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Abstract We present a modeling framework designed for

patient-specific computational hemodynamics to be per-

formed in the context of large-scale studies. The

framework takes advantage of the integration of image

processing, geometric analysis and mesh generation tech-

niques, with an accent on full automation and high-level

interaction. Image segmentation is performed using

implicit deformable models taking advantage of a novel

approach for selective initialization of vascular branches,

as well as of a strategy for the segmentation of small

vessels. A robust definition of centerlines provides objec-

tive geometric criteria for the automation of surface editing

and mesh generation. The framework is available as part of

an open-source effort, the Vascular Modeling Toolkit, a

first step towards the sharing of tools and data which will

be necessary for computational hemodynamics to play a

role in evidence-based medicine.

Keywords Patient-specific modeling �
Image segmentation � Computational geometry �
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1 Introduction

Patient-specific computational hemodynamics appeared in

the late 1990s with the work of a few researchers bridging

image processing and computational fluid dynamics (CFD)

[17, 19, 22, 30] and it is today pursued by an increasing

number of groups around the world. The spread is moti-

vated both by the growing interest in the study of

hemodynamic variables and how they relate to disease

processes, and by the improvements in the available

computing resources, which now allow simulations to be

run anywhere from personal computers to parallel clusters.

Despite the amount of work in this field has been

growing steadily over the last years, the studies in which

computational hemodynamic simulations are performed on

large patient populations are still very limited. The ability

of performing large-scale studies in a controlled way is a

key requirement for the future of computational hemody-

namics. In an evidence-based medicine perspective, it is

only through the evaluation of the ability of some hemo-

dynamic variables to predict disease or influence treatment

in large populations that those hemodynamic variables, or

some surrogate thereof, will become players in clinical

research and clinical practice [18]. Without this necessary

step, the usefulness of computational hemodynamics,

although sought in principle, will remain unproven.

The likely cause of the paucity of studies on large patient

populations is the fact that the process from image acquisi-

tion to simulation results is still based on several, operator-

dependent steps, which involve image-segmentation, model

L. Antiga (&) � M. Piccinelli � L. Botti � B. Ene-Iordache �
A. Remuzzi

Biomedical Engineering Department,

Mario Negri Institute for Pharmacological Research,

Villa Camozzi, Ranica, BG, Italy

e-mail: antiga@marionegri.it

L. Botti � A. Remuzzi

Industrial Engineering Department,

University of Bergamo, Bergamo, Italy

D. A. Steinman

Biomedical Simulation Laboratory,

Department of Mechanical and Industrial Engineering,

University of Toronto, Toronto, Canada

123

Med Biol Eng Comput (2008) 46:1097–1112

DOI 10.1007/s11517-008-0420-1



preparation, mesh generation and simulation. The lack of

integrated workflows, with a few exceptions [10], makes the

use of image-based computational hemodynamics for large-

scale studies non trivial and encumbered by time-consuming

operator-dependent tasks, which constitute a potential

source of error whose influence is difficult to control and

quantify. In this context, the availability of shared tools is in

our opinion of primary importance. Open source software

has proven itself in the last years to be a powerful resource in

several fields of computing. In the scientific world, open

source efforts have often lead to widespread adoption,

standardization of methods, continuous quality checking,

open code review, reproducibility of results and bench-

marking. For this reason, we believe that the introduction of

shared tools in the field of patient specific computational

hemodynamics will lead to better reproducibility and com-

parability among studies, ultimately increasing the chance of

generating results that contribute to clinical evidence.

To take a concrete step in the direction outlined above,

we here present a framework aimed at providing a working

solution for high-throughput computational hemodynam-

ics. The techniques presented here are only a part of a

larger effort that our groups have been undertaking in the

past years towards the construction of shared and robust

open source tools for geometric and hemodynamic vascular

modeling (the Vascular Modeling Toolkit [2]). In this

work, we will focus on the process that leads from imaging

datasets to simulations. We will first present the general

approach and the software tools on which our framework is

based, and we will then proceed to describe the key com-

ponents of the framework in some detail.

2 General approach and tools

Image-based modeling for computational hemodynamics in

general requires three fundamental steps, namely image

segmentation, model pre-processing and mesh generation.

Our effort consists in the development of an integrated

framework that allows these operations to be performed in

a streamlined fashion. Decisions on the design of the

framework were taken towards robustness and repeatability

on one hand, and efficiency on the other. In more detail, we

aimed at satisfying the following criteria:

• minimizing operator intensive tasks, while allowing the

framework to retain the flexibility required for the

application in diverse contexts;

• favoring high-level decisions, e.g., the specification of

vascular segments through selection of fiducials at their

endpoints followed by automated segmentation, over

operator dependence, e.g., manual outlining or manual

threshold-based segmentation criteria;

• reducing the number of free parameters to be specified

at each step, so that the operator is faced with a few

decisions that are easy to document.

From a software standpoint, the techniques presented in

this paper are integrated within the Vascular Modeling

Toolkit. The toolkit has been developed using a modular

approach, by building specialized components capable to

interact with each other to create complex processing

pipelines. From an implementation standpoint, we fol-

lowed a two-layer approach, in which computation-

intensive algorithms are implemented in the C?? pro-

gramming language, and algorithms are dynamically

assembled to form processing pipelines using the Python

programming language. Both layers are implemented using

an object-oriented approach, at the advantage of modular-

ity and maintainability.

The Vascular Modeling Toolkit relies on two major open-

source efforts in the field of scientific visualization and

medical image analysis. The Visualization Toolkit (VTK)

[23] is an object-oriented toolkit for analysis and visualiza-

tion of 3D data implemented in C??, whose classes are also

accessible from three higher-level languages, namely Tcl,

Python and Java. VTK provides data structures for images

(vtkImageData), polygonal surfaces (vtkPolyData)

and volumetric meshes (vtkUnstructuredGrid),

among several others. From an algorithmic standpoint, VTK

provides basic image processing tools, several algorithms for

surface processing, such as smoothing, decimation, clipping,

connectivity filters, and algorithms acting on volumetric

meshes, as well as advanced visualization resources. The

Insight Toolkit (ITK) [15] is a C?? toolkit for image

processing, segmentation and registration, although it is

growing beyond these boundaries. It is developed using

a generic programming paradigm, with heavy use of

C?? template constructs, which allows high modularity

and code reuse with minimal impact on performance. Thanks

to this approach, most algorithms can work unmodified for

any spatial dimension and for multiple data types. Over the

last years, ITK has become a standard resource in medical

image analysis. State of the art algorithms are being

contributed by the community and follow strict quality

checking rules based on open code review and continuous

testing.

The approach followed in the design of the Vascular

Modeling Toolkit is to adopt the data structures provided

by VTK, and to implement C?? algorithms in classes

derived from base VTK algorithm classes. This way, new

algorithms can coexist with native VTK algorithms in a

processing pipeline. Using automated wrapping tools

available in VTK, all algorithms are made available to the

high-level layer implemented in the Python programming

language. The same is true for ITK processing pipelines,
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which are directly integrated within VTK derived classes

and made available to the Python layer. The Python layer is

in turn composed of classes that also act as individual

command line scripts. These scripts, each implementing a

specific functionality, can be piped at the command line to

provide complete processing pipelines. This modular

architecture allows users and developers to take advantage

of the Vascular Modeling Toolkit at several levels, from

the C?? algorithm to Python code to command line

pipelines. This tries to answer the challenges posed by

image-based modeling, which often requires operations to

be assembled in a custom fashion depending with the

imaging data and modeling problem at hand.

In the following sections, we will explore in detail our

approach for image-based computational hemodynamics.

Where not stated otherwise, the techniques have been

implemented as components of the vascular modeling

toolkit.

3 Image segmentation

Magnetic resonance (MR), three dimensional ultrasound

(3D-US), computed tomography (CT) and rotational angi-

ography (RA) scanners today available in clinical settings

are capable of providing information about the anatomy of

blood vessels with sub-millimetric resolutions. Such

information is represented as a 3D array of grayscale

intensities, which we will refer to as IðxÞ; x 2 R
3 being

the spatial coordinate, and it is usually provided by clinical

scanners in DICOM format, which we directly use for

importing data. Following this phase, image segmentation

is performed, in order to extract the geometry of the vas-

cular segments of interest which will later define the

computational domain.

Image segmentation is a key aspect for computational

hemodynamics, as it has been suggested that local geom-

etry has a key influence on hemodynamic variables [31].

Rather than aiming at the automatic identification of entire

vascular networks contained in the image [13], we leave

the identification of the individual vascular segments of

interest for a simulation to the operator through the selec-

tion of a few seed points on the image, and we then

concentrate on the objective operator-independent deter-

mination of the location of the lumen boundary. This is

justified by the fact that, in a typical computational

hemodynamic problem, the need is to simulate flow in a

subset of the vessels contained in the image, whose

boundary has to be located in a reproducible way. In fact,

more automated segmentation methods must later rely on

model editing to prepare geometries for mesh generation

[10, 13]. Our solution is to concentrate the effort required

by the operator in the interpretation of the image content,

and rather to automate all the downstream operations as

much as possible.

The segmentation approach adopted in our framework is

based on implicit deformable models [9, 24], which have

the desirable property of being flexible with respect to the

topology of the object to be segmented. The following

main components have to be defined in order to specify the

segmentation strategy:

1. the partial differential equation (PDE) describing the

evolution of the implicit deformable model;

2. the initialization strategy, that define the initial condi-

tions for the PDE;

3. eventual regularization strategies to adopt in case of

noisy images;

4. the choice of the feature image, i.e., the input to the

forcing terms of the PDE.

A description on how each component has been imple-

mented in our framework follows.

3.1 Implicit deformable models

We refer to implicit deformable models as to deformable

surfaces SðtÞ : R2 � R
þ ! R

3 described by means of their

3D embedding /ðx; tÞ : R3 � R
þ ! R; a scalar function

defined such that S(t) is its zero-level isosurface, i.e.,

S(t) = {x|/(x, t) = 0}. The technique used to track the

temporal evolution of the embedding under image- and

shape-based forces is known as level sets method. Fol-

lowing this method, the evolution of /(x, t) can be

described by a PDE of the kind

/t ¼ �w1GðxÞjr/j þ w22HðxÞjr/j � w3rPðxÞ � r/

ð1Þ

where the first term on the right-hand side represents sur-

face inflation with a position-dependent speed given by

G(x), which can depend on image features or on shape

constraints, the second term represents a smoothness con-

straint on the surface, HðxÞ ¼ r � r/
r/j j being the mean

curvature of the zero-level surface, and the last term rep-

resents advection of the surface by means of the vector

field rP(x). Weights w1, w2 and w3 regulate the influence

of each term on surface evolution [24]. Equation 1 is

solved using finite differences on the image grid, as briefly

described in Sect. 3.5.

Choosing PðxÞ ¼ rIj j in Eq. 1 results in the advection

of the surface towards the ridges of the image gradient

magnitude, as shown in Fig. 1. This choice has the

underlying assumption that the interface between two tis-

sue types corresponds to the location of maximum change

in image intensity. This is a reasonable assumption for

acquisition modalities such as CTA, RA, contrast-enhanced

and steady-state MRA (e.g., TrueFISP), in which the
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intensity of blood is given by the presence of a contrast

agent or to T2/T1 weighting of blood. On the contrary,

such advection field may not yield satisfactory results for

images acquired using time-of-flight (TOF) or phase-con-

trast (PC) MRA sequences, in which signal from blood is

linked to its velocity. In this latter case, the decrease in

velocity in the vicinity of the vessel wall may lead to a

decrease in image intensity which is not linked to the

presence of an interface between blood and wall at that

location. This effect affects PC–MRA images more

severely than TOF–MRA images, to the point that dedi-

cated advection fields should be developed for the former,

although this is not subject of the present work.

Relying on spatial variation in image intensity rather

than on absolute intensity, e.g., in manual or automated

thresholding approaches, confers greater robustness to the

segmentation method, since the location of the lumen

boundary is made independent to changes in the intensity

of the lumen due to artifacts, contrast bolus dynamics or

partial volume effects. An additional disadvantage of

Fig. 1 Segmentation of an abdominal aorta MRA dataset. Top row,
left to right interactive initialization of a branch through the

specification of two seed points, one within the suprarenal aorta and

the other within the right renal artery; complete initialization; result of

segmentation after level set evolution. Bottom row, left to right
maximum intensity projection of the dataset; a section of the final

level set function / with its zero level set; final model superimposed

to a section of |rI| (darker intensity associated to higher values)
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intensity-based approaches is that, since the true lumen

boundary corresponds to regions of steep changes in

intensity, slight variations in the definition of a threshold

lead to relatively large displacements of the location of the

resulting lumen boundary. On the contrary, seeking the

location corresponding to the ridges of the gradient mag-

nitude of image intensity is a univocally defined criterion,

although the problem is then shifted to capturing the ridges

corresponding to the lumen boundary among all feature

ridges contained in the image, which will be subject of the

next Section.

In [5, 6], we proposed the use of Eq. 1 to segment

vascular segments for computational hemodynamics. In

particular, we described a three-stage procedure composed

by centerline-based initialization, inflation (w1 = 1,

w2 = w3 = 0) towards the vessel edges and advection

(w1 = 0, w2 C 0, w3 = 1) to the gradient magnitude

ridges. Although essentially robust, this approach suffered

from operator-dependence induced by the inflation step,

which was meant to bring the surface from the centerline

towards the boundary of the vessel, within the capture

radius of the advection term. In this work, we overcome

this problem by skipping the inflation step thanks to a

better initialization strategy, with which we directly

generate an initial surface located within the capture

radius of the advection term, as shown in Fig. 1 and

described in the next Section. The first term in Eq. 1 is

therefore unused in the present method, to the advantage

of reproducibility.

3.2 Colliding fronts initialization

The generation of an initial level set function /0 = /(x, t0)

plays an important role in our framework. As stated above,

our strategy is to let the operator interactively select the

segments of interest and use deformable models to repro-

ducibly identify the sub-voxel position of the lumen

boundary. In this perspective, the goal of initialization is to

produce the initial surface of selected branches already

within the capture radius of the advection term in Eq. 1,

with minimal input and at interactive speeds. Avoiding the

inflation step during the evolution of the level set equation

while retaining the ability of segmenting selected vascular

segments goes in the direction of conferring robustness and

flexibility to the modeling chain.

We here present a novel technique for level set initial-

ization that satisfy the above requirements, here referred to

as colliding fronts. The technique is based on the propa-

gation of two independent wavefronts from two seeds, s1

and s2, interactively placed at the two ends of a vascular

branch. The wavefronts travel with speed proportional to

local image intensity, following the so-called eikonal

equation [25]

jrTj ¼ I�1 ð2Þ

where T is the arrival time of the wavefront in each point of

the domain and the right-hand side is the slowness of the

wave in each point, as shown in Fig. 2. Equation 2 is

customarily solved on the imaging grid by means of the

fast marching method, which is an efficient method for the

numerical approximation of the eikonal equation based on

upwind finite differences [25]. Once the arrival times T1

and T2 have been computed from s1 and s2, the initial level

set function can be defined as

/0 ¼ rT1 � rT2 ð3Þ

Such function is negative where the two fronts are directed

towards each other, which identifies the initial level set as

the region between the two seed points. Eventual side

branches are automatically excluded from the initialization,

since the two fronts seep in side branches in the same

direction from the parent vessel, and the function in Eq. 3

becomes positive, as shown in Fig. 2. In order to increase

robustness, the initial volume is defined as the region for

which /0 in Eq. 3 is negative and as the same time con-

nected to the seeds, i.e., if there is a connected path

between s1 and s2 such that /0 is always negative.

For high contrast between vessels and background,

Eq. 3 already produces an initial surface located in close

proximity of the boundary of the lumen. In fact, since the

wavefronts propagate with speed proportional to image

intensity, the lumen boundary is characterized by a steep

decrease in speed, which makes both wavefronts align

parallel to the direction of the boundary, thus leading /0 to

be positive, as shown in Fig. 2. When the signal-to-back-

ground ratio is not high, the slow-down of fronts at the

lumen boundary might not be sufficient for the fronts to

assume a concurrent orientation. In this case, the selection

of a threshold to constrain the propagation of the wave-

fronts outside a prescribed intensity range is required. It has

to be noted that, provided that the threshold is specified in

the range between the vessel intensity and the background,

the final position of the surface after the level set evolution

will not be affected by the choice of the threshold.

The use of wave propagation through the fast marching

method opens up another simpler possibility for interactive

initialization, to be used in case of objects of non tubular

shape or for initializing entire vascular networks without

branch selection. The approach is to select a group of seeds

and a group of targets on the image, and to solve Eq. 2

from the seed points. The initial level set function is then

U0 = T - ttarget, where T is the solution of the eikonal

equation, and ttarget is the lowest eikonal solution among

the targets. In other words, U0 is the wavefront at the time

when the first target has been reached. In particular for the

initialization of large vascular segments, this approach
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necessitates the specification of a threshold to constrain the

propagation of the wavefront.

3.3 Regularization strategies

Although for datasets with good signal-to-background and

signal-to-noise ratio the above initialization strategy and

sole level set advection (w1 = w2 = 0, w3 = 1) are suffi-

cient, for datasets affected by noise or artifacts the

introduction of regularization in the segmentation process

is required to produce a smooth segmentation. Clearly,

regularization depends on the choice of at least one

smoothing parameter, which potentially introduces opera-

tor-dependence.

In order to decrease the influence of noise in the seg-

mentation process, noise can be suppressed using a

Gaussian or other image smoothing filter. Alternatively,

derivatives in the computation of the feature image can be

performed by convolution of the image with a Gaussian

derivative kernel, in lieu of finite differences. This is

Fig. 2 Colliding fronts

initialization along the

abdominal aorta dataset. Top,
left interactive selection of two

seed points, one within the

suprarenal aorta, on at the iliac

bifurcation. Top, right contour

lines of the solution of the

eikonal equation T1 from the

suprarenal seed, and vectors

showing the solution gradient

rT1, color coded according to

the magnitude of the superior-

inferior direction component

(red for vectors pointing up,

blue for vectors pointing down).

Bottom, left initialized

abdominal aorta, showing the

selective initialization of the

branch and the absence of side

branches. Bottom right close-up

of the two vector fields rT1 and

rT2, showing counter-directed

vectors within the lumen and

co-directed vectors at the lumen

boundary and within the renal

artery; the black line is the zero

level set of rT1 �rT2, i.e., the

trace of the initialized surface
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equivalent to computing derivatives using finite differences

on a subsampled version of the image after convolution

with a Gaussian kernel. These two approaches can effec-

tively suppress the influence of noise, but can also lead to

corrupted segmentations, for instance by merging nearby

vessels, or erasing small vessels. This is due to the fact that

a Gaussian filter suppresses image features below the scale

corresponding to its standard deviation.

An alternative strategy for regularization is the use of

the second term in Eq. 1 (w2 [ 0), which penalizes high

curvature features in the resulting segmentation. This can

be a very effective strategy when the advection term is

strong, i.e., when the image contrast to background ratio is

high. On the contrary, it can lead to sever shrinkage of the

surface where the curvature term is stronger than the

advection term. It is in fact known from differential

geometry that any genus zero surface tends to a sphere if

allowed to deform under mean curvature flow.

In order to obtain surface regularization while retaining

vessel diameter, Lorigo et al. [21] have proposed to replace

the mean curvature H appearing in the second term of Eq. 1

with the smallest principal curvature, computed as the

smallest eigenvalue of the curvature tensor. In this case,

regularization only results in the penalization of surface

features with high minimal curvature. Considering that a

vessel is a tubular object with low smallest principal cur-

vature (zero for a straight vessel) and high largest principal

curvature (the inverse of the radius of the vessel), the

curvature term in this case acts by regularizing a vessel in

the longitudinal direction, without shrinkage of the vessel

diameter. Note that this method can fail to provide effec-

tive regularization or can generate unexpected artifacts in

case of non-tubular shapes.

As a last regularization strategy, we briefly mention

surface smoothing at a post-segmentation stage, e.g.,

through the use of a Taubin type non-shrinking smoothing

filter [29] on the final triangulated surface. Since the filter

is non-shrinking and preserves topology, it can be safely

employed, although it can affect the shape of surfaces at a

bifurcation apex or similar saddle-shaped features.

As usual, the perfect regularization strategy does not

exist. The choice has to take into account the type of

image, geometry and quantities of interest for the simula-

tion. An important point to address in the execution of a

large-scale study is the adoption of a consistent set of

regularization parameters to use throughout the study, and

the evaluation of sensitivity of results to the chosen

parameters.

3.4 Feature images

As stated above, the computation of the feature image |rI|

to be used as the advection field is critical to the present

approach. The advection term expresses a vector field

pushing the deformable surface from the two sides of each

feature ridge. The way the feature image is computed

determines the location where the deformable surface

converges. In the previous section, we have already men-

tioned the use of convolution with Gaussian derivatives as

a way of computing regularized derivatives as compared to

finite differences. We also pointed out how regularization

can lead to the loss of small vessels. In the remainder of

this section we will address the problem of segmenting

vessels with a diameter of a few pixels.

When the size of a vessel is comparable to the width of

the point-spread function of the acquisition system, the

shape of the intensity profile tends to be similar to the

point-spread function itself. This means that the intensity

profile of a small vessel tends to lose the plateau within the

lumen and to assume a hat-like shape, with a single max-

imum within the lumen. This effect leads to

underestimation of the diameter of small vessels, as the

gradient magnitude is non-zero within the lumen. As a

further problem, the availability of a few grid points across

the lumen tends to degrade the quality of the approximation

of partial derivatives computed using finite differences in

the imaging grid. Since level sets are not topologically

constrained, severe underestimation can lead to disap-

pearance of entire tracts of vasculature.

The usefulness of image interpolation in improving the

results of segmentation in these cases is usually moderate,

since, for low resolutions, the effects of the point spread

function of the acquisition system cannot be recovered

from pure interpolation. In general an increase in sampling

density can lead to a better approximation of partial

derivatives and potentially avoid level set collapse in some

cases, but it cannot compensate the effect of the point

spread function on the signal. In the same direction, the

prescription of anisotropic resolutions during acquisition

aimed at achieving higher in-plane resolution at the

expense of a lower resolution on the orthogonal direction is

seldom a solution in these cases. The effect of the point

spread function in the coarse direction can severely distort

the shape of a vessel, and the apparent gain in in-plane

detail actually derives from a partial-volume averaging in

the out-of-plane direction, which can lead to suppression of

vessels smaller than the slice thickness and further corrupt

the shape of the remaining vessels.

In order to cope with the effect of low resolution and

avoid collapse of vascular tracts, we here propose to

approximate gradient magnitude using an upwind finite

difference scheme during the computation of the feature

image [4]. In the non-limiting assumption that vessels are

brighter than the surrounding tissue, we compute image

gradient magnitude rIj j � kDxI;DyI;DzIk using the fol-

lowing approximation for partial derivatives
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DxI ¼ max � Iiþ1 � Ii

hx
;
Ii � Ii�1

hx

� �
ð4Þ

where i is a voxel index in the x direction and hx is the

voxel spacing in the x direction (similarly for y and z).

More intuitively, Eq. 4 expresses the computation of

derivatives from a voxel only towards neighboring voxels

having a lower intensity (if available), with the effect of

reducing underestimation and avoiding level set collapse in

cases where the vessel is represented by less than a few

pixels across, as is the case for the renal arteries in Fig. 1.

On the other hand, when voxel spacing is small compared

to vessel diameter, the upwind approximation is close to

the one provided by centered finite differences.

Although the above technique is effective in compen-

sating the underestimation obtained for low resolutions, the

accuracy of a CFD analysis on a model obtained from a

low resolution scan is a question that should be addressed

on a problem-specific basis. Certainly, the lower the reso-

lution, the coarsest the level of detail that a CFD analysis

would be able to assess, but a more specific characteriza-

tion of this relationship depends on the domain of interest

and on the problem being addressed. For instance, a

straight tube necessitates of less geometric information

than a complex saccular aneurysm for a CFD analysis to be

considered accurate, and, similarly, accurate estimation of

a pressure drop along a vascular segment necessitates of

less geometric detail than accurate estimation of a wall

shear stress map. Validation studies on physical or virtual

phantoms on one hand, and patient studies based on repe-

ated and multi-modality scans on the other, have to be

encouraged for specific flow domains and quantities of

interest.

3.5 Implementation notes

In our framework, we adopted the level set implementation

provided by the Insight Toolkit. In particular, we make use

of the sparse field level sets approach [32], by virtue of

which only a minimum amount of voxel layers around the

zero level set are tracked during the evolution. This way,

computation of the solution on the whole imaging grid at

each time step can be avoided, and the computing time

depends on the actual extent of the zero level set surface.

Originally implemented for isotropic voxel spacings

(hx = hy = hz), we extended the implementation to handle

imaging data with anisotropic voxels, and contributed the

code back to the Insight Toolkit. Similarly, we contributed

the implementation of the colliding fronts initialization

algorithm.

Once segmentation has been performed, the zero level

set surface can be extracted using the Marching Cubes

algorithm, as provided by the Visualization Toolkit. In the

following, we will assume that a triangulated surface of the

segmented vascular network is available.

4 Centerline computation

In order to streamline the process from segmented sur-

faces to simulation, it is required that a robust geometric

characterization methodology is in place, so that opera-

tions can be performed robustly and with minimal or no

user intervention. In our framework, geometric analysis is

based on centerlines, which in turn rely on the concept of

medial axis and its discrete counterpart, the Voronoi

diagram [11]. The medial axis is defined as the locus of

centers of spheres maximally inscribed inside an object, a

sphere being maximally inscribed if not contained in a any

other inscribed sphere. The envelope of all maximal

inscribed spheres is the boundary surface of the object

itself, therefore the (oriented) boundary surface and its

medial axis are dual representations of the same shape [1].

In 3D, the medial axis is a non-manifold surface, i.e., not

everywhere locally homomorphic to a 2D disk. A possible

approximation to the medial axis for a discrete surface is

the so-called embedded Voronoi diagram, that is defined

by the portions of the Voronoi diagram lying inside the

surface. The Voronoi diagram is defined by the boundaries

of the regions of R3 closer to each surface point. As such,

each point on the embedded Voronoi diagram is associ-

ated with a sphere touching the surface at at least four

points and not inscribed in any other sphere, the discrete

equivalent to a maximal inscribed sphere. Like the medial

axis, the embedded Voronoi diagram is a non-manifold

surface.

We define centerlines as minimal action paths on top of

the Voronoi diagram, where the action field is the inverse

of the radius of maximal inscribed spheres [6]. This method

links two locations on the Voronoi diagram with a path

minimizing the line integral of the action path, which

results in centerlines that maximize their minimal distance

to the boundary surface. Operatively, centerlines are

computed by first solving the eikonal equation from a seed

point on the Voronoi diagram domain

jrTj ¼ RðuÞ�1 ð5Þ

where R(u) is the maximal inscribed sphere radius field

defined on the Voronoi diagram, u is its parametric space,

and T is the solution representing the arrival times of a

wavefront traveling on the Voronoi diagram with speed

equal to R(u), as shown in Fig. 3. Once T has been

computed, a centerline is generated by following the path

of steepest descent of T on the Voronoi diagram from each

target point, that is, by solving the following trajectory

equation
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dc

ds
¼ �rT ð6Þ

where s is the centerline parametric space taken as its

curvilinear abscissa. Being defined on the Voronoi dia-

gram, each centerline point is associated with the

corresponding maximal inscribed sphere radius. The

envelope of maximal inscribed spheres along centerlines

produces a canal surface, or tube, which is inscribed inside

the vessel and tangent to it at discrete locations, as shown

in Fig. 3. Since they are associated to the deeper Voronoi

structures, such defined centerlines are not sensitive to

small displacements in surface points, which are instead

known to affect the peripheral portions of the Voronoi

diagram. Furthermore, the centerline computation problem

is well-posed even in regions where the vascular domain

doesn’t resemble a cylinder, such as at bifurcations or

inside aneurysms, and this confers robustness to the

algorithm.

5 Model pre-processing

The polygonal surface resulting from segmentation is in

general not directly usable for generating a computational

mesh. Typically, inlet and outlet sections of the model are

not flat and no boundary indicators are available for pre-

scription of boundary conditions. Furthermore, in case fully

developed Dirichlet boundary conditions have to be

imposed at inlet or outlet boundaries, circular sections need

to be generated in order for Poiseuille or Womersley

velocity profiles to be specified analytically. Last, it is

desirable to impose boundary conditions a few diameters

upstream or downstream the region of interest for the flow

to develop before it enters the computational domain of

interest. These problems are overcome through the auto-

mated connection of cylindrical flow extensions to all inlets

and outlet sections of the model. Such sections can be

generated by interactively cutting the original surface or by

using centerlines to define the cutting planes in a more

automated fashion. In any case, the direction of flow

extensions must be robust with respect to the actual ori-

entation of the cutting planes, and must rather reflect the

orientation of the vessel as it approaches the boundary

sections. For this purpose, we employ the orientation of

centerlines within the last diameter before the boundary

sections to define the normal to the flow extensions.

The shape of flow extensions must provide a smooth

transition between the model boundary sections, in general

non circular, and circular sections of equivalent area, in

order to avoid artifactual flow disturbances in the transition

between the flow extensions and the flow domain. We

achieve this by generating a template cylindrical flow

extension and then warping its first half by means of a thin

plate spline transformation, computed in such a way to

bring the cylinder circular section onto the model boundary

section. The thin plate spline algorithm [8], aims at finding

the deformation induced by the transformation between

two sets of corresponding landmarks that minimizes

bending energy. This is achieved through the use of radial

basis function interpolation with a kernel of the form

R2logR corresponding to the minimization of the bending

energy of a steel plate subject to boundary constraints [8].

In our framework, we use the implementation of the thin

plate spline algorithm provided within the VTK library.

Results of the automated application of flow extensions is

shown in Figs. 4 and 5.

By adjusting the strategy with which landmarks are

prescribed for the thin plate spline algorithm, this meth-

odology could be easily extended to the need of flow

extensions with a curved axis, needed in the case where a

vessel presents a strong curvature near the end and the flow

domain of interest is close to the boundary section. How-

ever, it is desirable, that a sufficient segment of the

upstream geometry is available for segmentation, in order

to reproduce the flow patterns entering the domain of

interest in a patient-specific way.

6 Mesh generation

6.1 Surface remeshing

Once the shape of the model has been finalized, a com-

putational mesh must be generated for the numerical

solution of the partial differential equations describing

blood flow. Our approach for automated mesh generation is

to generate a high quality triangulated surface mesh and to

then fill the volume using a combination of tetrahedral and

prismatic elements.

Fig. 3 Left embedded Voronoi diagram for the abdominal aorta

dataset, grayscale-coded with the solution of the eikonal equation T
seeded at the top-most section; centerlines traced from the down-

stream sections are shown superimposed to the Voronoi diagram.

Center resulting centerlines. Right envelope of maximal inscribed

spheres along the computed centerlines

Med Biol Eng Comput (2008) 46:1097–1112 1105

123



For the present work, we adopted a mesh improvement

approach to surface remeshing, where we assume that the

input surface mesh is a good polygonal approximation of

the continuous geometry. In fact, this may not be true for a

surface generated from level sets in case the geometric

features are on the order of a voxel in size, since those

features end up being linearly interpolated with large tri-

angles. In this case, surface mesh density can be first

increased using a smooth subdivision scheme. In particular,

we employ Loop’s subdivision scheme [20], provided by

VTK, which yields a C2 continuous surface when mesh

density tends to infinity, under assumptions of regularity of

the starting mesh. Taking the input surface mesh as the

reference geometry has the advantage of avoiding the

conversion of the input triangulation to a CAD-like para-

metric representation, which could in principle introduce a

regularization of the input geometry which is not directly

controllable from the user side.

Our algorithm for surface remeshing belongs to the class

of explicit remeshing algorithms, in which an initial tri-

angulation T0 is progressively modified in order for the

surface mesh to conform to imposed quality and sizing

criteria [14, 28]. Mesh improvement is performed through

three basic topological operations, namely edge collapse,

edge split and edge flip, acting on surface triangles, and one

geometric operation, point relocation, acting on point

position. Target triangle area is locally defined as a sizing

function A(u) on the nodes of T0;where u is a point in the

parameterization of T0: The four atomic operations are

iteratively applied to the mesh T until the following cri-

teria are met:

• the Frobenius aspect ratio of each triangle, defined as

f ¼ e2
1
þe2

2
þe2

3

4
ffiffi
3
p

A
where ei is the length of triangle edge i and

A is triangle area, is as high as possible and higher than

a threshold (by default set to 1.2);

• local triangle area A(u) conforms the sizing function

specified on T0;
• triangle neighborhoods have a valence (i.e., the number

of vertices connected to a vertex through a triangle

edge) as close as possible to 6.

Whenever a new point is inserted in T or a point

relocation is performed, the point is projected back on T0

by means of a fast octree locator. The same locator is used

Fig. 4 Left model after the

automated addition of flow

extensions, color-coded with the

distance to centerlines. Center
result of surface remeshing

using distance to centerline as

sizing function and Rel = 0.4.

Right cutout of the volume

mesh, showing element size

grading that closely follows

surface element grading and

adaptive 2-element prismatic

boundary layer

Fig. 5 Image-based model and

mesh of a cerebral aneurysm

located in the distal internal

carotid artery, acquired from

RA. Left sizing function based

on distance to centerlines Dc.

Center sizing function based on

centerline maximum inscribed

sphere radius Rc. Right mesh

resulting from the use of Rc as

sizing function, demonstrating

the capability of the technique

of handling non-tubular shapes
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whenever a value of A(u) defined on T0 is needed for a

triangle on T: The sizing function A(u) can be automati-

cally defined on the basis of the geometry of T0; for

instance by setting it proportional to the surface mean

curvature. This solution has the advantage of refining the

mesh around small-scale features, but suffers from sensi-

tivity to the presence of small-scale noise on the surface,

which potentially leads to artifactual over-refinements. We

instead choose to define A(u) on the basis of local vessel

size, with the rationale that a vessel should have the same

number of elements around, or across, the lumen, irre-

spective of its local diameter.

We adopt the distance of surface points to centerlines,

Dc(u), as a robust surrogate of local vessel size. For each

surface point, we compute its distance to the centerline

point that yields the minimum tube function value among

all centerline points. This tube-based approach is superior

to simply computing the distance to the closest point on

centerlines, since the latter approach would tend to

underestimate local size where the size of vessels change

abruptly, such as in the case of stenoses or T-shaped

bifurcations. Finding the centerline point that yields the

minimal tube function can be performed efficiently by

considering that a tube cT is a line in a 4-dimensional

space cT(s) = (x(s), y(s), z(s), ir(s)), where s is the line

parameter, x, y and z the spatial coordinates of the

centerline, r its radius and i the imaginary unit [3]. The

tube function evaluated at a point p = (xp, yp, zp, 0) is

then

f ðpÞ ¼ min
s2½0;L�

cTðsÞ � pk kf g ð7Þ

For a piecewise linear representation, Eq. 7 has to be

evaluated for every linear segment [si?1, si] to find

s [ [0,1] such that the tube function is minimal at

s = si ? s(si?1-si). This is done analytically by

extending the expression for the closest point to a line in

Euclidean geometry to the 4-dimensional geometry of the

tube function

s ¼ p� cTðsiÞð Þ � cTðsiþ1Þ � cTðsiÞð Þ
cTðsiþ1Þ � cTðsiÞk k ð8Þ

Once the distance to centerlines has been defined at

every node on T0; it can be manipulated and used as a

sizing function for the surface remeshing algorithm. In our

framework, we compute the local target area field as

AðuÞ ¼
ffiffiffi
3
p

4
� Rel � DcðuÞð Þ2 ð9Þ

where Rel is a constant factor expressing the ratio between

the nominal edge length and the distance to centerlines, as

shown in Fig. 4. In practice, Rel is the only free parameter

in the surface remeshing procedure, and it quantifies the

length of the nominal triangle edge relative to the vessel

size. Since it’s a relative quantity, it can be chosen once for

all in a population study.

The above approach is robust but suffers from the

presence structures that are not well represented by cen-

terlines, such as saccular aneurysms, on whose surface

Dc(u) could assume artifactually high values. A simple

workaround is to set a upper threshold to the admissible

values of Dc(u). However, this introduces an absolute mesh

sizing parameter which may imply model-specific deci-

sions, and impede automatic meshing in a population

study. An alternative, more robust, approach is to replace

Dc(u) with Rc(u), i.e., the radius of the maximal inscribed

sphere at the centerline point with the minimal tube func-

tion. In other words, after finding the point with the

minimal tube value, we get its inscribed sphere radius

instead of computing the distance to it. The definition of

A(u) is then the same as in Eq. 9 with Dc(u) replaced by

Rc(u). This way, the target area doesn’t increase in those

regions that deviate from a tubular shape, such as saccular

aneurysms as shown in Fig. 5, but it instead depends on the

size of the tube where those regions originate.

6.2 Volume meshing

Volume mesh generation is performed on the basis of the

surface mesh produced at the previous step, as the latter is

left unchanged and the interior is filled with volumetric

elements. The mesh is composed of two parts, the tetra-

hedral interior and the prismatic or tetrahedral boundary

layer. We will now present them in this order.

Tetrahedral mesh generation in the Vascular Modeling

Toolkit is performed by incorporating the functionality

offered by the Tetgen mesh generator [27], a tool for

constrained Delaunay and high-quality tetrahedralization

of piecewise linear complexes. The algorithms provided by

Tetgen are provided in code that was directly embedded

within a VTK class, which provides seamless integration

with the rest of the framework and achieves complete

automation. We refer to [26] for in-depth description of the

theory and algorithms behind the tool. For our purposes, it

is sufficient to mention that Tetgen is capable of generating

meshes conforming to a boundary triangulation and satis-

fying the Delaunay criterion (i.e., no vertex falls inside the

circumsphere of any tetrahedron). In addition, mesh quality

is ensured through the specification of a bound on the target

ratio of the radius of the element circumsphere to the

length of the shortest element edge.

Sizing of the tetrahedral mesh can be provided through

the specification of target tetrahedron edge size at a set of

points in space. In our case, we express target volume at

each node of the input surface mesh, setting it proportional

to the local triangle edge length on the surface mesh, as

shown in Fig. 4. The proportionality constant can be
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chosen once close to 1. In practice, dealing with tubular

geometries, and in general with concave bounding surfaces

with non-negligible curvature everywhere, it is advisable to

keep the proportionality constant lower than one (e.g., 0.8),

in order to penalize the generation of elongated tetrahedra

at the boundary surface.

Since the behavior of the solution close to the wall is of

great interest for hemodynamics, as it is directly linked to

wall shear stress and derived quantities, it is in general

desirable that the mesh has a high element density near the

wall, and that elements are aligned with the local orienta-

tion of the boundary surface in that region. In practice, this

is realized by generating one or more layers of prismatic

elements having the boundary triangles as their base and

protruding into the domain along the surface normal

direction (for solvers not supporting prismatic element

types, the boundary layer can then be tetrahedralized). The

thickness of the boundary layer is expressed as a fraction of

the local edge length, which is in turn dependent on the

local vessel size, consistently with the fact that the size of

the physical shear layer is expected to scale with the vessel

size, as shown in Fig. 4.

The concrete advantage of the generation of such

boundary layer depends on the specific problem at hand

and on the density of the internal tetrahedral mesh. When

using an adaptive mesh refinement strategy as presented in

the next section, it is expected that resolving the boundary

layer in the direction normal to the surface will limit the

number of elements tagged for refinement within the shear

layer, therefore increasing efficiency. A systematic evalu-

ation of such effect is beyond the scope of this paper and

will be subject of future work.

As detailed in the next section, our solution strategy is

based on P2-P1 finite elements. For this task we adopt

isoparametric quadratic finite elements, namely 10-noded

quadratic tetrahedra and 18-noded quadratic prisms. The

conversion of the elements from linear to quadratic is

performed by introducing additional nodes using a regular

subdivision scheme. Once subdivided, midside nodes of

boundary triangles are instead projected onto the initial

surface T0 using the octree locator, so to obtain a proper

high-order representation of the surface.

7 CFD simulation

The methodology for automated mesh generation

described in the previous Section has one potential lim-

itation, the fact that the computational mesh is generated

on the basis of the geometry, and not on the basis of the

expected flow features. As an example, in the case of a

stenotic vessel, the mesh would be dense at the stenosis

throat, but the post-stenotic sections would likely be

under-resolved with respect to the high-speed jet ema-

nating from the stenosis. This would potentially limit the

application of the present workflow for large-scale sim-

ulations, as each case should in theory be individually

evaluated for potential problems linked to geometry-dri-

ven mesh generation. In order to overcome this

limitation, we stress the importance of the adoption of an

adaptive mesh refinement approach for the numerical

approximation of the differential problem, in this case

the incompressible Navier–Stokes equations. The auto-

mated geometry-driven mesh generation approach

described in the previous Section is then complemented

by a flow feature-driven mesh refinement strategy,

therefore providing a robust approach to high-throughput

computational hemodynamics. A solver should therefore

fulfill the following requirements:

• to provide a simple and robust solution strategy, so to

reduce the number of parameters to be chosen for the

simulation and to reduce the need for monitoring during

computation;

• to allow adaptive mesh refinement and coarsening at

any timestep, so that the mesh can adapt to the flow

features arising throughout the cardiac cycle;

• to exploit parallel computation, both for the computa-

tion on clusters and on now standard multi-core

workstations.

While it is beyond the scope of this paper to present a

CFD solver, we briefly summarize the features of the solver

currently under development in our group. Based on a

second-order velocity correction scheme in rotational form,

the implementation relies on the libMesh library [16],

which provides a finite elements infrastructure featuring

parallel adaptive non-conformal mesh refinement and

coarsening. Non-conformal mesh refinement, i.e., the pos-

sibility to refine an element without refining its neighbors

thanks to the correct handling of hanging nodes, allows

element aspect ratios to remain unchanged throughout the

simulation, and makes it efficient to perform refinement

and coarsening frequently during the cardiac cycle. Also,

we argue that the adoption of prismatic boundary layers

and adaptive mesh refinement overcomes the theoretical

presence of a numerical boundary layer close to non-slip

boundaries, whose thickness is a function of the local

element size. As mentioned above, the solver will be pre-

sented in a separate publication and will made freely

available as open source software.

8 Conclusions

In this work, we presented the building blocks of our

framework for high-throughput computational
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hemodynamics, which is already freely available within the

open-source Vascular Modeling Toolkit. We hope that the

advent of these and other tools will enable studies to be

performed on a large-scale and will allow to lift the effort

required in generating patient-specific models and to shift

the focus on the underlying biological problems.

Although our framework potentially allows patient-

specific hemodynamic variables to be evaluated in large-

scale studies, new approaches for post-processing of

hemodynamic simulations need to be developed for the

identification of geometric and hemodynamic criteria to be

employed in clinical research [3]. This is, in our opinion,

one of the pressing issues in this field, and as such will

constitute a focus of our future work.
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Appendix: Experimental validation on a patient-specific

carotid phantom

Phantom manufacturing

In order to validate the image-based modeling framework

presented in this work, and more specifically the accuracy

of the segmentation process, we performed a phantom

experiment on a physical replica of the lumen of a human

carotid bifurcation, generated from CT-based patient-

specific model using stereo-lithographic rapid prototyping

(RP) technology. Briefly, CTA images of a normal carotid

bifurcation were acquired during routine examination of a

patient with suspect stenosis at the contra-lateral side.

Images were acquired on a multi-slice scanner (Light-

Speed QX/i, GE, Fairfield, CT) with in-plane resolution of

0.25 mm and slice thickness of 1.25 mm. The luminal

surface of the carotid bifurcation, depicted in Fig. 6 was

obtained using the method described in Sect. 3. The

model presented diameters of 7, 4.8 and 3.6 mm for the

common, internal and external carotid arteries, each

evaluated approximately 3 diameters away from the

bifurcation.

The surface was exported in stereo-lithography interface

format (STL) and transferred to a RP stereo-lithography

system (SLA-3500, 3D Systems, CA, smallest feature size

0.30 mm, typical layer thickness 0.15 mm) for the gener-

ation of a physical model consisting of a hexahedron of

30 9 30 9 64 mm in size made of transparent epoxidic

resin containing a hollow representation of the vessel

lumen, as shown in Fig. 6. Further details on the generation

of RP phantom are reported in [31].

Phantom imaging

After being filled with a solution of saline and iodinated

contrast agent, the carotid phantom was first imaged with

the same CT scanner and contrast-enhanced CTA protocol

used for the patient’s acquisition. Successively, a Gd-

enhanced MR acquisition was performed (Gyroscan NT

1.5T, Philips, Best, the Netherlands) during which two

contrast-enhanced MRA series were acquired, one in axial

orientation, one in coronal orientation, both of them with

acquired in-plane resolution of 0.78 mm and slice thick-

ness of 2 mm, interpolated by zero-padding in k-space to

0.39 mm in-plane and 1 mm slice thickness. The scanning

parameters were chosen to closely follow clinical protocols

at the scanning site, and the phantom was placed in the

scanners so to mimic the patient’s neck position and ori-

entation. All imaging tests were performed at the

Radiology Unit of the Ospedale San Paolo, Milan, Italy.

Images were downloaded in DICOM format for further

processing.

To obtain exact dimensions of the vessel lumen, the

phantom was milled on a numerically driven milling

machine using 0.5 mm thickness slices for a total length of

60 mm. Each section was digitally photographed using a

fixed frame holding the camera after each cut. The acquired

images were stored on a PC at a resolution of

2,800 9 1,700 pixels. Pixel coordinates of 60 points for

each lumen profile were manually identified on each sec-

tion using a general purpose image processing software

(NIH Image, v 4.02). In-plane spatial coordinates for the

points were then obtained through a scaling factor provided

by a scale grid that was photographed together with the

sections. The measurement points were then arranged in a

3D stack by locating each planar section according to the

position of the milling machine. The signed distance

between the measurement points and the original STL

model used as input for the RP machine averaged -

0.09 ± 0.06 mm (mean ± standard deviation), and ranged

from -0.49 to 0.24 mm (positive values corresponding to

measurement points located outside the STL model).

Validation

Three-dimensional (numerical) models of the carotid

phantom were generated from the CT images and from the

two axial and coronal MR series using the modeling

framework presented in this paper, setting w1 = w2 = 0

and w3 = 1 in Eq. 1. Two sets of segmentations were

produced, one employing the customary centered finite

difference approximation of the gradient magnitude for the

computation of the advection field, and one using the

upwind finite difference approximation presented in Eq. 4.

No regularization strategy was adopted in either case.
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All surfaces resulting from segmentation were aligned

onto the STL surface using the iterative closest point (ICP)

algorithm [32]. Once registered, the signed shortest dis-

tance of each point of the segmented models to the STL

surface was computed, taken positive for points located

outside the STL model. In order to factor out the effect of

RP manufacturing from the evaluation of accuracy, the

signed shortest distance of each point of the segmented

models to the measurement points was computed.

Results are summarized in Table 1, in which mean,

standard deviation and range of the signed distance of each

segmented model from the ground truth, taken in turn as

both the surface given input to RP system (STL) and the

physically measured points on the phantom (PTS). The

models and their signed distance to the STL surface are

depicted in Fig. 7.

The values show that the segmentation technique in

general produces surfaces that are located in close vicinity

to ground truth. The average distance is below the reso-

lution of the acquisition system, and with the minimum and

maximum errors ranging within the value of in-plane res-

olution. From the comparison among the three scanning

protocols, CT showed to allow for the highest accuracy due

to the superior resolution, followed by the axial MR scan

and the coronal MR scan. In particular, the accuracy in the

coronal MR acquisition is hampered by the fact that

coronal planes slice the carotid bifurcation longitudinally,

which, due to the anisotropic resolution prescribed in the

scanning protocol that leads the lumen to be spanned by a

lesser number of voxels. Nevertheless, even the more

severe underestimation of the lumen in this case, –

0.59 mm, is within the in-plane resolution, 0.78 mm, and

well below the out-of-plane resolution, 2 mm. As for the

comparison among the finite difference approximations of

the gradient operator for the computation of the feature

image, it can be noted that the centered finite difference

approximation leads to increasing underestimation of the

lumen (negative signed distance values) with decreasing

cross-sectional resolutions. Such underestimation is uni-

form throughout the model, since it is not associated with

an increase in the standard deviation of the error. On the

other hand, such underestimation is not witnessed on

average for the upwind approximation, at the price of a

generally larger standard deviation and of possible

Fig. 6 Left patient-specific model of a carotid bifurcation used as

input for the RP system (see Appendix). Right picture of the physical

phantom
Fig. 7 Models obtained from CT, MR axial and MR coronal

acquisitions of the physical RP phantom (see Appendix). No

smoothing strategies have been adopted during segmentation. Signed

distance to the STL model used as input for the RP system is

displayed. Positive values indicate that the segmented model is

located outside the STL model
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overestimations of the lumen. This effect, also evident in

Fig. 7, can be explained by the inferior smoothness of the

upwind gradient operator. In fact, while centered finite

differences are second-order accurate in the computation of

first derivatives, the accuracy of upwind finite differences

is only first-order. This can be obviated by the adoption of

a regularization strategy as described in Sect. 3.3, which,

for sake of clarity, has not been applied in this experiment.
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