also been shown

that the proposed MAC protocol is compatible with

commercial wireless cards, and is IEEE 802.11 standard-

compliant. The 802.11 SDR-based platform represents then a

very valuable research testbed over which to investigate

advanced cooperative and cross-layer techniques.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Science

and Innovation (Spain) and FEDER funds under the project

TEC2008-06728, by the Generalitat Valenciana under the

project ACOMP/2010/111 and ACIF/2010/161, and by the

Ministry of Industry, Tourism and Trade (Spain) under the

project TSI-020400-2008-113 (CELTIC proposal CP5-013).

REFERENCES

[1] C.S Ram-Murthy and B.S. Manoj, Ad Hoc Wireless Networks:

Architecture and Protocols, Prentice Hall, 2004.

[2] IEEE 802.11-2007. Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications.

[3] B. Coll and J. Gozalvez, "Energy Efficient Routing Protocols for

Multi-Hop Cellular Networks", in Proceedings of the IEEE Personal,

Indoor and Mobile Radio Communications Symposium (PIMRC'09),

pp. 13-16, 2009.

[4] B. Coll and J. Gozalvez, "Neighbor Selection Techniques for Multi-

Hop Wireless Mesh Networks", in Proceedings of the IEEE

International Workshop on Wireless Local Networks (WLN'09), pp.

20-23, 2009.

[5] K. Amiri, et al., “A Unified Wireless Network Testbed for Education

and Research”, in Proceedings of the IEEE Microelectronic Systems

Education (MSE07), pp. 53-54, 2007.

[6] D. A. Scaperoth, “Configurable SDR Operation for Cognitive Radio

Applications using GNU Radio and the Universal Software Radio

Peripheral”, M.Sc. thesis, Virginia Tech, 2007.

[7] T. Korakis, et al., “Cooperative Network Implementation Using

Open-Source Platforms”, IEEE Communication Magazine, vol.47,

no.2, pp.134-141, 2009.

[8] K. Mandke, et al., “Early Results on Hydra: A Flexible MAC/PHY

Multihop Testbed”, in Proceedings of the IEEE Vehicular Technology

Conference (VTC07), pp. 1896-1900, 2007.

[9] P. Fuxjäger, et al., "IEEE 802.11p Transmission Using GNURadio”,

in Proceedings of the IEEE Karlsruhe Workshop on Software Radios

(WSR10), pp. 1-4, 2010.

[10] P. Roshan and J. Leary, 802.11 Wireless LAN Fundamentals, Cisco

Press, 2003.

