
An IEEE 802.11a/g/p OFDM Receiver for GNU Radio

Bastian Bloessl*, Michele Segata*†, Christoph Sommer* and Falko Dressler*

*Institute of Computer Science, University of Innsbruck, Austria
†Dept. of Information Engineering and Computer Science, University of Trento, Italy

{bloessl,segata,sommer,dressler}@ccs-labs.org

ABSTRACT

Experimental research on wireless communication protocols
frequently requires full access to all protocol layers, down
to and including the physical layer. Software Defined Ra-
dio (SDR) hardware platforms, together with real-time signal
processing frameworks, offer a basis to implement transceiv-
ers that can allow such experimentation and sophisticated
measurements. We present a complete Orthogonal Frequency
Division Multiplexing (OFDM) receiver implemented in GNU
Radio and fitted for operation with an Ettus USRP N210.
To the best of our knowledge, this is the first prototype
of a GNU Radio based OFDM receiver for this technology.
Our receiver comprises all layers up to parsing the MAC
header and extracting the payload of IEEE802.11a/g/p net-
works. It supports both WiFi with a bandwidth of 20MHz
and IEEE802.11p DSRC with a bandwidth of 10MHz. We
validated and verified our implementation by means of in-
teroperability tests, and present representative performance
measurements. By making the code available as Open Source
we provide an easy-to-access system that can be readily used
for experimenting with novel signal processing algorithms.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design — Wireless communication; C.3
[Special-purpose and Application-based Systems]:
Signal processing systems

Keywords

OFDM Receiver, SDR, GNU Radio, IEEE802.11a/g/p

1. INTRODUCTION
Orthogonal Frequency Division Multiplexing (OFDM) is

used in almost all current and forthcoming wireless commu-
nication standards. Besides cellular standards (like WiMAX
and LTE Advanced) and digital broadcasting standards (like

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SRIF’13, August 12, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2181-5/13/08 ...$15.00.

DVB-T), it is also used in many of the IEEE802.11 stan-
dards, i.e., the different WiFi variants. With OFDM, data is
transmitted in parallel on multiple, orthogonal subcarriers.
Compared to single carrier systems, this poses a multitude
of new challenges for the hardware and asks for new signal
processing algorithms to cope with OFDM characteristics,
like a high Peak to Average Power Ratio (PAPR) [8].

Given the wide range of applications, OFDM gained a lot
of attention in the academic community: many new algo-
rithms have been proposed for frame detection, frequency
offset correction, and channel estimation [3,6, 13]. Further-
more, OFDM and its applicability in different scenarios and
channels has been studied extensively by means of analytical
methods and by means of simulation [6, 9].
Yet, the possibility to conduct experimental research in

that field is extremely limited.
On one end of the spectrum lies experimentation with Com-

mercial Off-The-Shelf (COTS) hardware, but this approach
is limited to Received Signal Strength (RSS) and throughput
measurements: the functionality of the physical layer (and, in
part, also the MAC layer) is realized in Application Specific
Integrated Circuits (ASICs) and is therefore static. For new
protocol standards such as IEEE802.11p Dedicated Short
Range Communications (DSRC) there is no consumer hard-
ware available; instead, research is conducted with expensive
hardware prototypes [12]. Also, new physical layer and new
signal processing algorithms can not be integrated.
On the other end of the spectrum lies experimentation

with custom radio prototypes [15], which are usually based
on Field-Programmable Gate Arrays (FPGAs), i.e., rather
complex and inflexible. Even though this approach offers
high performance, investigations typically have to focus on
small parts of the receive chain, as an implementation of
the complete transceiver, together with the design of the
hardware platform, incurs substantial effort. Furthermore,
the code for custom devices can neither be reused nor verified,
nor can results be reproduced by other researchers.

Generic Software Defined Radios (SDRs) such as the well-
known WARP [7] and Ettus USRP1 platforms combine the
advantages of both.
In this paper, we present a complete OFDM receiver im-

plemented based on GNU Radio and fitted for operation on
an Ettus USRP N210. This is, to the best of our knowledge,
the first prototype of such an SDR based OFDM receiver
supporting channel bandwidths up to 20MHz – its counter-
parts, OFDM transmitters using GNU Radio, are already
available, e.g., the one developed by Fuxjäger et al. [5].

1http://www.ettus.com/

9

Figure 1: Overview of the blocks comprising the OFDM receiver in GNU Radio Companion.

Matt Ettus, the developer of the USRP series of devices,
supplies an initial GNU Radio OFDM receiver using max-
imum likelihood estimation [14] and pseudonoise (PN) se-
quence correlation [11]. The applicability of this receiver to
IEEE802.11a/g/p, however, is limited as the system does
not support the required bandwidth.
Moreover, our receiver comprises both the physical layer

as well as the complete decoding process including the MAC
layer of IEEE802.11a/g/p networks. It supports both all
WiFi variants with 20MHz channel bandwidth as well as any
IEEE802.11p DSRC systems with 10MHz channel band-
width.

Our main contributions can be summarized as follows:

• We present the first OFDM receiver for the GNU Radio
real-time signal processing framework supporting IEEE
802.11a/g/p.

• The receiver is able to decode the signal for up to
20MHz channel bandwidth using a normal desktop PC
and without any changes to the firmware of the FPGA.

• The receiver comprises both the physical layer as well
as the complete decoding process including the MAC.

• We make the code available2 as a modular package of
completely Open Source building blocks and provide
an easy-to-access system that can be readily used as
a tool for experimenting with novel signal processing
algorithms.

2. GNU RADIO OFDM RECEIVER
We implemented the OFDM receiver using the GNU Radio

real-time signal processing framework, which is Open Source
software and well-accepted in the wireless communications
research community. As hardware front-end of the SDR
system, we use an Ettus USRP N210.

2http://www.ccs-labs.org/software/

2.1 Overview
As illustrated in Figure 1 the structure of the OFDM

receiver is completely exposed to GNU Radio Companion, a
graphical tool to setup and configure signal processing flow
graphs. The receiver is divided into two functional parts:
The first part, depicted in the top half, is responsible for
frame detection. The second part, shown in the bottom half,
is responsible for decoding the frame. In the following, we
briefly discuss some specific GNU Radio features we used,
before explaining the signal processing blocks in detail.
Stream tagging : GNU Radio was initially designed for

stream based signal processing. Stream tags have been intro-
duced to annotate the sample stream with further meta data,
like sampling frequency, carrier frequency, or timestamps.
We employ stream tagging to signal the start of an OFDM
frame, and in a later stage the length and encoding scheme
of the frame.

Message passing : GNU Radio is often used to implement
packet based transceiver systems, e.g., IEEE802.11 or 802.15.
As the implementation of such technologies is complicated in
a stream-based environment, asynchronous message passing
was introduced. Messages can, like stream tags, encapsulate
arbitrary information. Thus, processing blocks can work on
complete packets and switch to stream-based processing only
at selected stages in the signal processing chain.
Vectorized Library of Kernels (VOLK): In order to be

able to support sample rates of 20Msps for IEEE802.11a/g
and 10Msps for IEEE802.11p respectively, we make use of
VOLK [10], a toolkit that eases the use of Single Instruction
Multiple Data (SIMD) instructions. It provides wrapper
functions for the most common signal processing tasks and
dynamically selects the implementation which offers the high-
est performance on the host system. SIMD instructions work
on vectors instead of scalars, which speeds up the signal
processing considerably [10]. VOLK also takes care of all
platform dependent issues of vectorized instructions, allowing
the user to write platform independent code.

10

2.2 Frame Detection
The first task in the receive chain is to actually detect

the start of an OFDM frame. Each IEEE802.11a/g/p frame
starts with a short preamble sequence, which consists of a
pattern that spans 16 samples and repeats ten times. The
employed frame detection algorithm has been introduced
in [3]. It is based on the autocorrelation3 of the short training
sequence.Following [3, Algorithm 1], we exploit this cyclic
property and calculate the autocorrelation value a of the
incoming sample stream s with lag 16 by summing up the
autocorrelation coefficients over an adjustable window Nwin

(here, s denotes the complex conjugate of s):

a[n] =

Nwin−1
∑

k=0

s[n+ k] s[n+ k + 16]. (1)

The summation over the window (which finally results in the
calculation of a moving average) acts as a low-pass filter. We
experimented with different window sizes and found 48 to
work well. Due to the cyclic property of the short training
sequence, the autocorrelation is high at the start of an IEEE
802.11a/g/p frame.

In order to be independent of the absolute level of incoming
samples, we normalize the autocorrelation with the average
power p and calculate the autocorrelation coefficient c as

p[n] =

Nwin−1
∑

k=0

s[n+ k] s[n+ k]; (2)

c[n] =

∣
∣a[n]

∣
∣

p[n]
. (3)

Here, |a[n]| denotes the magnitude of a[n]. A typical graph
of c during frame reception is depicted in Figure 2. It clearly
shows the plateau of high autocorrelation coefficients during
the short training sequence. In our OFDM receiver, we
consider that there is a plateau if three consecutive samples
are over a configurable threshold. For every detected frame,
we then pipe a fixed number of samples to subsequent blocks
in the flow graph.
An annotated overview of the frame detection blocks in

GNU Radio companion is depicted in Figure 1. It can be
seen that we split the calculation of the autocorrelation
coefficient in eight blocks and realize all operations with
standard operations in GNU Radio. All the involved blocks
make use of the already mentioned VOLK library. The gained
speedup is crucial for the receiver, as the blocks involved in
frame detection have to process the sample stream from the
USRP at full speed.

We implemented the OFDM sync short block to act like
a valve. Its inputs are the samples from the USRP and
the normalized autocorrelation coefficient. If it detects a
plateau in the autocorrelation stream, it pipes a fixed number
of samples into the rest of the signal processing pipeline;
otherwise it drops the samples.
Of course, this approach comes with some limitations.

First, the size of the frames that can be decoded is limited to
a configurable number of OFDM symbols, and secondly, if

3Matched filtering would be more robust in order to detect
a known sequence, however it would require 16 complex
multiplications per input sample instead of only one. We
therefore use matched filtering only at a later stage of the
OFDM receiver, which needs to process less data.

Figure 2: Characteristic behavior of the autocorre-
lation function as calculated in the frame detection
part of the receiver during frame reception.

another frame arrives shortly after the first one, it will not be
detected. If we would set the maximum number of samples
that we stream into the rest of the flow graph according to
the maximum number of OFDM symbols per frame, we could
circumvent the size limitation. Further, we could monitor the
autocorrelation also during copying of the frame and mark
the start of a new frame when another plateau is detected.
This way, we would not miss frames with a short time-lag,
for example, a Clear To Send (CTS) following a Request To
Send (RTS).

2.3 Frequency Offset Correction
The next block in the receive chain is OFDM Sync Long,

which applies frequency offset correction and symbol align-
ment. Frequency offset correction is required, as the local
oscillators of sender and receiver might work on slightly dif-
ferent frequencies.
To compensate that, we utilize the algorithm suggested

in [13]. Currently, we use only the short training sequence for
estimating the frequency offset between sender and receiver.
The intuition behind this algorithm is the following: Ideally,
during the short sequence a sample s[n] should correspond to
the sample s[n+ 16] due to its cyclic property. However, if
noise and a frequency offset are introduced, this is no longer
the case, and s[n] s[n+ 16] is not a real number, as in the
idealized case. Neglecting noise, the argument of that product
corresponds to 16 times the rotation that is introduced by the
frequency offset between samples. To estimate the final value,
averaging is applied and the final value for the frequency
offset df is calculated as

df =
1

16
arg

(
Nshort−1−16

∑

n=0

s[n] s[n+ 16]

)

, (4)

where Nshort is the length of the short training sequence.
Using the argument of the sum of the products (instead

of considering the mean argument of the products) is much
more robust against noise, as samples with small magnitudes
which are more affected by noise are weighted less. Finally,
the frequency offset is applied to each sample as

s[n]← s[n] e i (n df). (5)

11

Figure 3: Characteristic behavior of the correlation
of the input stream with the known sequence calcu-
lated in the OFDM Sync Long block.

2.4 Symbol Alignment
The OFDM Sync Long block is also responsible for symbol

alignment. Each OFDM symbol spans 80 samples, consisting
of 16 samples of cyclic prefix and 64 data samples. The
task of symbol alignment is to calculate where the symbol
starts, to extract the data symbols, and to feed them to an
algorithm doing a Fast Fourier Transformation (FFT). This
alignment is done with the help of the long training sequence,
which is composed of a 64 sample long pattern that repeats
2.5 times. As this block needs only act on a subset of the
incoming sample stream, and as the alignment has to be very
precise, we employ matched filtering for this operation.

In Figure 3, a typical graph showing the correlation of the
input stream with the known sequence is reproduced. The
two characteristic peaks are very dominant and narrow, thus
allowing very precise symbol alignment.

We calculate the indices of the highest three peaks as

NP = argmax3
n∈{0,...,Npreamble}

63∑

k=0

s[n+ k] LT[k], (6)

where Npreamble corresponds to the added length of the short
and long preambles, LT is the repeating pattern of the long
training sequence spanning 64 samples, and argmax3 returns
the top 3 indices maximizing the expression.

The first data symbol thus starts at sample index

nP = max (NP) + 64, (7)

as the latest peak of the matched filter output is 64 samples
before the end of the long training sequence.

With the relative position of the first data symbol known,
this block can extract the data symbols, then pass chunks of
data samples that correspond to one symbol to subsequent
blocks in the flow graph. The first symbol of each OFDM
frame is tagged, so that the following blocks are able to
recognize the frame start.

Knowing the start of the data symbols, we can remove the
cyclic prefix by subsetting the data stream and grouping the
samples that correspond to individual data symbols as

s←
(

s[nP + 16], . . . , s[nP + 79]
︸ ︷︷ ︸

first symbol

, s[nP + 80 + 16], . . .
︸ ︷︷ ︸

second symbol

)

. (8)

2.5 Phase Offset Correction
The next step is the transition from time to frequency

domain, which is done by the FFT block.
Following the FFT, the OFDM Equalize Symbols block is

the first one in frequency domain and is responsible for phase
offset correction and channel estimation. As the sampling
times of sender and receiver are not synchronized and as the
symbol alignment is not perfect, a phase offset is introduced.
This phase offset is linear with frequency and can be corrected
with the help of pilot subcarriers. IEEE 802.11 mandates four
pilot subcarriers that encode a predefined BPSK constellation
which is the same for each frame, but changes from symbol
to symbol. Thus, the symbol index within the frame has to
be known; it is signaled by a tag in the sample stream that
is added by the OFDM Sync Long block. Based on the four
pilots the phase offset is estimated by a linear regression and
compensated.

2.6 Channel Estimation
Besides the phase, also the magnitude of the carriers has to

be corrected, which is also performed by the OFDM Equalize
Symbols block. This is especially important if QAM-16 or
QAM-64 encoding is utilized, where also the magnitude
carries information. Non-linearities in the magnitude might
be caused by imperfect channel filters in the hardware. The
current implementation of our block assumes the magnitude
of the carriers to be sinc-shaped and corrects based on that
assumption. However, this shape could be seen to depend also
on the sender, as we experienced differences when we using
different transmitters. Thus, this equalization needs some
further improvement, as it currently restricts our receiver to
BPSK and QPSK modulations.
This block also removes DC, guard and pilot subcarriers

and thus subsets the 64 symbol input vector into 48 symbols.

2.7 Signal Field Decoding
The next block in the chain is called OFDM Decode Signal.

In each frame, the short and long training sequences are
followed by the signal field, which is a BPSK modulated
OFDM symbol encoded with a rate of 1/2 that carries in-
formation about the length and encoding of the following
symbols. Again, the start of the frame and, thus, the posi-
tion of the signal field is tagged in the sample stream. For
decoding of the convolutional code, the IT++ library is used.
If the signal field is decoded successfully, i.e., if the rate

field contains a valid value and if the parity bit is correct,
OFDM Decode Signal annotates the sample stream with a
tag, carrying a tuple of encoding and length of the frame.
This tag is used by the following block to decode the payload.

2.8 Frame Decoding
The final step in the receiver is the decoding of the actual

payload. It is performed in multiple sub-steps, as follows.
Demodulation: The OFDM Decode MAC block receives

vectors of 48 constellation points in the complex plane, cor-
responding to the 48 data subcarriers per OFDM symbol.
According to the used modulation scheme, these constella-
tions are mapped to floating point values, representing the
soft-bits of the employed modulation.

Deinterleaving : Dependent on the Modulation and Coding
Scheme (MCS), the bits of a symbol are permuted. The
permutation is the same for all symbols of a frame.

12

Figure 4: Setup of our interoperability test: the lap-
tops on the left as well as the blue MK2 were used
to transmit IEEE802.11a/g/p frames, which have
been received by the gray Ettus USRP N210 in the
middle.

Convolutional Decoding and Puncturing : For decoding of
the convolutional code and puncturing, the IT++ library is
again utilized.
Descrambling : The final step in the decoding process is

descrambling. In the encoder the initial state of the scrambler
is set to a pseudo random value. As the scrambler is imple-
mented with a seven bit feedback shift register, 27 = 128
initial states are possible. The first 7 bit of the payload are
part of the service field and always set to zero, in order to
allow the receiver to deduce the initial state of the scram-
bler. The mapping from these first bits to the initial state is
implemented via a lookup table.

Output : After the decoding process, the payload is packed
into a GNU Radio message and passed to subsequent blocks
in the flow graph.
As final endpoint of the flow graph, we use a Socket

PDU block of type UDP Server that sends the payload re-
encapsulated in a User Datagram Protocol (UDP) datagram.
A user can then receive the datagrams, e.g., with netcat and
see the payload appearing in their terminal. Therefore, the
flowgraph can be easily extended with custom applications.

3. INTEROPERABILITY
For all tests and experiments, we used an Ettus USRP N210

with an XCVR2450 daughterboard as RF frontend, which
allows us to tune to the Industrial Scientific and Medical
(ISM) bands at 2.4GHz and 5GHz as well as to the DSRC
band at 5.9GHz.

As an initial evaluation step, we tested the interoperability
of our GNU Radio OFDM receiver for different technologies.
The aim was to verify basic compliance of our receiver to the
IEEE802.11a/g/p standards – not yet measuring quantitative
performances metrics, such as Packet Delivery Ratio (PDR).
All the mentioned standards use OFDM at the physical layer
but differ in parameters like carrier frequency and bandwidth.
Table 1 summarizes the results from all interoperabil-

ity tests using different IEEE802.11a/g/p transmitters con-
ducted in our testbed (Figure 4).
First, we investigated the IEEE802.11g standard, which,

like IEEE802.11b, uses the 2.4GHz ISM band. It defines
14 channels with a bandwidth of 20MHz each [2]. Since
IEEE802.11g is a high data rate extension to IEEE802.11b,
it is designed to be backward compatible. For that reason
an IEEE802.11g network usually uses the same preamble
and physical header as IEEE802.11b networks. However,

NIC Standard Bandwidth

MacBook Pro 802.11a/g 20MHz X

Intel Ultimate-N 6300 802.11a/g 20MHz X

Air Live X.USB 802.11a/g 20MHz X

Cohda MK2 802.11p 10MHz X

Unex DCMA-86P2 802.11a/p 10/20MHz X

Table 1: Selection of WiFi and IEEE802.11p devices
we verified to be interoperable with the receiver.

an IEEE802.11g Network Interface Card (NIC) can also
be switched to a pure OFDM mode, called Extended Rate
PHY (ERP) OFDM in the standard, when all devices in the
network support IEEE802.11g.
Since our receiver only supports pure OFDM, we used

that mode for our tests in the 2.4GHz band. In particular,
by setting up an ad hoc network between a MacBook Pro
and a laptop with an Intel Centrino Ultimate-N 6300 WiFi
card, we were able to verify that all frames were decoded
correctly by the SDR. More precisely, we overhear all kinds
of frames in that network, ranging from management frames
(i.e., beacons), data frames, and control frames, like an RTS.

As stated in Section 2, a current limitation of the receiver
is that the frame detection block pipes a fixed number of
samples into the rest of the flow graph. For that reason, we
miss most of the CTS frames as the receiver is still synced
on the corresponding RTS that precedes the CTS frame.
In a second experiment, still using the same devices, we

investigated the compatibility with IEEE802.11a networks.
IEEE802.11a networks also have a channel bandwidth of
20MHz and work exactly like IEEE802.11g networks in ERP
mode, but at 5GHz. We executed the same test as for
2.4MHz and, again, were able decode all radio packets we
captured.
As stated in Section 2, we support BPSK and QPSK

modulation, each with coding rate 1/2 and 3/4, leading to four
modulation and coding schemes. We were able to verify that
all four currently supported encoding schemes work.

We were also able to verify that the frame detection blocks
of the receiver are able to keep up with a sample rate of
20Msps, as we did not experience any overruns of the input
buffer during the tests. Thus, we can conclude that the
basic decoding algorithm works, works fast enough, and is
implemented correctly.
A final experiment has been conducted in order to assess

the compatibility with IEEE802.11p. The IEEE802.11p
DSRC standard is a version of the IEEE802.11 standard
designed for Inter-Vehicle Communication (IVC) [1, 4]. It is
based on an OFDM physical layer operating in the dedicated
5.9GHz frequency band, which has been specifically reserved
for vehicular communications. Essentially, it is based on
IEEE802.11a with slightly changed timings to cope with
Doppler effects, the channel bandwidth having been reduced
to 10MHz, halving all bitrates, now ranging from 3Mbit/s
to 27Mbit/s.
To perform the IEEE802.11p test, we used two differ-

ent DSRC prototype devices. The first device is a Cohda
Wireless MK24, an integrated IEEE802.11p / IEEE1609
DSRC/WAVE solution. It is intended to operate as an On

4http://www.cohdawireless.com/

13

Component Type

CPU Intel Core i7-2600 CPU 3.40GHz
NIC RTL-8169 Gigabit Ethernet
Operating System Ubuntu 12.04 LTS, 64 bit
GNU Radio Version 3.6.4
SDR Ettus Research N210 revision 4
Daughterboard XVCR2450
Antenna VERT2450 (3 dBi)

Table 2: Overview of the most important compo-
nents of our test system.

Board Unit (OBU) or as a stand-alone Roadside Unit (RSU).
The MK2 is the basis for major field operational tests in
USA, Australia, Germany, France, and Korea. The device
is highly customizable, in particular it is possible to set any
kind of wireless parameter, including the channel, transmit
power, as well as the modulation and coding scheme.

The second type of device is a Unex DCMA-86P2 Mini PCI
card, which is based on an Atheros IEEE802.11a chip set and
implements only the physical layer of IEEE802.11p. These
cards have been successfully used by many of the Grand
Cooperative Driving Challenge (GCDC)5 participants. Like
other WiFi cards, the Mini PCI NICs can be installed in
off-the-shelf laptops. All layers above the physical layer are
provided by the Linux kernel and user space utilities, which
we slightly adapted to support IEEE1609 WAVE.

In order to assess compatibility between our SDR solution
and the mentioned devices, we transmitted IEEE802.11p
frames from both devices. We were able to verify that frame
decoding was successful in all experiments, showing that
the GNU radio receiver is also compatible to IEEE802.11p
networks with a channel bandwidth of 10MHz.

4. PERFORMANCE MEASUREMENTS
In a second evaluation step, we investigated the perfor-

mance of the receiver quantitatively by means of PDR curves
for different modulation and coding schemes. Information
on the most important hard- and software components of
our test system is listed in Table 2. The tests were per-
formed by sending frames at a rate of 5 packets per second
from IEEE802.11a/g/p devices to our GNU Radio OFDM
receiver using the Ettus USRP N210. The packet size was
63Byte, consisting of 30Byte MAC header including 4Byte
Frame Check Sequence (FCS), 8Byte IEEE802.2 Logical
Link Control (LLC), and 25Byte of data payload.
At the receiver, we logged the number of successfully de-

coded frames. If a frame was decoded correctly was decided
based on the 4Byte FCS, which is part of the MAC Protocol
Data Unit (PDU).

As the experiments were carried out in our office environ-
ment and, thus, space was limited, we had to insert a 30 dB
attenuator before the transmit antenna in order to decrease
the signal power and to actually experience packet loss. The
distance between the antennas was approximately 6m. We
performed measurements for both IEEE802.11a networks
and IEEE802.11p networks.
For the IEEE802.11a/g measurements with a bandwidth

of 20MHz, we decided to avoid the 2.4GHz band due to the
high amount of interference sources, which could invalidate

5http://www.gcdc.net/

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Transmission Power (dB)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

Device

SDR
COTS

Figure 5: Packet delivery ratio of IEEE802.11a pack-
ets, sent from a Unex device. The packet size is
95Byte, all packets are BPSK modulated with cod-
ing rate R=1/2.

the results. Instead, we performed all measurements on the
5GHz ISM band, which is less crowded compared to the
2.4GHz band. The only wireless card in the lab that actually
supports packet injection in the 5GHz band using the default
Linux driver is the aforementioned Unex WiFi card, which,
to the best of our knowledge, cannot be forced to use an
arbitrary modulation and coding scheme. For that reason,
we had to stick to the lowest MCS, i.e., BPSK with a coding
rate of 1/2, resulting in a bitrate of 6Mbit/s.

At the transmitter we varied the transmission power from
0dBm to 18 dBm in steps of 1 dBm.
Furthermore, we also started a COTS WiFi receiver and

logged the overheard packets, in order to compare the perfor-
mance of our implementation with consumer hardware. As
COTS device, we used an Air Live X.USB dongle since the
device has easy to access antenna connectors. The average
PDR of 200 measurement runs, together with the 95% confi-
dence intervals are depicted in Figure 5. Note that in contrast
to typical PDR curves we plot transmission power on the
X-axis and not the Signal to Noise Ratio (SNR). This stems
from the fact that the receiver does not log any SNR values
and thus, the values on the X-axis are not to be interpreted as
absolute, but relative. Furthermore, the relative power levels
between both receiving devices should not deviate much, as
the antenna setup is the same.
The results show that the performance of the receiver

is comparable to consumer grade devices. It is especially
worth noting that the PDR curve approaches one for higher
transmission powers and, thus, we can conclude that we
do not introduce any systematic errors in the receive chain.
Furthermore, also the power interval in which the PDR curve
of the SDR rises matches the interval of the COTS device
very well.

For the IEEE802.11p measurements with a bandwidth of
10MHz, we used the Cohda MK2 devices, since, in contrast
to the Unex cards, they allow us to set all MCSs that the
IEEE802.11p standard mandates. In our measurements we
made use of BPSK and QPSK modulation, each with coding
rates 1/2 and 3/4, resulting in four different MCSs. We did not

14

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Transmission Power (dB)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

Encoding

BPSK 1/2
BPSK 3/4
QPSK 1/2
QPSK 3/4

Figure 6: Packet delivery ratio of IEEE802.11p pack-
ets, sent from a MK2 from Cohda Wireless. The
packet size is 95Byte.

employ the higher order modulations, where the magnitude
of the subcarriers encodes information, since the receiver is
currently limited to Phase Shift Keying (PSK) due to the
lack of implementations of sophisticated channel estimation
algorithms.
Since IEEE802.11p operates on its own, dedicated fre-

quency band at around 5.9GHz, we do not assume that there
are any considerable interference sources. As in the previous
measurements we varied the transmission power between 18
values, spaced 1 dBm apart. The results of 30 measurement
runs and the 95% confidence intervals are shown in Figure 6.
We can see that all four employed encodings are supported
and the SDR approaches a PDR of 1 for higher transmis-
sion powers. Furthermore, the results are reasonable in the
sense that higher bitrates suffer from higher packet loss as
expected.

5. CONCLUSION
We presented an IEEE802.11a/g/p receiver for GNU Radio

and gave an overview of its structure and mode of operation.
This is, to the best of our knowledge, the first GNU Radio
receiver supporting Orthogonal Frequency Division Multi-
plexing (OFDM) at channel bandwidths of up to 20MHz.
The receiver is using the Ettus USRP N210 Software Defined
Radio (SDR) and does not require any change to the firmware
of the Field-Programmable Gate Array (FPGA). To check
the implementation and to verify its correctness, we made
extensive interoperability tests with both consumer grade
IEEE802.11a/g WiFi cards as well as early IEEE802.11p
devices. Furthermore, we presented Packet Delivery Ra-
tio (PDR) measurements, which showed that we can not
just decode 20MHz OFDM signals, but also that the per-
formance of the receiver is reasonable. To make our work
accessible to the community, we release the receiver under the
GPLv3. This way, our GNU Radio OFDM receiver can serve
as a basis for further experimentation, measurements, and
research on signal processing algorithms. This also allows for
reproducibility of conceptual studies and experiments, and
all blocks of the receiver can be analyzed in more detail by
fellow researchers.

6. REFERENCES
[1] Wireless Access in Vehicular Environments. Std

802.11p-2010, IEEE, July 2010.

[2] Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. Std 802.11-2012,
IEEE, 2012.

[3] L. Chia-Horng. On the design of OFDM signal
detection algorithms for hardware implementation. In
IEEE GLOBECOM 2003, pages 596–599, San
Francisco, CA, December 2003. IEEE.

[4] D. Eckhoff, C. Sommer, and F. Dressler. On the
Necessity of Accurate IEEE 802.11p Models for IVC
Protocol Simulation. In IEEE VTC2012-Spring, pages
1–5, Yokohama, Japan, May 2012. IEEE.

[5] P. Fuxjäger, A. Costantini, D. Valerio, P. Castiglione,
G. Zacheo, T. Zemen, and F. Ricciato. IEEE 802.11p
Transmission Using GNURadio. In 6th Karlsruhe
Workshop on Software Radios (WSR), pages 1–4,
Karlsruhe, Germany, March 2010.

[6] T. Hrycak, S. Das, G. Matz, and H. G. Feichtinger.
Practical Estimation of Rapidly Varying Channels for
OFDM Systems. IEEE Transactions on
Communications, 59(11):3040–3048, November 2011.

[7] A. Khattab, J. Camp, C. Hunter, P. Murphy,
A. Sabharwal, and E. W. Knightly. WARP: A Flexible
Platform for Clean-Slate Wireless Medium Access
Protocol Design. ACM SIGMOBILE Mobile
Computing and Communications Review, 12(1):56–58,
January 2008.

[8] D.-W. Lim, S.-J. Heo, and J.-S. No. An Overview of
Peak-to-Average Power Ratio Reduction Schemes for
OFDM Signals. Journal of Communications and
Networks, 11(3):229–239, June 2009.

[9] M. Morelli and U. Mengali. A Comparison of
Pilot-Aided Channel Estimation Methods for OFDM
Systems. IEEE Transactions on Signal Processing,
49(12):3065–3073, December 2001.

[10] T. Rondeau, N. McCarthy, and T. O’Shea. SIMD
Programming in GNU Radio: Maintainable und
User-Friendly Algorithm Optimization with VOLK. In
SDR 2012, Brussels, Belgium, June 2012. Wireless
Innovation Forum Europe.

[11] T. Schmidl and D. Cox. Robust frequency and timing
synchronization for OFDM. IEEE Transactions on
Communications, 45(12):1613–1621, 1997.

[12] C. Sommer, D. Eckhoff, R. German, and F. Dressler. A
Computationally Inexpensive Empirical Model of IEEE
802.11p Radio Shadowing in Urban Environments. In
IEEE/IFIP WONS 2011, pages 84–90, Bardonecchia,
Italy, January 2011. IEEE.

[13] E. Sourour, H. El-Ghoroury, and D. McNeill.
Frequency Offset Estimation and Correction in the
IEEE 802.11a WLAN. In IEEE VTC2004-Fall, pages
4923–4927, Los Angeles, CA, September 2004. IEEE.

[14] J.-J. van de Beek, M. Sandell, and P. O. Borjesson.
ML estimation of time and frequency offset in OFDM
systems. IEEE Transactions on Signal Processing,
45(7):1800–1805, 1997.

[15] A. van Zelst and T. C. W. Schenk. Implementation of
a MIMO OFDM-based wireless LAN system. IEEE
Transactions on Signal Processing, 52(2):483–494,
Feburary 2004.

15

