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Abstract— Wireless ad-hoc networking will be a fundamental 

component of emerging technologies such as multi-hop cellular 

networks, vehicular ad-hoc networks and wireless mesh 

networks, with most of these technologies based on evolved 

versions of the 802.11 standard. To achieve their expected 

benefits, and address their challenges, in terms of energy 

efficiency, reliability or reconfigurability, advanced 

cooperative and cross-layer communications and networking 

techniques need to be investigated. Most of the studies 

conducted to date are based on analytical and simulation 

techniques, and the use of commercial hardware equipment 

usually lacks the flexibility needed to conduct advanced 

research studies. In this context, this paper presents a fully 

programmable Software Defined Radio implementation of the 

IEEE 802.11 MAC that can be used, configured and fully 

modified, to develop advanced cross-layer communications and 

networking techniques. 
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I.  INTRODUCTION 

Wireless ad-hoc networks [1] can enable the radio 

connectivity of multiple cooperative nodes. Nodes within the 

radio range of each other can communicate directly over 

wireless links, and those that are far apart can use 

intermediate/cooperative nodes as relays to establish a multi-

hop wireless link. For this purpose, multiple networking 

functions are controlled and managed by the nodes 

themselves, including the network association process, the 

multi-hop route establishment, and the regulation to access 

the shared wireless channel, among others. The interest in 

wireless ad-hoc networks is continuously increasing, and its 

potential to improve the communications range and 

perceived Quality of Service (QoS) has resulted in that ad-

hoc networking is a fundamental aspect of emerging 

technologies such as multi-hop cellular, vehicular ad-hoc and 

wireless mesh networks [1], among others. The acceptance 

and capabilities of the IEEE 802.11 standard [2] results in 

that many of these emerging technologies use evolved 

versions of 802.11 to support its ad-hoc communications.  

The benefits of wireless ad-hoc networks, in terms of 

capacity improvement, coverage extension, lower 

infrastructure cost and power saving, have already been 

widely investigated based on both analytical and simulation 

studies. However, the ad-hoc performance advantages shown 

in these studies need to be validated through hardware 

testbed platforms that eliminate the generally made 

assumptions and simplifications regarding the real world 

operating environment. To this end, the research community 

is moving towards the implementation of wireless ad-hoc 

functionalities in testbeds using either commercial 802.11 

cards provided with open source drivers, or Software 

Defined Radio (SDR) platforms. 

Open source driver platforms use commercial 802.11 

cards, and control their functionalities through modifiable 

drivers such as ath9k. In this open source driver architecture, 

the physical layer (PHY) is integrated into the chip of the 

card, and is therefore not accessible to users. The features 

specified in the MAC layer are logically partitioned in two 

different modules, based on the time-critical aspect of the 

tasks to be conducted. The lower MAC module, which 

operates on the wireless card and depends on the proprietary 

Hardware Abstraction Layer (HAL), controls the time 

critical functions. On the other hand, the upper MAC 

module, which operates on the driver, is responsible for more 

delay-tolerant control plane functions. Consequently, the ad-

hoc protocol implementations and potential communications 

and networking proposals to be tested are restricted to the 

upper part of the MAC layer. Although open source driver 

platforms ensure the compatibility with commercial 802.11 

equipments, the limited access to the MAC layer and the 

nonexistent control of the PHY layer prevent the 

development of advanced cross-layer communications and 

networking techniques. 

A viable alternative to provide hardware platforms with 

full access and reconfigurability of communication protocols 

is SDR. SDR is a class of radio system which uses 

programmable digital devices to perform the signal 

processing necessary to transmit and receive baseband 

information at radio frequency. SDR systems substitute 

hardware components by software implementations on 

embedded computing devices and Personal Computers 

(PCs). The SDR architecture is totally accessible, which 

provides the sufficient flexibility to facilitate the design of 

novel communications and networking techniques. In this 

context, this paper presents a fully programmable SDR 

implementation of the IEEE 802.11 MAC that can be used, 

configured, and fully modified, to develop advanced cross-

layer communications and networking techniques. The 

current work is developed in the context of a research project 

focused on the study of 802.11-based multi-hop cellular 



networks based on mobile relays, where for example novel 

energy-efficient and cross-layer multi-hop routing [3] and 

mesh networking [4] techniques are being investigated. Once 

these protocols have been analyzed and optimized through 

computer simulations, the target is now to validate them 

through experimental SDR-based hardware platforms, which 

requires the SDR MAC implementation described in this 

paper. However, it is important to note that the proposed 

802.11 MAC SDR implementation allows the further 

integration with additional 802.11 amendments such as 

802.11 a/g/n, 802.11s for mesh functionalities and 802.11p 

for vehicular communications. 

II. SOFTWARE DEFINED RADIO PLATFORMS 

A. Wireless Open-Access Research Platform (WARP) 

WARP is a scalable, extendable and programmable 

wireless community platform created at Rice University [5] 

for prototyping and researching next-generation wireless 

networks. WARP uses a Field Programmable Gate Array 

(FPGA) for digital signal processing, while its multiple 

daughtercard slots support a wide range of Input or Output 

(I/O) radio devices. WARP also provides programming 

tools, application libraries and open-access repositories to 

handle the hardware, and develop advanced wireless 

projects. A fast processing of the digital signals is achieved 

thanks to its embedded Central Processing Unit (CPU), 

although the evolution of the platform is restrained by the 

embedded nature of the CPU.  

B. Universal Software Radio Peripheral (USRP) 

USRP version 1 (USRP1) is a basic SDR platform, 

developed by Ettus Research, that implements the front-end 

functionality, and the Analog to Digital (A/D) and D/A 

conversion on a FPGA. However, the physical layer 

processing is done on a PC where the USRP1 is plugged. 

The USRP1 connects to the PC through an Universal Serial 

Bus version 2.0 (USB 2.0) which restricts the transfer speed 

to 60MB/sec or 15Msamples/sec, therefore producing a 

maximal spectral bandwidth of 7.5MHz. Since the 

802.11a/b/g standards have wider bandwidth channels 

(20MHz), USRP1 was not a feasible SDR platform to 

develop 802.11-compliant ad-hoc testbeds. To overcome this 

limitation, the USRP2 was released and it replaced the USB 

interface with a Gigabit Ethernet one that supports 

simultaneous I/O signals of 50MHz radio frequency 

bandwidth. USRP2 also provides faster and more precise 

AD/DA converters, and a FPGA optimized for Digital Signal 

Processing (DSP) applications. It allows processing complex 

waveforms at higher sample rates, turning USRP2 into an 

appropriate platform for researching wireless ad-hoc 

functionalities. The improvements carried out in the USRP2 

platform prevent the compatibility with the USRP1 

developments, although an Universal Hardware Driver 

(UHD) is being developed to solve it. 

C. GNU Radio toolkit 
GNU Radio is a free collection of signal processing 

blocks used for building SDR platforms. In fact, GNU Radio 

is the primary software platform supporting the PC drivers 

for USRP1 and USRP2. The basic principle behind the use 

of GNU Radio is to build a Flow-Graph (FG) composed of 

various signal processing blocks that perform specific radio 

functionalities. The main limitation of GNU Radio is the 

flow of information through the software processing blocks. 

Currently, the FG’s processing must be done using a 

continuous flow of samples from one block to the next one. 

If a block does not receive a data stream, the FG is stuck 

until a new stream is ready to be processed. This issue 

introduces a delay compared with hardware implementations 

where bits are independently processed [6]. 

D. Related implementations 
There is a growing interest in the research community to 

design and develop SDR hardware platforms to investigate 

the potential, performance and operation of advanced ad-hoc 

communication systems. A practical demonstration of the 

potential of cooperative ad-hoc mechanisms is shown in [7], 

where the authors propose a cross-layer mechanism for 

802.11 along with a MAC protocol that allows selecting 

neighboring helper stations for MAC layer forwarding. This 

work has been conducted under the CoopMAC (Cooperative 

MAC) project that it is aimed at building an open-source 

architecture for rapid prototyping of PHY and MAC layer by 

leveraging existing open-source radio platforms. The project 

was first based on the USRP1 board, although its USB 

limitation resulted in a final implementation on WARP. The 

PHY layer radio platform provides a wideband radio front-

end covering the unlicensed frequency bands at 2.4GHz and 

5GHz. However the lack of detailed MAC implementations 

leads to CoopMAC to build a simplified version of the MAC 

protocol (Carrier Sense Multiple Access, CSMA). Another 

interesting SDR initiative is Hydra [8], developed by the 

University of Texas at Austin and Drexel University. Hydra 

is a multi-hop wireless testbed used to investigate MIMO ad-

hoc networking. Hydra nodes consist of a flexible USRP1 

front-end and a PC that executes the software-defined MAC 

and PHY layers. Hydra is one of the major cooperative ad-

hoc research initiatives, although its use of USRP1 results in 

the limitations previously described.  

To overcome the USRP1 limitations, while maintaining 

the flexibility to design ad-hoc communications and 

networking techniques, BBN Technologies established the 

Adaptive Dynamic Radio Open-source Intelligent Team 

(ADROIT) project. The ADROIT project is building an 

open-source software-defined data radio intended to be 

controlled by cognitive applications. The ADROIT project 

implemented the PHY layer of the IEEE 802.11b standard1 

on USRP2, although a single node could only operate as 

either transmitter or receiver. The MAC layer 

implementation is yet limited since the only functions 

available are the formation and fragmentation of the MAC 

Protocol Data Unit (MPDU) frames, and carrier sensing 

mechanisms. Another SDR wireless platform implemented 

using the USRP2 platform is being developed by the FTW 

research centre to demonstrate that flexible platforms are 

also capable of generating truly standard-compliant OFDM 

frames. Indeed, FTW presents in [9] a fully functional IEEE 

802.11a/g/p transmitter that represents a very valuable 

building block for upcoming SDR projects. However, to 

                                                           
1 The BBN PHY layer available is only able to decode low rate 

802.11b data packets at 1 and 2 Mbps. 



achieve a fully interactive software-defined 802.11 node, 

some basic functionalities need yet to be implemented, 

including the complementary OFDM frame-decoder and the 

MAC mechanism.  

III. 802.11 MAC SDR IMPLEMENTATION 

Due to the flexibility offered by the USRP2 SDR 

platform, the multi-hop communications and networking 

hardware testbed currently being developed by the authors is 

based on the USRP2 platform. The previous section has 

shown that innovative research activities are currently 

underway to create SDR platforms over which to investigate 

advanced ad-hoc communications and networking 

techniques. However it is important to note the lack of a 

generic 802.11 MAC protocol implementation that can be 

used independently of the PHY layer. This contribution is 

then aimed at introducing an 802.11 MAC implementation, 

with the implemented code being available for the research 

community at http://www.uwicore.umh.es/mhop.html. In 

order to ensure its portability and facilitate cross-layer 

developments, the implemented MAC communicates with 

other OSI layers through sockets. This allows easily re-using 

and integrating our MAC implementation with other 802.11-

based SDR research testbeds. The Radio Frequency (RF) 

front-end is the USRP2 board that incorporates a XCVR2450 

dual band (2.4-2.5 GHz, 4.9-5.85 GHz) transceiver and a 

VER2450 antenna.  

The PHY layer used is the one developed by FTW [9], 

although some slight functional modifications have been 

incorporated through the addition of carrier sensing functions 

and the capability of transmitting packets of different sizes. 

The carrier sensing function has been designed following the 

USRP spectrum sense example provided by GNU Radio, but 

adjusted to the 802.11 sensing requirements. Using the 

USRP2 as data source, the captured samples go through a 

Fast Fourier Transform (FFT) and a complex to squared 

magnitude block to obtain the signal’s Power Spectral 

Density (PSD). The signal level is then computed though the 

integration of the PSD. This value is sent to the MAC layer 

which will decide the channel state (idle or busy). 

Additionally, the PHY layer is set up to transmit any packet 

generated at the MAC layer, including data, Request To 

Send (RTS), Clear To Send (CTS), Acknowledgement 

(ACK) and Beacon 802.11 frames. For this purpose, the 

OFDM modulator is reconfigured during the runtime 

execution when a packet with different number of OFDM 

symbols is going to be sent, contrary to the original FTW 

implementation that has a fixed number of OFDM symbols. 

Since the OFDM receiver is still under development by 

FTW, the authors emulated its behavior through a queue at 

the PHY layer that generates packets to simulate their 

reception and passes them to the MAC layer trough the MAC 

to PHY Interface (MPI) interface. The implementation of 

this queue has been necessary to test the correct operation of 

the MAC layer when a packet is received as it will be shown 

in the next section. 

The implemented MAC layer performs the contention 

service or Distributed Coordination Function (DCF), which 

is based on CSMA with Collision Avoidance (CA) 

technique, to regulate the access to the shared wireless 

channel. The MAC layer has been fully implemented in 

Python language following the state machine proposed by 

Cisco in [10], but adding additional functionalities such as 

retransmission and fragmentation. The resulting finite-state 

machine is depicted in Figure 1, where the top of the figure 

represents the MAC state transition upon receiving a frame 

from the PHY layer, while the bottom part of the figure 

illustrates the MAC layer contention processes required to 

transmit a frame over the wireless channel. As it can be 

appreciated in the figure, the proposed MAC implements 

both the carrier sense function to determine whether the 

channel is idle during a DCF Inter Frame Space period 

(WAIT_FOR_DIFS), and the back off process to avoid 

packet collisions when several nodes try to send a packet at 

the same time (BACKING_OFF). In addition, the RTS/CTS 

mechanism is implemented to solve the hidden and exposed 

terminal problems of wireless networks, and to reserve the 

channel through the virtual carrier sensing or Network 

Allocation Vector (NAV). The current implementation also 

includes the network discovery process of mesh networks. 

This process is enabled through the periodic (with 

configurable intervals) broadcast exchange of beaconing 

messages among neighboring nodes. 

 
Figure 1.  Finite state machine of the implemented 802.11 MAC 

Assuming an initial IDLE state, three different options are 

possible: MAC detects that an upper layer application wants 

to send a packet (green states in Figure 1), the MAC notices 

that the PHY layer has a RTS or DATA frame received 

which needs to be processed (yellow states), or the MAC 

requires to send a beacon frame. For the first option, the node 

waits until the NAV value is equal zero. This NAV 

parameter is constantly updated by reading the duration field 

of incoming RTS or CTS frames. When the NAV value is 

equal zero, the station waits a DCF Inter-Frame Spacing 

(DIFS) time while performing the carrier sensing. If the 

channel is idle, the MAC switches to BACKING_OFF state. 

On the other hand, if the channel is not idle, the MAC will 

return to the IDLE state because another transmission has 

been detected and it would cause a packet collision. After 

performing the pseudo-random backoff algorithm, if the 

channel is not busy, the MAC changes to 

TRANSMITTING_RTS state, otherwise it will return to 

IDLE. In TRANSMITTING_RTS state, the node initiates the 

RTS/CTS protocol. If the packet length is greater than the 

RTS threshold, the MAC sends the RTS frame and waits for 

the CTS frame reception in WAITING_FOR_CTS state. 

Once the CTS frame has been received, the node transmits 



the DATA packet and waits for the ACK response of the 

destination node in the WAITING_FOR_ACK state. If the 

packet length is greater than the IEEE 802.11 fragmentation 

threshold, the MPDU will be fragmented and sent in smaller 

packets. When the ACK arrives, the station switches to IDLE 

state, the packet is deleted from the upper layer queue and 

the transmission is marked as correct. When a DATA or RTS 

frame is received and an IDLE state is assumed, the MAC 

reception procedure is initiated. After waiting a NAV time 

(once the channel is idle), the station sends the proper CTS 

frame and waits for the incoming data. After receiving the 

DATA frame, independently of whether it is a fragmented 

packet or not, it generates and sends an ACK frame to the 

transmitter data station. If the destination station sends only 

the DATA packet instead of sending a RTS frame, the MAC 

detects the DATA packet and sends back the proper ACK. 

Once the packet is acknowledged and defragmented, it is 

sent to upper layer and the reception is marked as correct.  

IV. VALIDATION RESULTS 

Although a FPGA or an Application-Specific Integrated 

Circuit (ASIC) implementation would provide better timing 

performance, using high-level programming languages (C++ 

and Python) on a PC makes the system more flexible and 

easier to change and implement by researchers with no 

hardware design background. Therefore, there is a trade-off 

between design flexibility and software processing delay that 

would be partially solved with more powerful CPUs. In any 

case, the implemented MAC needs to be validated to 

demonstrate its compliance with the 802.11 standard. In this 

context, this section validates the implemented IEEE 802.11 

MAC mechanisms using Linux debugging tools and over-

the-air measurements at 5GHz (802.11a). The code is 

executed on a general purpose PC with 2GBytes of RAM 

and an Intel Core 2 CPU clocked at 2.0GHz. The PC 

operates under Ubuntu 9.10 with the 2.6.31-16 kernel 

version and the GNU Radio and Python’s versions 3.3 and 

2.6.4 respectively. Given the current lack of a receiver PHY 

layer, the implemented MAC mechanism is validated using 

the Wireshark packet sniffer, which allows not only to 

capture the transmitted frames, but also to ensure that the 

transmitted frames are 802.11 standard-compliant.  

A. Timing characterization 

The USRP2’s sampling rate is faster enough to support 

the demanding data rates of the 802.11a standard. However, 

the software processing of the MAC and PHY layers 

necessary to allow for the capability to fully reconfigure and 

develop novel cross-layer mechanisms, results in important 

processing delays that currently prevent reaching the 802.11a 

commercial performance using the USRP2 SDR-based 

implementation. However, the USRP2-based platform still 

represents a unique and invaluable testbed over which to 

develop and test novel cooperative and cross-layer 

techniques through comparative SDR-based performance 

studies. Table I summarizes the characterization of the 

processing delays incurred by the transmission of a data 

frame. At the PHY layer, it is possible to differentiate 

between the USRP2 signal forming, which represents the 

OFDM modulation delay of the packet, and the PHY 

processing delay, which measures the time from the 

reception of a packet at the PHY layer to its delivery to the 

OFDM modulator. At the MAC layer, the Carrier sensing 

and the MAC processing delays are analyzed. The former 

represents the delay between the time at which the MAC 

requests the PHY layer to sense the channel, and the time at 

which the PHY layer replies with the measured value. The 

MAC processing delay measures the MAC state transitions 

until a packet is being transmitted 2  (see Figure 1). The 

processing delays shown in Table I require scaling 

synchronization parameters, such as time-slot and DIFS. The 

processing delays, and consequently the scaled timings, are 

highly dependent on the processing power capacity of the 

PC’s CPU. Increasing such power will further reduce the 

characterized delays 

TABLE I.  PROCESSES DELAY CHARACTERIZATION 

USRP2 signal forming 16.665 µs/bit 

PHY processing delay 0.942 µs/bit 

Socket MAC – PHY delay 1.827 ms 

MAC-Data processing delay 103.232 ms 

MAC-CS processing delay 20.692 ms 

B. Validation trials 

A set of over-the-air tests have also been conducted to 

validate the SDR implementation of the 802.11 MAC 

presented in this paper. The first one is conducted to validate 

that the packets generated at the MAC layer are well formed 

and correctly captured with the sniffer, and consequently 

802.11 standard-compliant. For this purpose, an USRP2 node 

is configured to force the states that generate the 

transmission of the required packets. The USRP2 

communicates using the IEEE 802.11a technology, the 

frequency is set up at 5.3 GHz (channel 60) and the data 

transmission is fixed at 6Mbps. Figure 2 shows the eight 

different packets that are generated at the MAC layer with 

the MAC SDR implementation, and detected by the wireless 

sniffer, including fragmented packets (Number –No.- 1 and 

2), the acknowledgment of the data transmission (No. 3), the 

RTS and CTS frames (No. 4 and 5), the beacon frame (No. 

6) and the data packet and the retransmitted packet (No. 7 

and 8). The capture illustrated in Figure 2 shows that the 

configuration parameters (frequency, protocol, transmission 

rate) are correctly detected by the sniffer, which runs on the 

PC that is equipped with the commercial wireless card. The 

second trial focuses on demonstrating the correct behavior of 

the implemented MAC protocol during the process of 

sending a data packet. In particular, this section compares the 

sequence of messages exchanged between two commercial 

wireless cards, and the messages handshake between two 

USRP2s configured with the implemented SDR MAC. The 

results illustrated in Figure 3.a and 3.b confirm that the 

implemented MAC generates the same packets as the 

commercial cards, although with the previously explained 

processing delay. 

                                                           
2 To measure the MAC processing delay, the back off and carrier 

sensing processes are disabled to avoid the exponential random 

delay. 



 

Figure 2.  Frames generated at the MAC layer 
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b) Implemented SDR 802.11 MAC 

Figure 3.  Message exchange sequence 
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Figure 4.  Carrier sensing level detected at 5.2GHz 

Finally, Figure 4 aims at validating the performance of 

the carrier sensing mechanism since it is a critical function 

that detects whether a channel is idle or busy, and therefore 

whether an ad-hoc node is allowed to initiate the 

transmission of a packet. To this end, two PCs communicate 

with each other in ad-hoc mode in an area free of 802.11 

interference, while an USRP2 is placed in the middle of both 

PCs and periodically senses the channel. Figure 4 shows the 

sensed signal level for two different PC’s output 

transmission power and traffic loads (TL). The depicted 

results show that the implemented USRP2 carrier sensing 

function is capable to correctly detect the variations in both 

the transmission power and traffic load. 

V. CONCLUSIONS 

This work has proposed and evaluated an 802.11 MAC 

SDR implementation for experimental communications and 

networking research, with the code made available to the 

research community. The implemented MAC can be fully 

configured and modified, enabling the development of 

advanced cross-layer and cooperative communications and 

networking techniques. The trials carried out to validate the 

DCF MAC implementation have confirmed the timing 

restrictions of the SDR platform, but it has also been shown 

that the proposed MAC protocol is compatible with 

commercial wireless cards, and is IEEE 802.11 standard-

compliant. The 802.11 SDR-based platform represents then a 

very valuable research testbed over which to investigate 

advanced cooperative and cross-layer techniques. 
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