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Variables measured on an ordinal scale may be meaningful and simple to interpret, but their 

statistical treatment as response variables can create challenges for applied researchers. When 

research data are obtained through natural hierarchies, such as from children nested within 

schools or classrooms, clients nested within health clinics, or residents nested within communities, 

the complexity of studies examining ordinal outcomes increases. The purpose of this paper is to 

present an application of multilevel ordinal models for the prediction of proficiency data. 

Implications for teaching and learning of multilevel ordinal analyses are discussed. 

 

INTRODUCTION 

Many research applications in the education sciences and related fields involve studies of 

response variables that are measured on ordinal scales, and thus are inherently non-normal in their 

distribution. Examples of ordinal variables include scores on Advanced Placement examinations 

(5: Extremely well qualified; 4: Well qualified; 3: Qualified; 2: Possibly qualified; 1: No 

recommendation) or proficiency scores derived through a mastery testing process, such as when 

researchers are interested in analyzing factors affecting students’ level of proficiency in reading or 

mathematics (e.g., 1: Below basic; 2: Basic; 3: Proficient; 4: Beyond proficient). Regression 

analyses of ordinal data, as well as other kinds of non-normal outcomes including dichotomies, 

rates, proportions, or times-to-event (survival) are typically drawn from a family of models broadly 

known as generalized linear models, of which the standard ordinary least squares regression model 

for continuous outcomes is a special case. Generalized linear models have been used to represent 

the behavior of a wide variety of limited or discrete outcomes in practice, and their theoretical 

connection with standard linear regression models helps to simplify their application. 

In addition to non-normality, education data are often hierarchical, posing an additional 

complexity for many educational research studies. Hierarchical data occur across multiple levels of 

a system and involve two or more levels of levels of sampling, making data obtained from studies 

of teachers or students within schools, students within classrooms, or residents within communities 

ideally suited for multilevel modeling. In a multilevel research study, the higher-level units or 

clusters (i.e., the schools, classrooms, or communities) are assumed to be independently sampled, 

and the unit-of-analysis is the response at the lowest level of the hierarchy (i.e., individual 

responses for the students or the residents). The analysis is used to estimate and model variability 

in responses occurring within as well as between the higher-level units. Variation between units 

represents differences attributable to settings or contexts and is captured by inclusion of group- or 

unit-level random effects in the model. This variability is often the most interesting component in 

hierarchical studies and can be modeled through addition of group-level variables to examine the 

effect of differences in settings or contexts. Throughout this paper, the focus is on models where 

these random effects are assumed to be normally distributed. When the outcome variable of interest 

is non-normal, the most commonly used models are typically called hierarchical generalized linear 

models or HGLMs, although they have also been referred to as generalized linear mixed models 

(GLMMs) (McCulloch & Searle, 2001). Breslow (2003) distinguishes HGLM as the general case 

and GLMM as a special case when the random effects at level-two are assumed to be normally 

distributed. 

 

TYPES OF GLMM’S FOR ORDINAL RESPONSE VARIABLES  

The application of generalized linear models in a multilevel framework parallels their use 

in single-level research designs (O’Connell, 2006; O’Connell, Goldstein, Rogers & Peng, 2008). 

Common models for single-level ordinal outcomes include the proportional (or cumulative) odds 

(PO) model, continuation ratio (CR) model, and adjacent-categories (AC) model. Each of these 

imposes specific assumptions onto the data, and the research question of interest often dictates 

which model is best applied. Each of these can be characterized as extensions of hierarchical 
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logistic regression models for dichotomous outcomes typically coded as 0 or 1, where 1 represents 

the “success” outcome or event of interest. The logistic regression model predicts the probability of 

success conditional on a collection of categorical or continuous predictors through application of 

the logit-link. The logit, by definition, is the natural log of the odds, where the odds is a quotient 

that conveniently compares the probability of success to the probability of failure.  

With ordinal outcomes, there are several ways to characterize what is meant by success. 

For instance, a K-level ordinal variable can be partitioned into K-1 sequential subsets of the data: 

category 1 versus all above; categories 1 and 2 combined versus all above; categories 1 and 2 and 3 

combined versus all above, etc.; the final cumulative split would distinguish responses in categories 

less than or equal to K-1 versus responses in category K. Thus, there is a series of cumulative 

comparisons for success, where success is defined as being in categories at or below the k
th

 

cutpoint (ascending option, where success is P(Y < k)). Alternatively, success could be defined as 

being in categories greater than or equal to the cutpoint (descending option, where success is 

defined as P(Y > k)). In either cumulative representation, all data is retained at each split and both 

options yield a similar interpretation of effects of predictors for the data. On the other hand, the CR 

model creates conditional splits to the data. The success probability in the CR models is defined as: 

P(Y > k|Y > k). Note that the ascending and descending options for the CR approach will not yield 

similar results, since successive response categories are essentially dropped from the representation 

at each split. Finally, a third commonly used approach for ordinal data is the adjacent categories 

model, where the success probability is based on whether or not a response is in the higher or lower 

of two adjacent categories: P(Y = k + 1|Y = k or Y = k + 1). 

Each representation discussed above imposes a restrictive assumption on the data, 

generally referred to as the assumption of proportional or identical odds. This assumption implies 

that the effect of any explanatory variable remains constant regardless of the particular split to the 

data being considered. For instance, consider a six-category ordinal outcome, with responses coded 

from 0 to 5. The proportional odds assumption implies that the effect of a predictor such as gender 

is assumed to be the same whether we are referring to the probability of a response being less than 

or equal to 0, or to a response being less than or equal to 3. A similar constraint is imposed on the 

CR and AC models as well. Models in which some predictors exhibit non-proportional odds are 

referred to as “partial” proportional odds models, but tests for proportionality for single-level 

models have been shown to lack statistical power (Allison, 1999; Peterson & Harrell, 1990). Ad-

hoc methods for investigating proportionality in the multilevel framework include fitting the 

underlying series of hierarchical logistic models and examining departure from consistent patterns 

in variable effects among the predictors. In many research situations, the assumption of 

proportionality or identical odds is a reasonable one but examples of non-proportionality can be 

found (Hedeker & Gibbons, 2006). Researchers need to carefully consider the implications of these 

assumptions for their own data situations. 

Most software for the analysis of multilevel ordinal data will fit the PO model, which is 

based on the cumulative logit link, although other link options, such as the complimentary log-log 

link for CR models, are currently available in a few statistical packages. As estimation and 

software methods for ordinal random- or mixed-effects models continue to improve, the likelihood 

is that these different alternatives will become more widely available, including those that allow for 

partial-proportional odds. 

 

The Hierarchical Proportional Odds Model  

The proportional odds model is the most widely used approach for analyzing hierarchical 

ordinal data. For a K-level ordinal outcome, the cumulative probability of success (using the 

ascending option) across the K-1 cumulative splits is based on a model using the cumulative logit 

link for the response, Rij, for the i
th

 person in the j
th

 group. Utilizing terminology from Raudenbush 

and Bryk (2002), the model is characterized by level as follows:  

 

Level 1:      
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Level 2:     . 

  

In this model, is the logit prediction for the k
th

 cumulative comparison and for the i
th

 person in 

the j
th

 group. Recall that the logit is the natural log of the odds for the success probability. To get 

from logits to odds to predicted probability of success, kij, given a vector of predictor variables 

(where x includes level-one and level-two predictors), we use the relationship:  

 

For each person, a series of K-1 probabilities is determined from the model, each 

representing the probability of the response being at or below a given category, conditioning on the 

set of predictors. The K
th

 probability would always equal 1.0, since all responses must be at or 

below the K
th

 level in the data. For each level-two unit or group, the regression equation at level 

one provides a unique set of intercept and regression coefficients given the Q level-one or person-

level predictors. The proportional odds assumption maintains that across all K-1 cumulative splits 

to the data, these slopes are constant, although they do vary from group to group. At the group 

level (level two), the variability in the intercepts and slopes across groups is captured by the level-

two residual terms, uqj. Variation in the random regression parameter estimates can be modeled 

using level-two predictors, Wsj, which do not need to be the same for each regression coefficient 

from level one. The gamma’s at level two are the fixed regression coefficients. As explanation of 

the level-one random coefficients improves based on addition of appropriate level-two predictors, 

the residuals at level two become smaller. These residuals are assumed to be normally distributed 

with variance/covariance matrix T: uqj ~ N(0 , T). 
 

Estimation 

 Software packages differ in terms of the estimation strategies applied to the 

multilevel ordinal regression model. For the analyses presented here, the program HLMv6.08 was 

used. HLM has a free-ware student version that makes teaching these techniques convenient even 

for those relatively new to multilevel modeling. All models demonstrated here can be fit within the 

student version of HLM. The software program HLM currently has two options for parameter 

estimation for ordinal multilevel models: penalized quasi-likelihood (PQL) and full PQL. 

Due to the non-linear nature of HGLM’s, maximum likelihood (ML) methods are 

intractable. Instead, quasi-likelihood functions are used to approximate ML methods and are 

designed to have properties similar to true likelihood functions. The most commonly implemented 

estimation procedure for HGLMs is PQL, although this method has been shown to yield biased 

estimates of the variance components as well as the fixed effects when data are dichotomous (e.g., 

Breslow, 2003). Thus, validity of PQL estimation for ordinal multilevel models remains an active 

area of research. 

 

DEMONSTRATION: PROFICIENCY IN READING AT END OF FIRST GRADE 

For this demonstration, I chose a subset of data from the US Early Childhood Longitudinal 

Study–Kindergarten cohort (ECLS-K). The sample selected consists of n=2408 first-time first-

graders in J=169 schools, who were non-English language learners, remained in the same school 

between kindergarten and first grade, were in schools with at least five children in the ECLS-K 

study, and who had complete data on the school-level variables selected as predictors. The ordinal 

outcome of interest is proficiency in reading at the end of first grade. Profread is a criterion-

referenced proficiency measure that reflects the skills serving as stepping-stones for continued 

progress in reading. The categories are assumed to follow the Guttman model where mastery at one 

level assumes mastery at all previous levels. The six levels of proficiency for profread, and their 

percentage distribution within the sample at the end of first grade, are:  

 

• 0: did not pass level 1 (2%; cumulative % = 2%) 

• 1: can identify upper/lowercase letters (0.8%; cum. % = 2.8%) 
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• 2: can associate letters with sounds at the beginnings of words (2.6%; cum.% = 5.4%) 
• 3: can associate letters with sounds at the ends of words (11.2%; cum.% = 16.6%) 
• 4: can recognize sight words (3.9%; cum.% = 54.5%) 
• 5: can read words in context (45.6%; cum.% = 100%). 

 

For simplicity I chose only a few predictor variables for this demonstration. At the child 

level these included SES (continuous); numrisks (a count of the number of family risk factors a 

child had experienced, based on living in a single parent household, living in a family receiving 

welfare or foodstamps, having a mother with less than a high-school education, or having parents 

whose primary language is not English); and gender (female, coded a 1 for females and 0 for 

males). At the school level, variables included MeanSES (aggregated for each school from children 

in the sample); nbhoodclim (neighborhood climate, a composite of principal’s perceptions of the 

severity of specific problems such as extent of litter, crime, drug and gang activity, or vacant 

housing in the vicinity of the school); and school type (private, coded as 1 for (any type of) private 

schools and 0 for public schools). 

Typically, a series of models is fit to the data, including and excluding predictors as more 

information is learned about relationships in the data. Here, I present three models, the empty 

model, a random coefficients model, and the full model including school-level predictors. 

Variation in the slopes at the child level was not statistically greater than zero for two of the 

predictors (numrisks and gender), so the final model evaluated fixes these random effects to zero. 

Results of all three analyses are provided in Table 1 and summarized below. 

 

Table 1. Results for three multilevel ordinal models (proportional odds) 

 

Fixed Effects 

Model 1 

Coeff (SE)     OR 

Model 2 

Coeff (SE)   OR 

Model 3 

Coeff (SE)   OR
 

Model for the Intercepts ( o)    

Intercept ( 00) -4.37 (.18)    .013** -4.47 (.19)   .011** -4.37(.19)    .012**     

NBHOODCLIM ( 01)   .08 (.03)    1.09** 

PRIVATE( 02)   -.49 (.19)     .61* 

MEANSES( 03)   -1.14 (.17)     .32** 

Model for SES Slopes ( 1 )    

Intercept ( 10)  -.68 (.08)   .51** -.78 (.12)     .46** 

NBHOODCLIM ( 11)   .00 (.04)    1.00 

PRIVATE ( 12)   .59 (.23)     1.80* 

MEANSES ( 13)   -.12(.18)    .88 

Model for NUMRISKS Slopes ( 2 )    

Intercept ( 20)  .13 (.06)   1.14* .08 (.06)    1.08  

Model for FEMALE Slopes ( 3 )    

Intercept ( 30)  -.38 (.09)     .68** -.41 (.08)     .66** 

For thresholds:    

2  .39 (.09)       1.48** .41 (.09)    1.51** .39 (.09)    1.48** 

3 1.18 (.13)      3.27** 1.24 (.14)    3.44** 1.20 (.13)    3.33** 

4 2.61 (.15)    13.58** 2.72 (.16)    15.25** 2.67 (.15)    14.51** 

5 4.72 (.16)  112.45** 4.95 (.17)  141.13** 4.90 (.17)  134.20** 

Random Effects (Var. Components) Variance Variance
 

Variance 

Var. in Intercepts ( oo) 1.17 ** 1.09 ** .50 ** 

Var. in SES Slopes ( 11)  .16 ** .16 * 

Var. in NUMRISKS Slopes ( 22)  .05  --- 

Var. in FEMALE Slopes ( 33)  .25 --- 

Notes: RPQL estimation; group-mean centering of SES; *p<.05, **p<.01 

 

RESULTS 

The intraclass correlation coefficient provides an assessment of how much variability in 

responses lies at the group level. When data are dichotomous, within-group variability is defined 

by the sampling distribution of the data, typically the Bernoulli distribution. When the logistic 
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model is applied, the level-one residuals are assumed to follow the standard logistic distribution, 

which has a mean of 0 and a variance of . This variance represents the within-group 

variance for ICC calculations for dichotomous data, and the ICC can be similarly defined for 

ordinal outcomes (Snijders & Bosker, 1999). For Model 1, the empty model, the intraclass 

correlation is: 

  

This suggests that 26.23% of the variability in reading proficiency lies between schools. 

Fixed effects results for Model 1 can be used to provide probability predictions for a child 

being at or below a given level of proficiency. In these models, the “success” being modeled is that 

of having a response at or below each response level of 0 through 4 (all responses are at or below 

level 5). A logit of zero corresponds with an odds or odds ratio of 1.0 (no effect); a positive logit 

corresponds to a greater probability of being at or below that cutpoint, and a negative logit 

corresponds to less likelihood of being at or below and thus an increased likelihood of being 

beyond that cutpoint. With no explanatory variables in the model, the cumulative logit prediction 

on average across schools for Rij < 0 on the ordinal proficiency scale is -4.37 and steadily increases 

across the cutpoints (or thresholds) to .35 (-4.37 + 5 = .35) for Rij < 4. Transforming these 

predicted cumulative logits to odds and then cumulative probabilities, we have P( Rij < 0) = .013, 

and P( Rij < 0) = .587 which correspond to those in the aggregate data presented above. There is 

substantial variance between schools, however, in the logits estimated from this model ( 00 = 1.17, 

p<.01).  

Model 2 includes child-level predictors of SES, numrisks, and female; all fixed effects are 

statistically significant. SES was group-mean centered so as SES increases above the average for 

each school, the likelihood of being at or below a cutpoint decreases and thus the likelihood of 

being beyond a particular cutpoint increases. As the number of family risks increases, the 

likelihood of being at or below a particular cutpoint increases; so the more risks a child has, the 

less likely they are to be in advanced proficiency categories. For gender, females have a greater 

probability of being in higher proficiency categories relative to males. Only SES, however, varies 

significantly between schools, so variance in numrisks and female are fixed to zero in later models. 

In Model 3 it can be seen that as neighborhood climate worsens, so does the likelihood of a 

student being at or below a given proficiency category, all else being equal. However, being in a 

private school or in a school with a larger average SES are associated with greater likelihood of 

being beyond a given cutpoint. In terms of understanding differences in the effect of individual SES 

across schools (note: as individual SES increases, the likelihood of being beyond a given 

proficiency level also tends to increase, 10 = -.78), being in a private school tends to weaken this 

effect. Residual variance remains, however, in both the intercepts and the slopes for SES across 

schools. Further modeling efforts could be focused on including additional school-level predictors 

to try and reduce this variability. 

 

DISCUSSION 

Perhaps the greatest challenge in interpreting the multilevel proportional odds model lies in 

the transition from talking about cumulative logits to cumulative probabilities. In general, positive 

logits are associated with increased probability of success, but in the cumulative odds model 

“success” represents the probability of being at or below a given cutpoint. In terms of reading 

proficiency, we would be more pleased if students were actually beyond that cutpoint, so negative 

logits are actually indicative of a protective kind of factor, and positive logits, as seen here for 

numrisks, suggests a factor that may hold kids back in terms of their reading proficiency. One way 

to assist students in understanding the results of multilevel ordinal models is to tabulate the K-1 

probability predictions available through model. While school-level variability in these estimated 

cumulative proportions will exist (at least, they do for intercepts and SES slopes in this example), 

these predictions clearly demonstrate the patterns in the data according to the predictors chosen. In 

Table 2, I present the cumulative probabilities assuming no family risks (numrisks=0) and an 

average SES school (MEANSES = 0). The table clearly demonstrates that boys in public schools 

and from low-SES families have greater probabilities of being at or below a given proficiency level 
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relative to their peers. In terms of greatest likelihood of being beyond proficiency level 4, the 

greatest predicted probabilities are for girls from high-SES families and in public schools. 

Software for multilevel ordinal models continues to advance, and with these advances will 

come additional methods for examining factors associated with an ordinal outcome. One approach 

was presented here based on the multilevel proportional odds model. While alternatives exist, this 

example should help prepare researchers, instructors and students to begin to take advantage of 

multilevel methods when their outcomes of interest are ordinally scaled. 

 

Table 2. Model predictions based on ordinal model 3 (proportional odds) 

 

Priv. 

 

Fem. 

 

SES 

 

N_Clim 

 

P(Rij<cat.0) 

 

P(Rij<cat.1) 
 

P(Rij<cat.2) 
 

P(Rij<cat.3) 
 

P(Rij<cat.4) 
0 0 low 0 .021 .031 .067 .239 .745 

0 0 low 6 .034 .049 .105 .337 .825 

0 0 low 12 .054 .077 .159 .451 .884 

0 0 high 0 .006 .009 .021 .083 .458 

0 0 high 6 .010 .015 .033 .128 .577 

0 0 high 12 .016 .024 .052 .134 .688 

0 1 low 0 .014 .021 .046 .173 .660 

0 1 low 6 .023 .033 .072 .252 .758 

0 1 low 12 .036 .053 .111 .353 .835 

0 1 high 0 .004 .006 .014 .057 .359 

0 1 high 6 .007 .010 .022 .089 .476 

0 1 high 12 .012 .016 .035 .136 .594 

1 0 low 0 .009 .013 .029 .113 .543 

1 0 low 6 .014 .021 .045 .171 .658 

1 0 low 12 .023 .033 .071 .250 .756 

1 0 high 0 .007 .010 .021 .086 .468 

1 0 high 6 .011 .015 .034 .132 .587 

1 0 high 12 .017 .025 .054 .198 .696 

1 1 low 0 .006 .010 .019 .078 .441 

1 1 low 6 .010 .014 .031 .121 .560 

1 1 low 12 .015 .022 .048 .181 .673 

1 1 high 0 .004 .006 .014 .059 .368 

1 1 high 6 .007 .010 .023 .092 .485 

1 1 high 12 .011 .017 .036 .141 .604 
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