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This article provides an illustration of the explanatory and discovery functions of proof with 
an original geometric conjecture made by a Grade 11 student. After logically explaining 
(proving) the result geometrically and algebraically, the result is generalised to other polygons 
by further reflection on the proof(s). Different proofs are given, each giving different insights 
that lead to further generalisations. The underlying heuristic reasoning is carefully described 
in order to provide an exemplar for designing learning trajectories to engage students with 
these functions of proof. 
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Introduction
It seems that the human brain is designed, or has evolved over time, not only to recognise patterns, 
but also often to impose them on things we observe. Moreover, from a very young age, children 
naturally exhibit a need for an explanation of these patterns – a deep-seated curiosity about how 
or why things work the way they do. They ask questions about why the sky is blue, the sun rises 
in the East, or why more moss grows on the southern side of a tree (in the Southern Hemisphere).

However, it sadly seems that once young children have entered the domain of mathematics 
in formal schooling, this natural inquisitiveness and quest for deeper understanding becomes 
severely repressed. Largely to blame is probably the traditional approach of focusing primarily 
on the teaching, learning and practising of standard algorithms. These are still presented in many 
classrooms as mystical chants to be memorised, rather than focusing on understanding why they 
work, as well as on the meaning of the basic operations underlying them. Lockhart (2002) laments 
this sorry state of affairs: 

By concentrating on what, and leaving out why, mathematics is reduced to an empty shell. The art is 
not in the ‘truth’ but in the explanation, the argument. It is the argument itself which gives the truth its 
context, and determines what is really being said and meant. Mathematics is the art of explanation. If you 
deny students the opportunity to engage in this activity — to pose their own problems, make their own 
conjectures and discoveries, to be wrong, to be creatively frustrated, to have an inspiration, and to cobble 
together their own explanations and proofs - you deny them mathematics itself. (p. 5, [emphasis in the 
original])

Extending the role of proof beyond verification
Traditionally, the verification (justification or conviction) of the validity of conjectures has been 
seen as virtually the only function or purpose of proof. Most mathematics teachers probably see 
this as the main role of proof (Knuth, 2002) and this view, to the exclusion of a broader perspective, 
also still dominates much of curriculum design in the form of textbooks, lessons and material on 
teaching proof (French & Stripp, 2005). Even the majority of research conducted in the area of 
proof has been done from this perspective (Balacheff, 1988; Ball & Bass, 2003; Harel & Sowder, 
2007; Stylianides & Ball, 2008). Harel and Sowder, for example, defines a ‘proof scheme’ as an 
argument that ‘eliminates doubt’, effectively restricting the role of reasoning and proof to only 
that of verification, although they acknowledge the explanatory role of proof in other places. 

In the past few decades, however, this narrow view of proof has been criticised by several 
authors (e.g. Bell, 1976; De Villiers, 1990, 1998; Hanna, 2000; Thurston, 1994; Rav, 1999; Reid, 
2002, 2011). They have suggested that other functions of proof such as explanation, discovery, 
systematisation, intellectual challenge et cetera, have in some situations been of greater importance 
to mathematicians and can have important pedagogical value in the mathematics classroom as 
well. But these distinctions of other roles for proof are perhaps far older. For example, Arnauld 
and Nicole (1662) appear to be referring to the explanatory (illuminating or enlightening) role of 
proof by objecting to Euclid because they felt Euclid was ‘more concerned with convincing the 
mind than with enlightenment’ (cited by Barbin, 2010, p. 237).
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Computing technology and the changing role of 
proof
Mejía-Ramos (2002, p. 6) argues that the search for deeper 
understanding is what makes many mathematicians reject 
‘mechanically-checked formal proofs and computational 
experiments as mathematical proofs’, for example, the 
famous use of computers by Appel and Haken in 1976 to 
prove the four-colour conjecture (Appel & Haken, 1977). 
Especially in the light of modern computing technology, such 
as dynamic geometry and symbolic algebraic processors, 
it is often the case that a very high level of conviction 
is already obtained before mathematicians embark on 
finding a proof. In fact, it can be argued that this ‘a priori’ 
conviction is more often a prerequisite and motivating factor 
(Polya, 1954, pp. 83−84) for looking for a proof than the 
mythical view that ‘eliminating doubt’ is the driving force. 

On the other hand, although such computing tools enable 
us to gain conviction through visualisation or empirical 
measurement, these generally provide no satisfactory insight 
into why the conjecture may be true. It merely confirms that 
it is true, and although considering more and more examples 
may increase our confidence to a greater extent, it gives no 
psychologically satisfactory sense of illumination (Bell, 1976) 
or enlightenment – for that, some form of proof is needed! In 
this regard, it is significant to note that young Grade 9 children 
still display a need for some form of further explanation 
(deeper understanding) of a result, which they had already 
become fully convinced of after empirical exploration on 
Sketchpad (Mudaly & De Villiers, 2000). Within the context 
of algebra, Healy and Hoyles (2000) also found that students 
preferred arguments that both convinced and explained, 
strongly suggesting that the need for explanation is perhaps 
an untapped resource in lesson design and implementation.

Appreciation of the verification (justification) function of 
proof is most easily developed in fields such as number 
theory, algebra, calculus, et cetera. In these fields one can give 
spectacular counter-examples to conjectures with massive 
empirical support (e.g. as in Stylianides, 2011). However, this is 
not quite the case with dynamic geometry. The difference is that 
one can transform geometric figures or graphs continuously (or 
at least closely) by dragging, as well as explore more deeply by 
zooming in to great levels of accuracy. With these facilities, one 
can usually find counter-examples to false conjectures fairly 
quickly and easily. It is possible to contrive didactical situations 
such as used in De Villiers (2003, pp. 73, 85) where students 
are given sketches with measurements preset to one decimal 
accuracy, therefore deliberately misleading them to make a 
false conjecture. However, genuinely authentic examples in 
dynamic geometry that are accessible to high school students 
are few and far between. 

It seems more natural and meaningful that within a 
dynamic geometry (mathematics) environment, potential 
use may be made of this cognitive need for explanation and 
understanding to design and implement alternative learning 
activities. Such learning activities could introduce novices for 
the first time to proof, not as a means of verification, but as 
a means of explanation and illumination (e.g. see De Villiers, 

1998, 2003), whilst the other functions of proof could be 
developed later or in other contexts. Furthermore, by initially 
referring to a deductive argument as a ‘logical explanation’ 
instead of a ‘proof, it may help to focus attention on its role as 
a means of deeper understanding of a dynamically verified 
result rather than of conviction or verification.

Proof as a means of discovery
Quite often, logically explaining (proving) why a result is 
true gives one deeper insight into its premises. On further 
reflection, one may then realise that it can be generalised or 
applied in other circumstances. Anderson (1996, p. 34) also 
clearly alludes to this aspect when writing, ‘Proof can bring 
understanding of why methods work and, consequently, of 
how these methods might be adapted to cope with new or 
altered circumstances.’ Rav (1999, p. 10) also describes this 
‘productive’ role of proof when writing: ‘ ... logical inferences 
are definitely productive in extending knowledge by virtue 
of bringing to light otherwise unsuspected connections.’ 
More recently, Byers (2007, p. 337) has made a similar 
observation: ‘A “good” proof, one that brings out clearly the 
reason why the result is valid, can often lead to a whole chain 
of subsequent mathematical exploration and generalization.’

I have called this illuminating aspect of proof that often 
allows further generalisation, the discovery function 
(De Villiers, 1990), and it appears also to be the first explicit 
distinction of this function (Reid, 2011). For example,
explaining (proving) Viviani’s theorem for an equilateral 
triangle by determining the area of the three triangles it is 
divided up into, and noticing the ‘common factor’ of the equal 
sides of these triangles as bases, may allow one to immediately 
see that the result generalises to any equilateral polygon,
because exactly the same ‘common factor’ will appear 
(De Villiers, 2003, p. 26). 

Nunokawa (2010, pp. 231−232) similarly claims that 
‘explanations generate new objects of thought to be explored’. 
He gives an example of a problem involving two overlapping 
squares, and how explaining why the overlapping area 
remains constant as the one square remains fixed and the 
other is rotated, leads one to generalise to other regular 
polygons with the same feature. Two other ‘discovery via 
proof’ examples are discussed and presented in De Villiers 
(2007a, 2007b). Of course, for novices and less experienced 
students such generalisation (or specialisation) from a proof 
is not likely to be as automatic and immediate as with an 
experienced mathematician. Therefore, in didactically 
designing tasks to engage high school students, or even 
student teachers, with the discovery function of proof, 
sufficient scaffolding is often needed to provide adequate 
guidance for both the initial proof as well as for further 
reflection (Hemmi & Löfwall, 2011; Miyazaki, 2000).

Jones and Herbst (2012, p. 267) reporting on a study on 
the instructional practices of a sample of expert teachers of 
geometry at Grade 8 level (pupils aged 13–14) in Shanghai, 
China, identify two important factors in developing an 
understanding of the discovery function of proof, namely, 
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variation of the mathematical problems as well as the 
questions asked by teachers to guide their students.  

It is important to also point out here that with the ‘discovery’ 
function of proof is not only meant a discovery made after 
reflecting on a recently constructed proof. As illustrated in 
De Villiers (1990, p. 22, 2003, pp. 68−69), it also more broadly 
refers to situations where new results are discovered in a 
purely logical way by the application of known theorems 
or algorithms without resorting to any experimentation, 
construction or measurement. For example, using the 
tangents to a circle theorem, it is relatively easy to deduce 
logically (and proving at the same time) that the two sums of 
the opposite sides of a quadrilateral circumscribed around a 
circle are equal (and generalising to circumscribed 2n-gons).

Another illustrative example is given in De Villiers (1999) 
involving the generalisation of a problem involving an area 
relationship between a square and a formed octagon. By 
dividing the sides into different ratios than the original, it 
was experimentally found with dynamic geometry that the 
area ratios remained constant. However, a purely inductive 
approach whereby the different ratios 0.1666; 0.3333; 0.4500 
were looked at for the division of the sides into halves, thirds 
and quarters respectively, was not very helpful in finding a 
general formula and ultimately had to be derived logically.

More generally, with the discovery function, it also means 
that a proof can reveal new, powerful methods of solving 
problems and creating new theories. Logical reasoning and 
proof can show that certain problems are unsolvable such as, 
for example, representing    2 as a rational (fraction), squaring 
the circle or solving a quintic (or higher order) polynomial 
equation with radicals. Hanna and Barbeau (2010, pp. 90−93) 
suggest a nice example for classroom use, showing how the 
problem of finding the quadratic formula naturally leads 
to an introduction to students of the strategy of completing 
the square. Grabiner (2012, p. 161) gives historical examples 
of how the distinction between pointwise and uniform 
convergence arose from counter-examples to Cauchy’s 
supposed theorem regarding infinite series, and of how 
Cantor’s theory of the infinite came about through trying 
to specify the structure of the sets of real numbers on which 
Fourier series converge. Similarly, the discovery (invention) 
of non-Euclidean geometry came about from attempts to use 
indirect proof (reductio ad absurdum) to prove Euclid’s 5th 
postulate. Grabiner (2012, p. 162) describes this as ‘another 
triumph of human reason and logic over intuition and 
experience’.

The main purpose of this article is to contribute further to 
the theoretical aspects of the role of proof by providing a 
heuristic description of some of my personal experiences 
of the explanatory and discovery functions of proof with 
a geometric conjecture made by a Grade 11 student. After 
logically explaining (proving) the result geometrically and 
algebraically, the result is generalised to other polygons by 
further reflection on the proof(s). This conjecture and its 
generalisations could easily be turned into a set of guided 
learning activities that elicit ‘surprise’ amongst students 

(compare Movshovitz-Hadar, 1988); therefore creating 
a need for explanation, and provide an authentic mix of 
experimentation and proof of a possibly original result.

Clough’s conjecture
Although it is a rare occurrence, nothing gives greater 
pleasure to a teacher than when one of their students produces 
a conjecture of their own. The conjecture need not be entirely 
original, but the excitement created in the classroom when 
something goes ‘outside’ or ‘beyond’ the textbook gives a 
much more ‘real’ sense of genuine mathematical discovery 
and invention. Usually, students are also far more strongly 
motivated to want to solve such a problem because they 
perceive it as their own and not something old and boring 
from the textbook or the curriculum. 

By encouraging students, for example, to continually ask 
‘what-if’ questions on their own until it becomes a regular 
occurrence, students are likely to more naturally start 
making more original conjectures of their own, providing 
an exciting injection to liven up the class. The availability 
of computing technology places at the disposal of students 
powerful new tools by which they can now easily make 
independent discoveries (Arzarello, Bartolini Bussi, Leung, 
Mariotti & Stevenson, 2012; Borwein, 2012). A useful 
overview and analysis for the task-design of activities for 
promoting conjecturing is given by Lin, Yang, Lee, Tabach 
and Stylianides (2012). Moreover, speaking from my own 
experience also, honouring students by attaching their names 
to discovered results is a powerful motivator to continue 
further mathematical studies (compare Leikin, 2011).

During 2003, a Grade 11 student from a high school in Cape 
Town was exploring Viviani’s theorem using dynamic 
geometry. The theorem says that the sum of distances of 
a point to the sides of an equilateral triangle is constant 
(i.e. in Figure 1 PPa + PPb + PPc is constant, irrespective of 
the position of point P inside triangle ABC). The student’s 
further exploration led him to measure the distances APc, BPa 
and CPb, and then add them. To his surprise, he noticed that 
APc + BPa + CPb also remained constant no matter how much 
he dragged P inside the triangle. However, he could not 
prove it.

FIGURE 1: Clough’s conjecture: APc + BPa + CPb is constant.
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rectangle because all its angles are right angles. Therefore, 
A´P = APc, and similarly, B´P = BPa and C´P = CPb.

Clearly the problem is now reduced to Viviani’s theorem 
in relation to ∆KLM. Considering that A´P + B´P + C´P is 
constant, it follows that APc + BPa + CPb is also constant. QED. 

The preceding proof is quite explanatory (Hanna, 1989) as 
one can almost immediately ‘visually see’ from the diagram 
in one ‘gestalt’, why the result is true and how it relates to 
Viviani’s theorem.

An alternative ‘algebraic’ proof
In Polya’s final step of problem-solving, namely, looking 
back, he asks amongst other things whether one can derive 
or prove the result differently. In doing so, not only is one 
developing a variety of problem-solving (proving) skills, but 
one may also gain additional insight into the result. Recently, 
much has been written and researched about the value of 
posing such multi-proof tasks to students. Dreyfus, Nardi 
and Leikin (2012) provide a comprehensive survey and 
review of this particular field.

Considering that there are several right triangles, it seems 
reasonable to try the theorem of Pythagoras, and to apply it 
to each of these triangles and investigate where it leads.

Let AB = a, APC = x, et cetera, as shown in Figure 3. We now 
need to show that x + y + z is constant. Applying Pythagoras 
to the right triangles adjacent to the hypotenuses AP, BP and 
CP, we obtain:

It is often at this point, or even before reaching it, that a novice 
problem solver might lose hope of getting anywhere as it is not 
obvious from the start that this will lead somewhere useful. 
However, students should be encouraged to persist with such 
an exploration and not so easily give up and start asking for 
help. One might say that a distinctive characteristic of good 
mathematical problem solvers are that they are ‘stubborn’, 
and willing to spend a long time attacking a problem from 

FIGURE 2: A geometric proof of Clough’s conjecture.
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FIGURE 3: An alternative, algebraic proof of Clough’s conjecture.
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His teacher eventually wrote to me to ask whether I could 
perhaps produce a simple geometric proof, as he himself 
could only prove it algebraically by means of co-ordinate 
geometry. Below is the geometric proof I first produced, 
followed by further proofs, explorations and different 
generalisations of what has become known as Clough’s 
conjecture (De Villiers, 2004).

Geometric proof
Problem solving heuristics are valuable in that they often 
direct the problem solver towards a successful solution of 
a problem. George Polya (1945) gives the following useful 
examples:

Have you seen it before? Or have you seen the same problem in 
a slightly different form? Do you know a related problem? Do 
you know a theorem that could be useful? Look at the unknown! 
And try to think of a familiar problem having the same or a 
similar unknown. Here is a problem related to yours and solved 
before. Could you use it? Could you use its result? Could you 
use its method? Should you introduce some auxiliary element in 
order to make its use possible? (p. xvii)

Following Polya’s heuristic, it seems natural to try and relate 
Clough’s conjecture to Viviani’s theorem and its proof. 
After several different attempts, I found by constructing 
perpendiculars to AB, BC and CA as ‘auxiliary elements’ 
respectively at A, B and C, that I obtained a triangle KLM as 
shown in Figure 2.

Considering that     ABK = 30°, it follows that    AKB = 60°. In 
the same way the other angles of ∆KLM can be shown to be 
equal to 60°; hence ∆KLM is equilateral.

Next, drop perpendiculars from P to sides KM, KL and LM 
respectively. It then follows that quadrilateral APcPA’ is a 
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different vantage points and not easily surrendering. In 
this regard, Schoenfeld (1987, p. 190−191) also specifically 
refers to the importance of meta-cognition during problem-
solving (i.e. maintaining a conscious awareness and control 
of a variety of possible approaches, and then monitoring 
how well things are going during the implementation of a 
possible approach).

If we look at the set of three equations, however, an 
immediate observation is the cyclic fashion in which terms 
appear. This suggests that adding the left and right sides of 
the three equations, respectively, might lead to the quadratic 
terms cancelling out. Indeed, doing so, after simplification,

gives us the desired identity                       . Considering that 

a is constant for a fixed equilateral triangle, it completes the 
proof.

Taking into account that       is half the perimeter of the 

triangle, we also get the following bonus relationship: 
APc + BPa + CPb = PcB + PaC + PbA.

Although this algebraic proof appears less explanatory than 
the preceding geometric one, we have managed to find 
an additional property of the configuration that was not 
discovered experimentally, namely, that the sum of these 
distances is half the perimeter of the triangle. Nor was this 
clearly evident from the geometric proof at all, although one 
could now go back armed with this hindsight and use basic 
trigonometric ratios in Figure 2 to find that the side length 
of ∆KLM is √3a; hence its height is        (which is equal to its 
Viviani sum). 

However, more importantly, because of its cyclic nature, 
the algebraic proof suggests an immediate generalisation to 
equilateral polygons, giving a nice illustrative example of the 
discovery function of proof. It is not hard to see (at least for 
more experienced problem solvers) that from the structure 
of the proof, it will generalise as follows for an equilateral 
n-gon  A1A2...An (refer to the notation in Figure 4, showing an 
equilateral pentagon):

By again adding the left and the right sides as before, we 
get a collapsing ‘telescopic effect’ with all the squares 
of PPn and xi cancelling out, and all that remains is 
0 = na2 – 2a(x1 + x2 + ... + xn) which simplifies to                    , 
which as before, is also half the perimeter of the equilateral 
n-gon.

Revisiting the geometric proof
Let us now revisit our explanatory geometric proof. Despite 
already knowing that Clough’s result is true for a rhombus 

(as it has all its sides equal), let us nonetheless see if we can 
use the same geometric approach with it as for the triangle, 
and whether it provides any new insights. By constructing 
perpendiculars as before to AD, DC, CB and BA respectively 
at A, D, C and B as shown in Figure 5, we find that the result is 
visually immediately obvious. For example, perpendiculars a 
and c are parallel to each other because they are respectively 
perpendicular to sides AD and BC. Because it is easy to show 
that FPH is a straight line, we see that AH + CF is simply equal 
to the constant distance between these two parallel lines. The 
same applies to the sum of the other two distances BE and 
DG between the parallel perpendiculars b and d. Therefore, 
AH + CF + BE + DG is the sum of two constants; hence 
constant. QED.

In many ways this proof is more explanatory than the 
preceding algebraic proof, which was more algorithmic, non-
visual and required quite a bit of manipulation. Moreover, 
following Polya, and looking back critically and examining 
this geometric proof, one should notice that we did not use 
the equality of the sides of the rhombus at all! We only used its 
property of opposite sides being parallel − it depends only 
on the parallel-ness of opposite sides. This implies that the result 
will immediately not only generalise to a parallelogram, but 
also in general to any parallel 2n-gon (n > 1); in other words 
to any even sided polygon with opposite sides parallel, as the 
same argument will apply!
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FIGURE 4: An equilateral pentagon.
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produce another equi-angled polygon inside! Hence, the 
result generalises, and we have here another lovely example 
of the discovery function of proof.

Another perhaps even easier way of logically explaining the 
theorem is shown in Figure 8. By translating the segments 
BG, CH, DI and EJ as shown, and then constructing 
perpendiculars at A, B´, C´, D´ and E´, we produce another 

FIGURE 6: A hexagon with opposite sides parallel.
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FIGURE 7: An explanatory proof for an equi-angled pentagon.
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So here we have another excellent example of the discovery 
function of proof, leading us to a further generalisation, 
without any additional experimentation. As shown in 
Figure 6 for a hexagon with opposite sides parallel, exactly 
the same argument applies to the sum of the distances AH 
and DK respectively on opposite parallel sides, and lying 
between the two parallel perpendiculars a and d, et cetera.

Generalising to equi-angled polygons
Given that Viviani’s theorem generalises not only to equilateral 
polygons and 2n-gons with opposite sides parallel, but also 
to equi-angled polygons, it seemed reasonable to investigate 
whether Clough’s theorem is also true for polygons of this 
kind. Considering that it is true for parallelograms, it is true 
for the quadrilateral case (a rectangle), but what about an 
equi-angled pentagon?

A quick construction on Sketchpad showed me that the result 
was indeed also true for an equi-angled pentagon. Although 
I personally had no doubt about the equi-angled result from 
this experimental investigation, I was nonetheless motivated 
to look for a proof, because I wanted to know why it was 
true, as well as seeing it as an intellectual challenge (compare 
with Hofstadter, 1997, p. 10). It was therefore not about the 
‘removal of doubt’ for me at all!

Once again, one can try the same strategy used before by 
constructing perpendiculars at the vertices and attempt to 
relate it to something we already know, namely Viviani’s 
generalisation to equi-angled polygons.

Given that ABCDE is a pentagon with equal angles as shown 
in Figure 7, draw perpendiculars to each side at the vertices A 
to E, and label as K the intersection of the perpendicular from 
A with that of the perpendicular from E. Similarly, as shown, 
label the other intersections of the perpendiculars as L, M, N 
and O. From Q draw perpendiculars QJ to AE and QX to EK 
(extended) to obtain rectangle EJQX. Therefore, QX = EJ.

In the same way, construct rectangles to replace the other 
four segments AF, BG, CH and DI with the corresponding 
perpendiculars from Q to the sides of KLMNO as shown. Now 
note that     EAB = 90° +    EAK, but     OKL = 90° +    EAK, because      
     OKL is the exterior angle of ∆EAK. Hence,    OKL =    EAB. 

Similarly, it can be shown that the other angles of the inner 
pentagon are correspondingly equal to that of the outer one; 
hence that KLMNO is also an equi-angled pentagon. But we 
know that the sum of the distances from a point to the sides 
of any equi-angled polygon is constant, and because all these 
five distances are correspondingly equal to the distances 
EJ, AF, BG, CH and DI by construction, the required result 
follows. QED.

Looking back at this proof, we can also see that we did not 
use the angle size (108º) specific to the equi-angled pentagon 
to show that     OKL =    EAB. This immediately implies that for 
any polygon with equal angles the same construction would 

∠ ∠ ∠ ∠
∠ ∠ ∠

∠ ∠



Original Research

doi:10.4102/pythagoras.v33i3.193http://www.pythagoras.org.za

Page 7 of 8

equi-angled pentagon (left to the reader to prove) and the 
result follows as before.

Concluding comments
Although it is probably not feasible to attempt to introduce 
complete novices to the ‘looking back’ discovery function of 
proof with the specific examples illustrated here, I believe it 
is possible to design learning activities for younger students 
in the junior secondary school and even in the primary 
school. This could at least acquaint students with the idea 
that a deductive argument can provide additional insight 
and some form of novel discovery. 

For example, De Villiers (1993) shows that to algebraically 
explain why the sum of a two-digit number and its reverse is 
always divisible by 11 can lead students to see that the other 
factor is the sum of the digits of the original number, which 
they may not have noticed from considering only a few cases. 
This activity has been done many times with both high school 
students as well as pre-service and in-service teachers. It has 
been very seldom that any of them noticed this additional 
property in the empirical phase, and they would express 
appreciative surprise at finding this out later from the proof 
when their attention was directed towards it.

Instead of defining proof in terms of its verification function 
(or any other function for that matter), it is suggested that 
proof should rather be defined simply as a deductive or 
logical argument that shows how a particular result can 
be derived from other proven or assumed results; nothing 
more, nothing less. It is not here suggested that fidelity 
to the verification function of proof is sacrificed at all, but 
that it should not be elevated to a defining characteristic 
of proof. Moreover, the verification function ought to be 
supplemented with other important functions of proof 
using genuine mathematical activities as described above. 
It is also not suggested that the preceding examples be 
directly implemented in a classroom as their success will 
depend largely on the past experience, expertise and ability 
of the audience, the classroom culture, as well as the skill 
of the teacher as a facilitator of learning. For example, 
Zack (1997, p. 1) contends that in her fifth grade classroom 
‘for an argument to be considered a proof, the students need 
not only convince, but also to explain’. She then proceeds 
to give an example of how this broader ‘didactical contract’ 
with respect to proof motivated her students to actively 
engage in conjecturing, refuting and eventually developing 
a proof as a logical explanation through her continued 
insistence that they demonstrate why the pattern worked. 

Leong, Toh, Tay, Quek and Dindyal (2012) similarly describe 
some success using a worksheet based on Polya’s model to 
guide a high achieving student to ‘look back’ at his solution 
and push him to further extend, adapt and generalise his 
solution. One could speculate, and it might be an interesting 
longitudinal study, that students who’ve been exposed to 
several such activities are more likely to spontaneously 
start ‘looking back’ at their solutions to problems and start 

considering generalisations or pose new questions. Problem 
posing and generalisation through the utilisation of the 
‘discovery’ function of proof is as important and creative as 
problem-solving itself, and ways of encouraging this kind of 
thinking in students need to be further explored.

Johnston-Wilder and Mason (2005, p. 93) and Mason, Burton 
and Stacey (1982, p. 9) have claimed that generalisation 
lies at the ‘heart’ of mathematics and is its ‘life-blood’, and 
give many instructive examples. It certainly is an important 
mathematical activity that students need to engage in 
far more than is perhaps currently the case in classroom 
practice. It is important to broadly distinguish between 
two kinds of generalisation, namely, inductive and deductive 
generalisation. With inductive generalisation is meant the 
generalisation from a number of specific cases by empirical 
induction or analogy, and is usually the meaning given to 
the word ‘generalisation’ in the literature. With deductive 
generalisation is meant the logical reflection (looking back 
on) and consequent generalisation of a critical idea to more 
general or different cases by means of deductive reasoning. 
In other words, generalising the essence of a deductive 
argument and applying it to more general or analogous cases. 
Three examples of this deductive kind of generalisation have 
been illustrated in this article.

Schopenhauer (as quoted by Polya, 1954) aptly describes the 
educational value of the process of further generalisation to 
assist in the integration and synthesis of students’ knowledge 
as follows:

Proper understanding is, finally, a grasping of relations (un 
saisir de rapports). But we understand a relation more distinctly 
and more purely when we recognize it as the same in widely 
different cases and between completely heterogeneous objects. 
(p. 30)

In terms of learning theory, the process of generalisation 
corresponds to some extent to ‘superordinate learning’ as 
distinguished by Ausubel, Novak and Hanesian (1978, p. 68), 
where an inclusive idea or concept is generalised or 
abstracted, under which already established ideas can be 
meaningfully subsumed.

Finally, it is hoped that this article will stimulate some 
more design experiments in problem solving as suggested 
by Schoenfeld (2007), focussing not only on developing 
appreciation of the explanatory and discovery functions of proof, 
but also on other functions of proof such as systematisation, 
communication, intellectual challenge, et cetera. The aim 
is that ultimately, school curricula, textbooks and teachers 
can begin to present a more comprehensive, realistic and 
meaningful view of proof to students.
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