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Abstract
In this paper, we present a novel approach for frontal

face detection in gray-scale images. We represent both
faces and clutter by using two-dimensional wavelet de-
composition. To characterize the statistical dependency
between different levels of wavelet, we introduce a Hid-
den Markov Model (HMM), in which a number of dis-
crete states at each level capture the diversity of faces
as well as clutter. Our experiments indicate that the
proposed algorithm outperforms conventional template-
based methods such as matched filter and eigenface meth-
ods.

1 Introduction
Face detection and recognition from images is an

active research area with numerous applications in
user identification or verification, law enforcement and
human-computer interaction. In many situations, face
detection is required before face recognition. For real-
time applications, it is important to locate faces in an
image fast and accurately.

Many current face detection approaches are based on
exploiting color and/or motion information in image se-
quence. In this work, we focus on detection in gray-scale
still images, because color or motion information may
not be available in many important applications.

The major difficulty in face detection is the large
range of variations across possible faces. These varia-
tions arise because of illumination conditions, facial ex-
pressions, hair, hats and eyeglasses, making it difficult
to develop robust face detection algorithms. In gen-
eral, face detection in gray-scale images can be put into
two categories: 1) Geometric feature-based algorithms
[1, 2, 3, 4] rely on the accurate estimation of specific
features; this is difficult to accomplish when there is no
knowledge of the size or position of the face. 2) Image-
based algorithms use the intensity values of all pixels,
avoiding information loss which could arise through ge-
ometric feature extraction. In this paper, we focus on
image-based algorithms.

The simplest image-based method is the matched fil-
ter or normalized correlation method. From a statistical
point of view, the matched filter algorithm assumes that

faces deviate from the average face by additive white
Gaussian noise, which is is very inaccurate (see bottom
left plot of Figure 2, white noise should have a diagonal
covariance matrix). A more sophisticated image-based
approach is the eigenface [5] method, which character-
izes the deviations from the average face as indepen-
dent Gaussian perturbations in a few image directions.
These directions are the principal eigenvectors (popu-
larly known as eigenfaces) of the autocovariance matrix
of the training face samples.

The problem with the eigenface approach, as shown
in [6], is that the eigenfaces reflect the variations in both
the face and the background clutter. There are situa-
tions where a non-face block can match a linear com-
bination of average face and its eigenfaces very well (in
the sense of least squares error). To differentiate faces
from background clutter, a single feature “linear dis-
criminant” [7, 8] was developed by approximating the
autocovariance matrices of face and nonfaces to be iden-
tical. Frey et al. [9] developed a mixture of local linear
subspaces model to overcome the limitation of a fixed
linear subspace for modeling different poses and expres-
sions. However, all of these methods assume that the
deviations from an average face or clutter can be rep-
resented by a Gaussian statistical model, which funda-
mentally limits the achievable recognition performance.

To overcome these limits, some methods decompose
a face into its subbands using wavelet transforms. In
[6], we decomposed the face spatially and spectrally
and then applied normalized correlation in multiple sub-
bands and segments. Recently, Rikert et al. [10] built
a mixture of Gaussian model using the “parent vec-
tor” at multiple resolutions. This has the advantage
of representing local characteristics of images in terms
of wavelet coefficients. However, the statistical depen-
dence between wavelet coefficients is difficult to model.

In this paper, we present a non-Gaussian statistical
model for face detection. Our approach is based on
wavelet representations of a sample image region, which
captures the statistical relationship among subband im-
ages. This flexibility allows us to tune the model to
compensate for different lighting and hair conditions of
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a face, and to develop algorithms which recognize pat-
terns such as edges which are naturally present at mul-
tiple scales.

Samaria and Harter [11] extracted top-bottom facial
regions such as hair, forehead, eyes, nose and mouth,
and the natural order in which the features appear is
modeled using a top-bottom HMM. Later, Nefian and
Hayes [12] used the Karhunen Loeve Transform (KLT)
coefficients as observation vectors in the HMM to in-
crease robustness and speed. Our approach is similar in
spirit to these probabilistic approaches to recognition,
except that these methods do not provide an explicit
model of dependence between scales. Most of them rely
on the local dependence between “spatially” neighbor-
ing components.

Other works ([13, 14, 15]) build the dependence across
scale (also know as “Markov Tree”), but only among
single wavelet coefficients. Colmenarez and Huang [13]
used 4-grey-levels re-quantization of the wavelet coeffi-
cients. Choi et al. [15] used two states (large and small)
for each wavelet coefficients. Some of them assume the
“Markov Tree” is ergodic in space, which is true only
for texture analysis.

In our framework, we model the statistical depen-
dency between whole subband images at different levels.
Our model captures efficiently, as a Gaussian mixture,
the diversity of face objects and clutter. Our simula-
tion results demonstrate the advantage of our proposed
algorithm over conventional image-based face detection
algorithms.

In the next section we describe the statistical mod-
eling framework, and the resulting face detection algo-
rithm. In section 3, we present simulation results and
comparison with other face detection algorithms. In sec-
tion 4, we discuss some extensions for this framework.

2 Proposed Framework
Our approach for face detection is based on testing

each subblock image to determine the likelihood ratio
that it is a face as opposed to clutter. Thus, locating a
generic human face of certain size from a given image is
essentially a binary decision problem of each candidate
block. Let y be the observed sample, and hypothesis
Ω = 1 and Ω = 0 denote face and non-face respectively.
To minimize the binary decision error, one applies max-
imum a posterior (MAP) rule which leads to Likelihood
Ratio Test (LRT).

The central idea of a statistical model is the defini-
tion of the likelihood function P (y|Ω). In this section
we describe in detail the model for both object and clut-
ter. First we represent an image block by its multiscale
decomposition using coarse approximation and details
at all levels. Then we use a directed Bayesian net (Hid-
den Markov model with discrete states) to model the

statistical dependency across scale in the wavelet repre-
sentation.

2.1 Multiscale representation
Statistical signal modeling and processing methods

based in the wavelet domain are, in many cases, much
more effective than classical time-domain or frequency
domain approaches. Our statistical model starts by iter-
atively decomposing an image block into its coarse ap-
proximation and details at various scales. Each level
decomposition of an image gives its approximation and
its detail. The detail is the sum of three wavelets of a
2-D wavelet decomposition, or equivalently, the differ-
ence between an original image and its coarse approxi-
mation. To remove the redundancy, the coarse approxi-
mation part is decimated by 2 in both directions. Then
iteratively, the approximation part is decomposed into
approximations and details. Specifically, an image block
y is decomposed into:

y =↑ 2(. . . ↑ 2(↑ 2(y(0))+y(1))+ . . .+y(k−1))+y(k) (1)

Figure 1 shows a five-level decomposition using 2-D Haar
filters (one lowpass filter and three highpass filters) for
four iterations. The 2-D Haar wavelet is chosen because
it is orthogonal and has linear phase.

y

y

y(0)

(1)

(2)

(3)

(4)y

y

Figure 1: Multiscale decomposition of a face image

One of the primary properties of the wavelet trans-
form is separation into orthogonal components. For
Gaussian processes, this often results in independence of
the wavelet coefficients across scale and time, whereby
the representation of the statistical covariance in the
wavelet basis is approximately block-diagonal. This
property makes it simpler to represent the statistical
structure of face variations.
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To illustrate this, assume that the overall image
statistics were modeled as Gaussian, which implies that
each of the wavelet levels is also Gaussian, as

y(i) ∼ N(µ(i), S(i)) (2)

Figure 2 shows the approximate statistical independence
across wavelet levels. The figure shows a three-level de-
composition of the sample covariance of a face image
using 2-D Haar wavelets. Clearly, the covariance matrix
of details tend to be sparse (concentrated on diagonal
elements) and most of energy can be compressed into
S(0).
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Figure 2: Top row: covariance matrices S(0), S(1), and S(2).
Bottom row: true covariance matrix of the object before
wavelet decomposition, covariance matrix synthesized from
full covariance matrices S(0), S(1), S(2), and covariance ma-
trix synthesized from full covariance matrix S(0) and the di-
agonal elements of S(1), S(2)

2.2 Hidden Markov Model
The compression property of the covariance matrix is

under the assumption that details at various levels are
distributed independently and as Gaussian processes.
As we discussed previously, this is not likely to be true
for face images, where the distribution of each y(i) is
closely related with that of its parent or child level. For
example, the hair condition may create a dark region
in y(0) and create edges on the forehead in the detail
subband; the white teeth of a smiling face may create
bright region in y(0) and corresponding edges in detail
subband; the direction of illumination (reflected in low-
est resolution) may create certain patterns (reflected in
detail subband) because the human face is a 3-D object.
In this subsection, we describe a model to capture the
statistical interdependency between the various levels of
the wavelet decomposition.

Graphical models in statistics infer causal relation-
ships between a set of random variables through the
“conditional” independence structure in their joint prob-

ability density function. To capture the statistical de-
pendency between levels, we use a graphical model in
scale; specifically, we use a 1st-order Hidden Markov
Model (Markov in scale) with conditionally Gaussian
outputs to model the distribution of an image block.
As shown in the graph below, each level of detail has a
number of discrete states. The state of any level of detail
depends only on the state of its parent (lower-resolution)
level of detail, as

Prob(Q(i+1) = k|Q(i) = j)
= Prob(Q(i+1) = k|Q(i) = j,Q(i−1) . . .) (3)
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At each scale i, the observation depends only on the
discrete state Q(i). We assume the probability density
function to be Gaussian:

f(y(i)|Q(i) = k) = N(µ(i)
k

, S
(i)
k ) (4)

The complete model can be characterized by the
parameter set: θ = {Π, A(1), A(2), . . . , A(m), µ

(i)
k , S

(i)
k },

where Π specifies the initial state probability of the
lowest-scale approximation (Πk = Prob(Q(0) = k)), and
matrix A(i) specifies the state transition probabilities (
A

(i)
j,k = Prob(Q(i) = k|Q(i−1) = j)).
HMM’s are very rich models, with many parame-

ters; thus, we must ensure that we have enough train-
ing data. In particular, there are many parameters as-
sociated with the covariance matrices S

(i)
k . In order

to obtain reliable parameter estimates, we assume that
these covariance matrices are diagonal, thereby reducing
the total number of model parameters. Another option
would be using subspace methods to reduce the dimen-
sion and decorrelate the variation.

Using our model, the likelihood function can be writ-
ten as:

f(y(0), y(1), . . . , y(m)) =
n0∑

k0=1

n1∑
k1=1

. . .

nm∑
km=1

Πk0A
(1)
k0,k1

. . . A
(m)
km−1,km

m∏
t=0

f(y(t)|Q(t) = kt) (5)

where ni is the number of states at level i. The overall
object image can be synthesized by summing up details
at various levels (with proper upsampling operations).
Given the fact that the sum of independent Gaussian
variables is still Gaussian and the upsampled of a Gaus-
sian sequence is still Gaussian, the overall object image
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is distributed as Gaussian mixtures. The combination
of all levels would give a total number

∏m
i=1 ni of mix-

tures. The weight on each mixture depends on the state
transition matrices A(i) and Π. This Markov structure
gives an approximate but efficient multivariate Gaussian
mixture model. It is approximate because of the local
dependency constraints. Figure 3 shows a few synthe-
sized modes (centroids) of the Gaussian mixture trained
from our face data set. This model structure also gives
us flexibility of different treatment to different level of
details, e.g., by choosing different number of states at
different levels.
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Figure 3: A few synthesized Gaussian modes with different
probabilities (upper left one with largest probability)

2.3 Learning: parameter estimation
Maximum likelihood parameter estimation for HMMs

requires the Expectation-Maximization (EM) algorithm
because the state sequence Q(i) (i = 0, 1, ...m) is hidden.
Recall that the EM algorithm involves iterating E-Step
(compute Q(θ|θ(p)) = E[log p(χ, Y |θ)|Y, θ(p)]) and M-
Step (find new parameters θ(p+1) = argmaxθ Q(θ|θ(p)))
where Y is the training observation set (wavelet decom-
positions of the data set) and χ is the associated unob-
served state sequence. The E-step involves computing
αt(j) ≡ p(y(0), . . . , y(t), xt = j) by forward algorithm
and computing βt(j) ≡ p(y(t+1), . . . , y(m)|xt = j) by
backward algorithm [16]. M-step involves updating all
the parameters. For brevity, the derivations are omit-
ted. The only difference from a standard HMM param-
eter estimation algorithm is that various resolutions do
not share the same states.

In the training procedure, one can encounter very
small values of the probability densities f(y(i)|Q(i) = k)

due to the large dimension of images. These very small
values cause computer precision problems in the training
algorithm. We use their relative values in the forward-
backward algorithm, namely, use

f̃(y(i)|Q(i) = k) =
f(y(i)|Q(i) = k)

mins(f(y(i)|Q(i) = s))
(6)

as the observation density for each sample. One can
show that this adjustment gives exactly the same result.

3 Simulation and results
We have compared the detection performance of dif-

ferent detectors on the “University of Michigan” face
database. A group of 241 face images were used as the
training set. All the faces were resized to 64× 48 pixels
(part of them are shown in Figure 4).
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Figure 4: Some faces from training set

We used 5-level decomposition and used only 3 levels
of them for both training and testing. Figure 5 shows
the training result of face model using 5, 7, and 10 states
for level 0, 1, and 2 respectively. The trained initial state
probability Π and state transition from level 0 to level
1 A(1) are:

Π =
[
0.137 0.124 0.203 0.174 0.362

]

A(1) =




0.85 0.00 0.00 0.00 0.00 0.15 0.00
0.07 0.00 0.24 0.53 0.00 0.10 0.07
0.00 0.33 0.00 0.00 0.22 0.43 0.02
0.00 0.00 0.16 0.39 0.30 0.02 0.12
0.00 0.19 0.14 0.07 0.15 0.01 0.43




The non-uniform distribution of state transition matri-
ces verifies the local dependence across scale. A simi-
lar model for clutter was trained using the same pro-
cedure. We collected 480 randomly selected blocks of
background as non-faces.
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Figure 5: The training result for face model using y(0), y(1),

y(2): mean µ(i)

k
at level 0, 1, and 2.

To enforce data independence, another group of 286
images (Figure 6) were used as test set. For simplicity,
we test the algorithms for a single face size. All images
in test set were resized so that all the faces inside were
64×48 pixels. In real applications where the actual face
size is unknown, templates of all different sizes have to
be applied. This is a disadvantage for all image-based
approaches. In the horizontal direction of the face, we
choose across the inner boundaries of two ears as the
upper limit size and the lower limit size is across the
outer boundaries of two eye-brows.

Usually, a detection algorithm is evaluated on an
ROC curve by varying the threshold. For simplicity,
and because there was only one face in each test im-
age in our experiment, the Maximum Likelihood Ratio
detection scheme was adopted. Basically, the rectangu-
lar window that gives the maximum likelihood ratio is
detected as a face.

(i, j)MLT = argmax
(i,j)

f(y
(i,j)

|Ω = 1)

f(y
(i,j)

|Ω = 0)
(7)

where y
(i,j)

is the re-ordering of the pixel values in a
local neighborhood of spatial location (i, j). It is shown
[8] that if a method yields a better ROC curve, it is
guaranteed to yield a lower error rate.

To illustrate the performance of our algorithm, we
compared it with the following alternative image-based
methods:

• Matched filter without normalization.
• Matched filter with normalization.
• Distance From Feature Space (DFFS) [17].

• Distance In Feature Space (DIFS) [17].
• Segmented distance computation [6] using 8 parts.
• Wavelet decomposition using 4 subbands [6].
• 8 part segmentation plus 4 subband wavelet decom-
position [6].

• Linear discriminant [8].

The following table summarizes the error percentage
of all the methods.

Approach error
whole average face w/o normalization 46.3%
whole average face w/ normalization 29.1%

DFFS w/ 3 eigenfaces 23.1%
DFFS w/ 6 eigenfaces 20.3%
DFFS w/ 12 eigenfaces 35.3%
DIFS w/ 3 eigenfaces 23.1%
DIFS w/ 6 eigenfaces 20.3%
DIFS w/ 12 eigenfaces 35.0%

8 parts 12.9%
4 subbands 12.9%

8 parts and 4 subbands combined 7.0%
Linear Discriminant 7.3%

Proposed Hidden Markov Model 5.0%

The results show some interesting trends: the eigenface
methods make more errors when large numbers of eigen-
faces are used, because the extra eigenface directions can
be matched to clutter. The results also illustrate that
our proposed algorithm is significantly better than the
alternatives in the experiments. Figure 6 shows some
of the experiment faces, along with the detected faces
indicated by our algorithm.

4 Discussion and Future Extensions
In summary, we built a statistical modeling frame-

work to model the diversity of image objects by decom-
posing an image into orthogonal wavelet subbands and
connecting them with HMM. This model, as an efficient
Gaussian mixture, captures the statistical interdepen-
dency across scales. We used this framework to develop
algorithms for face detection. Our experiments show
that the proposed algorithm significantly outperforms
comparable matched filter, eigenface and linear discrim-
inant analysis methods in face detection tasks.

There are many directions in which our results can be
extended. The most obvious limitation of this work is
that we assumed all faces to have the same dimensions.
In most applications, the size of the face is unknown.
In practice, a limited number of sizes can be tested.
Thus, the modeling framework has to be extended to
incorporate moderate variations in size so that a number
of detections can cover the continuous range of sizes.

A second direction is the extension of the discrete-
state Hidden Markov Model used in our work to contin-
uous states. Such models have been proposed in [18],
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Figure 6: Some results using Hidden Markov Models and
Maximum Likelihood Ratio detection. Note that the fourth
face in the third row is not detected correctly.

and can model correlation across scale in terms of a
dynamical system evolving in scale. One can extend
this approach to perform statistical detection and esti-
mation, as in [18]. A third direction is to incorporate
spatial decompositions besides subband decompositions
in the model. Such an approach was suggested in [6],
and showed some advantages in face detection. A final
direction for future research is extension of these ideas
beyond face detection into face recognition and other
recognition applications.
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