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A rigid smooth indentor slides at a constant speed on a compressible isotropic
neo-Hookean half-space that is subjected to pre-stress aligned with the surface and sliding
direction. A dynamic steady-sliding situation of plane strain is treated as the superposition
of contact-triggered infinitesimal deformations superposed upon finite deformations due to
pre-stress. The neo-Hookean material behaves for small strains as a linear elastic solid with
Poisson’s ratio 1 : 4. Exact solutions are presented for both deformations and, for a range of
acceptable pre-stress values, the infinitesimal component exhibits the typical non-isotropy
induced by pre-stress, and several critical speeds. In view of the unilateral constraints
of contact, these speeds serve to define the sliding speed ranges for which physically
acceptable solutions arise. A Rayleigh speed is the upper bound for subsonic sliding,
and transonic sliding can occur only at a single speed. For the generic parabolic indentor,
contact zone traction continuity is lost at the zone leading edge for trans- and supersonic
sliding. For pre-stress levels that fall outside the acceptable range, either a negative Poisson
effect occurs, or a Rayleigh speed does not exist and the unilateral constraints cannot be
satisfied for any subsonic sliding speed.

1. Introduction

Indentation due to rapid sliding contact is an important consideration in mechanism
operation, and has been studied (Craggs & Roberts, 1967; Gerstle & Pearsall, 1974; Brock,
1981, 1996) as a dynamic process involving linear elastic solids and rigid indentors.
For the case of an arbitrary constant sliding speed it was shown (Brock & Georgiadis,
2000; Georgiadis & Barber, 1993) for sliding, respectively, with and without friction, that
solutions may not exist for speeds in various portions of the sub-, trans- and supersonic
ranges. A feature of contact in general (Beatty & Usmani, 1975) is that the indented
material may be both highly elastic and under pre-stress. This feature was explored for
rapid sliding contact (Brock, 1999, 2001). While the sliding speeds were subsonic, the
results were consistent with those of Brock & Georgiadis (2000) and Georgiadis & Barber
(1993), and did indicate the importance of pre-stress.
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In this article, the work of Brock (1999, 2001) is extended to include trans- and
supersonic sliding speeds. As a specific illustration amenable to tractable solution, a highly
elastic half-space is modelled as an isotropic compressible neo-Hookean material subjected
to a pre-stress aligned with the surface. A frictionless rigid indentor then translates over
the surface at an arbitrary constant speed. Plane-strain steady sliding is assumed, and
the process is, after Beatty & Usmani (1975) and Green & Zerna (1968) treated as the
superposition of infinitesimal deformations triggered by sliding contact upon the finite
deformations due to pre-stress. Some direct notation is used, but Cartesian bases are
understood throughout.

2. Basic equations

Consider an elastic body � that is homogeneous and isotropic relative to an undisturbed
reference configuration κ0. A smooth motion x = x(X) then takes � to a deformed
equilibrium configuration κ . The Cauchy stress in κ is

T = α01 + α1B + α2B2, B = FFT , F = ∂x
∂X

, (1)

where (α0, α1, α2) are scalar-valued response functions of the principal invariants (I,II,III)
of B, and body forces are absent. As noted by Beatty & Usmani (1975), experimentally
based inequalities (Truesdell & Noll, 1965) tend to support the restrictions

α0 − I Iα2 � 0, α1 + Iα2 > 0, α2 � 0. (2)

An adjacent non-equilibrium configuration κ∗ is obtained by superposing an additional, but
infinitesimal, displacement u, which depends on x and time. This requires an additional
(incremental) Cauchy stress T′ = T∗ − T, where T∗ is the Cauchy stress in κ∗. To the
first order in the displacement gradient H = ∂u/∂x, the components of T′ in the principal
reference system, that is, B = diag{λ2
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2
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2
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I = λ2
1 + λ2

2 + λ2
3, I I = λ2

1λ
2
2 + λ2

3λ
2
1 + λ2

2λ
2
3, I I I = λ2

1λ
2
2λ

2
3 (3)

can be written as
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T ′
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21 H21 + µ′
12 H12, T ′

23 = µ′
32 H32 + µ′

23 H23, T ′
31 = µ′

13 H13 + µ′
31 H31.

(4b)

In (4a, b) the (λ′
ik, µ

′
ik) are the generalized Lamé constants defined by

Γ ′
i1 = Γi1λ

2
1, Γ ′

i2 = Γi2λ
2
2, Γ ′

i3 = Γi3λ
2
3, (5)

where i = (1, 2, 3), the symbol Γ represents either λ or µ, and

1
2λik = ∂α0

∂λ2
k

+ λ2
i
∂α1

∂λ2
k

+ λ4
i
∂α2

∂λ2
k

, µik = µki = α1 + α2(λ
2
i + λ2

k). (6)



SLIDING CONTACT ON ELASTIC HALF-SPACES 553

In κ incremental traction boundary conditions on a surface with outwardly-directed
normal n can be written in terms of the traction vector

t(n) = T′n + Tn(n · Hn) − THT n. (7)

Finally, because κ0 is a homogeneous configuration, the incremental linear momentum
balance reduces (Green & Zerna, 1968) to

div T′ = ρü, (8)

where ρ is the mass density, and (·) denotes the (absolute) time derivative.

3. Compressible neo-Hookean solid

Consider the Hadamard material, which is characterized by the response functions

α0 = 2
√

I I I
dG(I I I )

dI I I
, α1 = 1√

I I I
(a0 − I b0), α2 = b0√

I I I
, (9)

where (a0, b0) are material constants such that b0 = a0 − µ, µ is the shear modulus
(Hibbeler, 1997) and G(1) = 0. Setting b0 = 0 produces the subclass of isotropic
compressible neo-Hookean materials (Beatty & Usmani, 1975), and a simple example of
this arises when the form

G = µ

(
1√
I I I

− 1

)
(10)

is chosen. This reduces (9) to the one-parameter model

α0 = − µ

I I I
, α1 = µ√

I I I
, α2 = 0 (11)

that satisfies the restrictions (2). For illustration, consider � to be a cylindrical bar of
circular cross-sectional area A0 in κ0 which is placed in a deformed equilibrium state κ

under the uniaxial load P . If the bar axis is aligned with the X1-direction, then the Cauchy
stresses in κ are

T11 = P

A
, T22 = T33 = 0, Tik = 0 (i �= k), (12)

where A is the cross-sectional area in κ , and uniform stress is assumed. Because X gives
the principal directions with stretches λ1 and λ2 = λ3 = λT , equations (1), (3) and (11)
combine to give

P

A
= µ

(
λ

3/2
1 − 1

λ1

)
, λT = 1

λ
1/4
1

. (13)

Because A = λ2
T A0 for homogeneous deformation and λ1 = 1 + e1, where e1 is the axial

unit extension of the bar, (13)1 can be rewritten as

P

A0
= µ

[
1 + e1 − 1

(1 + e1)3/2

]
. (14)
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FIG. 1. Compressible neo-Hookean material response in axial loading.

Equation (14) relates a first Piola–Kirchoff stress to unit extension, which is a standard
objective of the simple tension test (Hibbeler, 1997). A schematic of (14) is given in Fig. 1,
and the effective Young’s modulus and Poisson’s ratio (Ee, νe) follow from (13)2 and the
slope of (14) as

Ee = µ

[
1 + 3

2(1 + e1)5/2

]
, νe = −λT − 1

λ1 − 1
= (1 + e1)

1/4 − 1

e1(1 + e1)1/4
. (15)

Clearly Ee → µ for large extensions, but Ee → 2·5µ when they are small. This small-
extension behaviour corresponds to a Young’s modulus in an isotropic linear elastic solid
with Poisson’s ratio 1 : 4 (Hibbeler, 1997) and indeed, (15)2 gives this value when e1 → 0.

4. Sliding contact problem

Consider that � in κ0 occupies a half-space defined in terms of a fixed Cartesian basis as
the region X2 > 0. The smooth motion

x1 = λ1 X1, x2 = λ2 X2, x3 = X3 (16)

takes � into the plane-strain equilibrium state κ defined by

T11 = σ1, T22 = 0, λ3 = 1, (17)

where σ1 is a known constant (pre)-stress. Now � occupies the half-space x2 > 0, and
(xk, λk) are the principal coordinates and stretches. For the compressible neo-Hookean
model (11), equations (1), (3), (16) and (17) combine to give

λ2 = 1

ω1/4
, λ1 = ωλ2, ω = σ1

2µ
+

√
1 +

(
σ1

2µ

)2

,

T33 = µ

(
1√
ω

− 1

ω

)
, Tik = 0 (i �= k),

(18)
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FIG. 2. Schematic of sliding contact process.

where 0 < ω � 1(σ1 � 0) and ω � 1(σ1 � 0). Equations (16)–(18) describe � in κ .
For any superposed infinitesimal deformation κ → κ∗ of �, the incremental stresses

are given by (4a, b) where, in view of (5), (6), (17) and (18),

λ′
1k = µ

(
2

ω
− ω

)
, λ′

2k = µ′
k2 = µ

ω
,

λ′
3k = µ

(
2

ω
− 1√

ω

)
, µ′

k1 = µω, µ′
k3 = µ√

ω
.

(19)

Here k = 1, 2, 3 and it is noted that all the constants are positive so long as

0 < ω <
√

2

(
σ1 <

µ√
2

)
. (20)

In this article, the infinitesimal deformation occurs when a frictionless rigid indentor of
infinite length and invariant profile in the x3-direction is simultaneously pressed into the
half-space surface x2 = 0 with compressive force (per unit of length) N , and translated
parallel to that surface in the positive x1-direction with a constant speed v. Eventually
a dynamic plane-strain situation of steady sliding is reached, as shown by the schematic
of Fig. 2. As indicated there, it is convenient to introduce the coordinates (x, y, z) that
correspond to (x1, x2, x3), but which translate parallel to the surface with the indentor.
Then, the boundary conditions for � along y = 0 are

t(−2) = 0 (x /∈ L); t (−2)
1 = t (−2)

3 = 0, u2 = U (x) (x ∈ L) (21)

where, as depicted in Fig. 2, x = L± locate the leading and trailing edges of the indentor
contact zone. The symbol L is used to represent both the contact zone itself and its length
L = L+ − L−. The function U (x) is the normal motion imposed by the indentor profile
in the contact zone. In view of (16), the total and superposed normal displacements along
y = 0 are the same. The constants L± are a priori unknown.

Because the process is one of steady sliding in plane-strain, only the components
(u1, u2) of the superposed displacements arise, and these depend only on (x, y). Moreover,
time derivatives in the absolute (inertial) frame reduce to the form −v∂()/∂x . Thus, in light
of (4a, b), (8) and (19), the relevant governing field equations for y > 0 for the superposed
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deformation are

1

ω

∂2u1

∂y2
+

(
2

ω
+ ω − c2

)
∂2u1

∂x2
+ 2

ω

∂2u2

∂x∂y
= 0,

2

ω

∂2u1

∂x∂y
+ 3

ω

∂2u2

∂y2
+ (ω − c2)

∂2u2

∂x2
= 0,

(22)

where the non-zero elements of T′ are defined by the constitutive formulae

1

µ
T ′

11 =
(

2

ω
+ ω

)
∂u1

∂x
+

(
2

ω
− ω

)
∂u2

∂y
,

1

µ
T ′

22 = 1

ω

∂u1

∂x
+ 3

ω

∂u2

∂y
,

1

µ
T ′

12 = ω
∂u2

∂x
+ 1

ω

∂u1

∂y
,

1

µ
T ′

33 =
(

2

ω
− 1√

ω

)(
∂u1

∂x
+ ∂u2

∂y

)
.

(23)

Here c is the sliding speed non-dimensionalized with respect to the classical (rest) value
(Achenbach, 1973) of the rotational wave speed, that is,

c = v

vr
, vr =

√
µ

ρ
. (24)

Equation (23)1 indicates that extensional strain associated with the x-direction is
independent of transverse loading when ω achieves a critical value ω = √

2, cf. (20).
Indeed, for ω exceeding that value, (23)1 implies a negative Poisson effect. Moreover, (23)
shows that tr T′ and tr H are not directly proportional. This indicates the typical (Green &
Zerna, 1968) result that the superposed deformations are governed by equations analogous
to those for a non-isotropic body, although � in κ0 is isotropic.

The mixed boundary conditions along y = 0 for this deformation can in view of (5),
(17) and (18) be extracted from (21) as

T ′
12 − σ1

∂u2

∂x
= 0; T ′

22 = 0 (x /∈ L),
∂u2

∂x
= dU (x)

dx
(x ∈ L). (25)

Equations (25) reflect the fact that t (−2)
3 vanishes identically and that the steady-state nature

of the superposed deformation allows a solution only to within an arbitrary rigid-body
motion. In addition, we expect the T ′

ik in (23) to vanish when
√

x2 + y2 → ∞, y > 0 and
to be non-singular and continuous almost everywhere. This latter requirement, as well as
the assumption implicit in Fig. 2 and (25), that multiple contact zones (Brock, 1996) do not
in fact arise, can be justified in part by requiring that (U, dU/dx, d2U/dx2) be finite and
continuous for x ∈ L . Then, the resultant of T ′

22 on the contact zone should be the specified
compressive force −N , and the contact zone parameters L± must be determined as part
of the solution. Finally, two unilateral constraints (Georgiadis & Barber, 1993) must hold:
(a) contact zone normal stress is non-tensile, and (b) indentor and half-space surfaces do
not interpenetrate.

5. Candidates for superposed solutions

Following the standard (Erdogan, 1976) practice for two-dimensional mixed boundary-
value problems in classical elasticity, the solution for the superposed deformation is
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obtained by first considering the same equations (22)–(24) and boundedness/continuity
conditions, but with (25) replaced by the unmixed conditions

T ′
12 − σ1

∂u2

∂x
= 0, T ′

22 = σ(x) (26)

along y = 0, where σ(x) represents the contact zone traction; it must vanish identically
for x /∈ L , and should be continuous at x = L±. The solution to this simpler problem will
be the superposed solution if a σ(x) can be found such that (25)3 is also satisfied.

In the Appendix, solutions to (22)–(24) and (26) are obtained by use of integral
transform techniques (van der Pol & Bremmer, 1950). In light of the results (A.8)2 there,
the condition (25)3 is reduced in the case of subsonic (0 < c < cb) sliding to the equation

−
√

ωK0a

µπ R
(P)

∫
L

σ(t) dt

t − x
= dU (x)

dx
(x ∈ L), (27)

where, as noted in the Appendix, (vr ca, vr cb) are dilatational and rotational wave speeds
in κ∗, and

cb = √
ω, ca =

√
ω + 2

ω
> cb. (28)

To obtain (27) from (A.8)2, use has been made of the result (Carrier & Pearson, 1988)

k

(t − x)2 + k2
→ πδ(t − x) (k → 0+), (29)

where δ( ) is the Dirac function, the definition (A.3a) for (a, R), and the definition

K0 = c2 − ω + 1

ω
. (30)

As in the Appendix, L in the integral symbol indicates integration over the real interval
(L−, L+), while (P) signifies that integration is in the Cauchy principal value sense.
Equation (27) is a standard Cauchy integral equation (Erdogan, 1976) whose solution is

σ(x) = µR√
ωK0a

√
x − L−
L+ − x

1

π
(P)

∫
L

dU (t)

dt

√
L+ − t

t − L−
dt

t − x
(x ∈ L). (31)

Equation (31) is appropriately bounded as x → L−, but boundedness as x → L+ occurs
only when ∫

L

dU (t)

dt

dt√
t − L−

√
L+ − t

= 0. (32)

This requirement serves as one equation for determining the contact zone parameters L±.
The other equation arises from the requirement that −N be the resultant of T ′

22 on the
contact zone. That is, ∫

L
σ(x) dx = −N . (33)
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Substitution of (31) into (33) and performing the x-integration with standard (Gradshteyn
& Ryzhik, 1980) tables gives the more explicit condition

µR√
ωK0a

∫
L

dU (t)

dt

√
L+ − t

t − L−
dt = N . (34)

For sliding in the transonic (cb < c < ca) speed range, the result (A.9)2 reduces (25)3 to
the Cauchy integral equation

−
√

ωa

µD

[
4aβ

ω
σ(x) + K 2

π
(P)

∫
L

σ(t) dt

t − x

]
= dU (x)

dx
(x ∈ L), (35)

where β is defined by (A.10) and

D =
(

2

ω
− K

)(
K 2 − 4

3ω2

)
. (36)

Following Erdogan (1976), the solution to (35) is

σ(x) = − µD√
ωa

I

(
dU

dx
; x

)
(x ∈ L), (37)

where the operator I and eigenvalue υ are defined by

I (g; x) = g(x) cos πυ + 1

π

(
L+ − x

x − L−

)υ

sin πυ(P)

∫
L

g(t)

(
t − L−
L+ − t

)υ dt

t − x
(x ∈ L),

υ = 1

π
tan−1 4aβ

ωK 2
− 1

2
(− 1

2 < υ < 0).

(38)

The counterparts to the auxiliary conditions (32) and (34) are∫
L

dU (t)

dt

(
t − L−
L+ − t

)υ dt

t − L+
= 0, − µD√

ωa

∫
L

dU (t)

dt

(
t − L−
L+ − t

)υ

dt = N . (39)

Finally, for sliding speeds in the supersonic (c > ca) range, (A.11)2 and (25)3 lead
immediately to the results

σ(x) = µR+√
ωK0α

dU (x)

dx
(x ∈ L),

µR+√
ωK0α

[U (L−) − U (L+)] = N ,

(40)

where (α, R+) are defined by (A.12) and, in this case, boundedness at x = L± is controlled
more directly by the form of U (x). The translational part of any rigid body motion cancels
out in (40)2.

Equations (31), (37) and (40)1, together with their auxiliary conditions, constitute in
light of, respectively, (A.8), (A.9) and (A.11), the solution candidates for the superposed
infinitesimal deformations. The actual solutions are those that satisfy in addition the
unilateral constraints (a) and (b).
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6. Superposed solution: subsonic case

To illustrate the solution identification process for subsonic (0 < c < cb)sliding speeds,
the generic parabolic indentor is treated. That is,

U (x) = U0 + U1x + 1
2U2x2, (41)

where the Uk are real constants. Substitution of (41) into (31), (32) and (34) gives, upon
integration by means of standard tables (Gradshteyn & Ryzhik, 1980),

σ(x) = µRU2√
ωK0a

√
L+ − x

√
x − L− (x ∈ L), (42)

where L± can be obtained from the formulae

2U1 + (L+ + L−)U2 = 0, −πµRU2L2

8
√

ωK0a
= N . (43)

In view of (26)2, the unilateral constraint (a) requires that σ(x) � 0, which, as indicated
by (42), implies the condition U2 R/K0 � 0.

Study of (A.3a, b) shows that the dimensionless quantity R has roots c = ±(c0, cR),
where

c0 =
√

ω − 1

ω
, cR =

√
ω + 1

ω

(
1 − 2√

3

)
. (44)

For
√

2/
√

3 − 1 < ω <
√

2, the second root is real and 0 < cR < cb. Therefore, v = vr cR

is a critical sliding speed, at which the solution to (27) is undefined; it plays the role of the
Rayleigh speed (Achenbach, 1973). Indeed, R as defined by (A.3a) has a form similar to

that of the classical Rayleigh function. For 0 < ω <

√
2/

√
3 − 1, however, the second root

is imaginary, and so has no meaning as a wave speed. In light of (18)1, these observations
imply that a Rayleigh wave does not exist when

σ1 < σc, σc = −2µ(
√

3 − 1)

√
2√
3

+ 1. (45)

In view of (44), the first root is imaginary for all 0 < ω < 1 (σ1 < 0), and so does not
correspond to a wave speed. For 1 < ω <

√
2 (0 < σ1 < µ/

√
2), however, it is real

and 0 < c0 < cR . Nevertheless, no critical sliding speed seems to arise in this case,
because (30) shows that c = ±c0 are also roots of the dimensionless quantity K0. Indeed,
in the light of (A.3a, b) and (30), it can be shown that, for σ1 > σc,

R

K0

{
>0 (0 < c < cR),

<0 (cR < c < cb),
(46a)

and for σ1 < σc,

R

K0
< 0 (0 < c < cb). (46b)
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(a) (b)

FIG. 3. (a) Surface deformation schematic for acceptable solution. (b) Surface deformation schematic for
artificial solution.

If (46a)1 governs, one must have U2 < 0. In view of Fig. 2, this means that the sliding
indentor is concave upwards. The cases (46a)2 and (46b) require, however, that U2 > 0,
that is, the indentor is concave downward. Although the former situation seems more
physically acceptable, imposition of unilateral constraint (b) provides closure.

It is noted that (42) is both bounded and continuous (vanishes) at the contact zone edges
x = L±. Study of (A.8) shows that this, in turn, guarantees continuity of (∂u1/∂x, ∂u2/∂x)

at the edges. However, taking the derivative of (A.8)2 and then letting y = 0 gives in light
of (43)2 an integral that can be performed with standard tables (Gradshteyn & Ryzhik,
1980):

∂2u2

∂x2
= U2

[
1 − 1

2

(√
x − L−
x − L+

+
√

x − L+
x − L−

)]
(x /∈ L). (47)

This is approximately the curvature of the half-space surface outside the contact zone. For
U2 < 0, (47) behaves as (+∞, x → L±), which implies the schematic in Fig. 3a for
the deformed surface. For U2 > 0, however, (47) behaves as (−∞, x → L±), which
suggests interpenetration—thereby violating unilateral constraint (b)—unless the artifice
depicted in Fig. 3b is adopted, which treats the indentor dimensions as a priori defined by
the parameters L±.

In summary, then, for pre-stress below a critical compressive value, the deformed
configuration exhibits a critical speed of the Rayleigh type that serves as an upper bound
for sliding contact in the subsonic case, that is, 0 < v < vr cR . This behaviour is analogous
to that for a linear elastic solid (Georgiadis & Barber, 1993). For pre-stress that exceeds
the critical value in compression, subsonic steady sliding cannot occur.

7. Superposed solution: transonic case

For transonic (cb < c < ca) sliding speeds, the form (41) is again used to illustrate the
solution specification process. In this instance, (37), (39) and the use of standard tables
(Gradshteyn & Ryzhik, 1980) give the bounded and continuous formula

σ(x) = µDU2√
ωa

(L+ − x)1+υ(x − L−)−υ (x ∈ L). (48)
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FIG. 4. Surface deformation schematic for trans- and supersonic sliding speeds.

Equations (30) and (36) show that D < 0 for all cb < c < ca . This implies in light of
the subsonic sliding analysis that unilateral constraint (a) can only be satisfied if U2 >

0. Consequently, it would appear that constraint (b) cannot be satisfied for any transonic
sliding speed unless the situation depicted in Fig. 3b is adopted.

However, (A.3a) shows that K (±cK ) = 0, where

cK =
√

ω + 1

ω
(cb < cK < ca) (49)

and when c = cK , (38) gives υ = 0 and (37) reduces to the degenerate case

σ(x) = 2µ

ω

dU (x)

dx
(x ∈ L). (50)

For the case (41), it can be shown that (50) gives the form

σ(x) = 2µU2

ω
(x − L−) (x ∈ L) (51)

which satisfies both unilateral constraints when U2 < 0 and the conditions

U1 + U2L− = 0, −µU2L2

ω
= N . (52)

Equation (52) can be used to obtain the contact zone parameters L± but, unlike its
subsonic counterpart (43), does not guarantee continuity of σ(x) at x = L+, that is, (50)
gives a finite discontinuity at the contact zone leading edge. A schematic of the surface
deformation in Fig. 4 shows that (51) locates the contact zone trailing edge x = L− at the
point of zero indentor slope, that is, the point of maximum normal surface displacement
under the indentor.

8. Superposed solutions: supersonic case

For supersonic (c > ca) sliding speeds, combining (41) with (40) and then imposing both
unilateral constraints gives

σ(x) = µR+U2√
ωK0α

(x − L−) (x ∈ L), (53)
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where U2 < 0 and L± are determined from the formulae

U1 + U2L− = 0, −µR+U2L2

2
√

ωK0α
= N . (54)

Equation (53) shows that, as in the transonic case (c = cK , cb < cK < ca), the contact
zone traction becomes discontinuous at the leading (x = L+) edge. Again, Fig. 4 depicts
the surface deformation, and (54) locates the contact zone trailing edge x = L− at the
point of maximum normal surface displacement under the indentor.

9. Comments

This article reported on rapid sliding contact on a pre-stressed highly elastic half-space.
The sliding indentor was frictionless, could in principle slide at any constant speed, and
the pre-stress was aligned with the half-space surface and sliding direction. The half-space
was modelled as an isotropic compressible neo-Hookean material that, for small stresses,
behaved as a linear elastic solid with Poisson’s ratio 1 : 4.

The dynamic analysis treated the process as a plane-strain problem of steady sliding,
and the problem solutions as the superposition of infinitesimal deformations triggered by
the sliding contact upon the finite deformations due to pre-stress. Exact solutions were
obtained for both deformations; in particular, the mixed boundary-value problem for the
infinitesimal deformation was solved by combining integral transform and Cauchy integral
equation solution techniques. Boundedness requirements on the contact zone traction gave
rise to auxiliary conditions that allowed the contact edge locations to be determined as
well.

As is typical (Green & Zerna, 1968), the pre-stress induced a de facto non-isotropy
in the infinitesimal solution response, and equations (28) and (44) showed that the
associated wave speeds (rotational, dilatational, Rayleigh) are sensitive to pre-stress. In
particular, (44) showed that the Rayleigh wave disappears for pre-stresses that exceed the

critical value 2µ(
√

3 − 1)

√
2/

√
3 + 1 in compression, where µ is the shear modulus. A

plot of the speeds (cb: rotational, ca : dilatational, cR : Rayleigh), non-dimensionalized with
respect to the rest value of the rotational wave speed, versus pre-stress is given in Fig. 5.
It is seen that increasing a compressive pre-stress lowers the rotational and Rayleigh wave
speeds, but increases the dilatational wave speed. A critical tensile pre-stress also exists;
for values greater than µ/

√
2, the infinitesimal deformation exhibits a negative Poisson

effect. Both critical stresses are of O(µ), but may be relevant within the context of highly
elastic response.

The aforementioned mixed boundary-value problems actually produced only candidate
solutions. The actual solutions need in addition to satisfy the standard unilateral
constraints of contact, which preclude tensile contact zone traction and indentor/half-
space interpenetration. Imposition of these conditions for the case of the generic parabolic
indentor showed that physically acceptable steady sliding contact can occur only at
(1) sliding speeds below the Rayleigh wave speed, (2) a particular speed in the transonic
range and (3) all supersonic sliding speeds. Figure 5 also exhibits the variation with pre-
stress of the non-dimensionalization cK of the single allowable transonic speed. While the
contact zone traction was finite in all three cases, continuity at the contact zone leading
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FIG. 5. Non-dimensionalized speeds versus pre-stress.

edge was maintained only for case (1). Moreover, the trailing edge of the contact zone
in cases (2) and (3) corresponded to the point of maximum normal surface displacement
under the indentor.

Because the Rayleigh wave disappears at a critical compressive pre-stress, case (1)
indicates that subsonic sliding contact cannot occur for compressive pre-stresses above
that level. While, as noted above, both critical pre-stresses are high, the present result does
indicate, in view of Fig. 5, that a compressive pre-stress inhibits steady sliding contact at
subsonic speeds.

The results obtained here are consistent with those of Georgiadis & Barber (1993),
which dealt with frictionless sliding contact in a linear elastic solid with no pre-stress, and
focused in part on the moving point force problem. The study by Brock & Georgiadis
(2000) considered the effects of friction at all possible constant sliding speeds, but pre-
stress was not involved, and the solid was a linear thermoelastic material. Thermoelastic
coupling required, moreover, the use of robust asymptotic solutions. The results from
the present analysis are, therefore, being extended to include friction and coupled
thermoelasticity.
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Appendix

Consider the bilateral Laplace transform (van der Pol & Bremmer, 1950) and inverse

F̂ =
∫ ∞

−∞
F(x)e−px dx, F(x) = 1

2π i

∫
F̂epx dp, (A.1)

where p is imaginary and integration in (A.1)2 is along a Bromwich contour in the p-plane.
Application of (A.1)1 to (22) and (26) in view of (23) and the boundedness requirements
gives a coupled set of linear ordinary differential equations that can be solved in terms of
the transform of the contact zone normal traction σ(x). The results are[

û1√
pû2

]
= σ̂

µpR

[ −K −2ab

a
√

ωK
√−p

2a

ω

√−p

] [
e−√

ωay
√

p
√−p

e−√
ωby

√
p
√−p

]
(A.2)

for y > 0, where
√

3a =
√

c2 − c2
a, b =

√
c2 − c2

b, K = c2 − ω − 1

ω
, R = 4

ω
ab − K 2, (A.3a)

cb = √
ω, ca =

√
ω + 2

ω
> cb, (A.3b)
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the dimensionless sliding speed c is defined in (24), and

σ̂ =
∫

L
σ(t)e−pt dt . (A.4)

The dimensionless constants in (A.3b) define rotational (vr cb) and dilatational (vr ca)

wave speeds in the deformed configuration. In (A.4) the symbol L affixed to the integral
operator signifies that integration is over the real interval (L−, L+). Integration by parts
indicates that the terms pûk in (A.2) are the transforms of ∂uk/∂x . In light of the fact that
non-transient displacements can be found only to within an arbitrary rigid-body motion,
determination of these gradients is sufficient.

Because 0 < ω <
√

2, the parameters (a, b) are both real and positive when
0 < c < cb. Thus, for subsonic sliding, boundedness of (A.2) for y > 0 requires that
branch cuts Im(p) = 0, Re(p) < 0 and Im(p) = 0, Re(p) > 0 be introduced for the terms√±p, respectively, in order that Re(

√
p
√−p) � 0 in the cut plane. Substitution of (A.2)

and (A.4) into (A.1)2 and interchanging the order of the (t, p)-integrations reduces the
inversion process to the generic integrals

1

2π i

∫ (
1,

√−p√
p

)
ep(x−t)−k

√
p
√−p dp, k = (

√
ωay,

√
ωby). (A.5)

The integrands are each analytic for Re(p) = 0, so that the entire Im(p)-axis can serve as
the Bromwich contour. Performing the resulting integration produces the real integrals

1

π

∫ ∞

0
e−kp[cos p(x − t), sin p(x − t)] dp (A.6)

which, with the use of standard tables (Gradshteyn & Ryzhik, 1980), are

1

π

(k, x − t)

(x − t)2 + k2
. (A.7)

In view of (A.2) and (A.7), the results

µ
∂u1

∂x
=

√
ωay

π R

∫
L

σ(t) dt

[
K

(t − x)2 + ωa2 y2
− 2b2

(t − x)2 + ωb2 y2

]
,

µ
∂u2

∂x
= a

π R

∫
L

σ(t)(t − x) dt

[ √
ωK

(t − x)2 + ωa2 y2
− 2√

ω

1

(t − x)2 + ωb2 y2

] (A.8)

follow for y > 0.
For cb < c < ca (transonic sliding speed) the parameter a in (A.3b) remains real and

positive, but b is now imaginary. Therefore, the process used above must be modified to
ensure that (A.2) remains bounded for y > 0. The integrations that result from application
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of (A.1)1 are similar in form, however, and it can be shown that

µ
∂u1

∂x
= a

π R−

∫
L

σ(t)

[
4β

ω
(t − x) + √

ωK 3 y

]
dt

(t − x)2 + ωa2 y2

− 2aβK 2

π R−

∫
L

σ(t) dt

t − x − √
ωβy

− 8a2β2

ωR−
σ(x + √

ωβy),

µ
∂u2

∂x
=

√
ωK a

π R−

∫
L

σ(t)

[
4a2βy√

ω
+ K 2(t − x)

]
dt

(t − x)2 + ωa2 y2

+ 2aK 2

π
√

ωR−

∫
L

σ(t) dt

t − x − √
ωβy

+ 8a2β

ω3/2 R−
σ(x + √

ωβy)

(A.9)

for y > 0, where

β =
√

c2 − c2
b, R− =

(
K 2 − 4

ω2

)(
K 2 − 4

3ω2

)
. (A.10)

It is understood that the last terms in (A.9) appear only when x + √
ωβy ∈ L , and that the

last integral terms then must be performed in the Cauchy principal value sense.
For c > ca (supersonic sliding speed), both (a, b) in (A.3a) are imaginary, but by the

same procedures used above, application of (A.1)1 to (A.2) can be shown to give

µ
∂u1

∂x
= K

R+
σ(x + √

ωαy) − 2αβ

R+
σ(x + √

ωβy),

µ
∂u2

∂x
=

√
ωKα

R+
σ(x + √

ωαy) + 2α√
ωR+

σ(x + √
ωβy)

(A.11)

for y > 0. Here

√
3α =

√
c2 − c2

a, R+ = 4

ω
αβ + K 2 (A.12)

and it is understood that the first and second terms in both of (A.11) vanish unless
x + √

ωαy ∈ L and x + √
ωβy ∈ L , respectively. This behaviour indicates that the half-

space surface is deformed only within the contact zone.


