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Abstract

We describe the prototype of a system intended to allow a user to navigate

in an urban environment using a mobile telephone equipped with a camera.

The system uses a database of views of building facades to determine the

pose of a query view provided by the user. Our method is based on a novel

wide-baseline matching algorithm that can identify corresponding building

facades in two views despite significant changes of viewpoint and lighting.

We show that our system is capable of localising query views reliably in a

large part of Cambridge city centre.

1 Introduction

This research is motivated by a conceptual mobile telephone navigation application. Us-

ing a handset with a built-in camera, the idea is that the user could transmit a photo-

graph of his surroundings to a central computer system. Given approximate knowledge

of the handset’s position (obtained by signal triangulation or similar), the system would

compare the query image with a database of stored images in order to determine pose.

Navigation information could then be transmitted back to the user and projected into the

image. Compared with radio signal triangulation-based schemes1, this approach gives

significantly better accuracy and determines camera orientation as well as position.

1.1 Existing Work

This is essentially similar to the global localisation problem familiar from the mobile

robot navigation literature. E.g. in the system described by Se et al. [11], a robot uses a

calibrated trinocular stereo rig to locate visual landmarks, which are simply image fea-

tures with associated 3D positions. By matching visible landmarks with previously identi-

fied ones, the robot can determine its pose even if it is moved. To cope with large changes

of viewpoint, image features are characterised in a way that is invariant with image rota-

tion and scale [9]. This is wide-baseline matching.

In related work, wide-baseline matching has been used to identify similar views using

corresponding image features [10, 12]. By characterising the features in a way that is

invariant with affine transformations, it is possible to identify similar views despite sub-

stantial changes of viewpoint. For example, given a photograph of a building, the system

1Existing signal triangulation-based schemes (such as http://www.cursor-system.com) claim an accuracy of

a few 10’s of meters although performance may be reduced by multi-path effects in urban environments.
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described by Shao et al. [12] can identify more photographs of the same building in a

large database of photographs obtained from a wide range of viewpoints. However, their

system does not determine the pose of the query.

Elsewhere, vanishing points have been used automatically to determine camera ori-

entation in urban environments [2, 7, 13]. For example, Coorg and Teller [2] describe a

system that uses vanishing points to determine the orientation of dominant building fa-

cades relative to a panoramic camera. However, a combination of specialist hardware is

used to determine camera position, including GPS and inertial sensors. Here, only the

image data is required. Stamos and Allen [13] have also used vanishing points as part

of a pose determination algorithm. However, their system requires a detailed geometric

model obtained by laser range finding and they have only localised views in the vicinity

of a single building.

1.2 Approach

By contrast to the robot localisation system described by Se et al. [11], the idea here is to

determine the pose of a query view by reference to a much simpler model comprising a

database of rectified views of building facades. Building facades can be associated with a

meaningful 3D coordinate system using readily available map data.

This is essentially an image database retrieval problem. Given a query view, the first

step is to identify a nearby database view. Then the pose of the query view is obtained

from the plane-to-plane transformation that relates it to the building facade. Our approach

is based on a novel, wide-baseline matching algorithm that can identify corresponding

building facades in two views in a way that is invariant with significant changes of view-

point and lighting and robust to clutter.

We describe a system that has been shown to be capable of localising query views

reliably in a large part of Cambridge city centre.

1.3 Review and notation

Under perspective projection ũ ✎ PX̃, homogenous pixel coordinates ũ are related to

homogenous world coordinates X̃ by a 3 ✏4 projection matrix P, where ✎ means equality

up to scale. A projection matrix may be decomposed as P ✑ K ✒R ✓R✔ t ✕ where R is a

3 ✏3 rotation matrix that describes camera orientation, t is the Euclidean camera position,

and K is an upper triangular camera calibration matrix.

2 Wide-baseline matching

We begin by describing our wide-baseline matching algorithm. Given two views, the aim

is to identify corresponding image features despite significant changes of viewpoint and

lighting, and in a way that is robust to clutter.



2.1 Canonical views

The algorithm works by assuming that both views will contain a dominant plane in the

form of a building facade2. By determining the orientation of the camera with respect to

this plane, views may be transformed into a canonical frame by metric rectification [8]

(see Figure 1c).

Camera orientation is determined using the vanishing points belonging to the principal

horizontal and vertical directions that define the facade. By assuming that a significant

proportion of imaged edges are aligned with these directions, the associated vanishing

points can found automatically using the approach described by Kosecka and Zhang [7].

One problem is to decide which vanishing points belong to vertical and horizontal direc-

tions. To identify the vertical vanishing point ṽv, it is assumed that the camera is held

approximately ‘right way up’. Thus, ṽv is chosen such that the vanishing direction K✖1ṽv

is the one most nearly parallel to the vertical ✗0 1 0 ✘✙ . A horizontal vanishing point

ṽh will be associated with a perpendicular direction, i.e. it should obey the constraint✚
K✖1ṽv✛✙ ✚K✖1ṽh✛ ✜ 0. If more than one horizontal vanishing point is detected, we select

the one most strongly supported by line segments in the image.

Without loss of generality, a local coordinate system XFYFZF may be aligned with

the building facade defined by the vertical and horizontal vanishing points. Hence, by

considering points at infinity corresponding to the associated vanishing directions, it is

simple to derive the following constraint on the elements of the projection matrix PF:

✗λvṽv λhṽh ✘ ✢ PF

✣✤✥1 0

0 1

0 0

0 0

✦✧★ (1)

where λv and λh are unknown scale factors and the subscript F denotes quantities in the

local coordinate system. Writing PF ✢ K ✗RF ✩R✙F tF ✘, this equation can be rearranged

and expressed in terms of camera calibration matrix K and camera orientation RF:

K✖1 ✗λvṽv λhṽh ✘ ✢ RF

✣✥1 0

0 1

0 0

✦★ (2)

Given K, and by exploiting the properties of a rotation matrix, equation 2 can be solved

simply for scale factors λv and λh, and camera orientation RF. In our conceptual mobile

telephone navigation application, we assume for the time being that it would be possible to

retrieve an approximate camera calibration matrix for each query view from a database of

handset models. Camera calibration can be determined in the laboratory by photographing

a suitable chessboard pattern [14].

Having determined camera orientation RF we can rectify the view [8]. This is equiv-

alent to rotating the camera by RF✖1 so that image plane is aligned building facade. Pixel

coordinates ũf in the rectified view may be related to pixel coordinates ũ in the original

view by the following equation:

ũf ✪ Hfũ (3)

2This assumption is not too restrictive in our mobile telephone navigation application, since the user can

easily be instructed to point the camera at a building.



where Hf is a 3 ✫3 homography given by Hf ✬ KfRF✭1K✭1. Here, Kf defines the origin

and scale of the coordinate system for the canonical view and has the form:

Kf ✬ ✮✯αf 0 u0f

0 αf v0f

0 0 1

✰✱ (4)

where u0f ✲ ✳u0f v0f ✴✵ is the origin and αf is the scale. Usually it will be convenient

(i) to set the αf such that the transformation Hf preserves the vertical dimension of the

pixel at the centre of the original image (so the average change of scale is minimised),

and (ii) to choose u0f such that the quadrilateral boundary of the transformed image fits

in a bounding rectangle with top left corner ✳0 0 1 ✴✵ .

Between rectified views, a building facade will be related by a simple scale-plus-

translation transformation. Thus, pixel coordinates ũ✶f in the first view may be related to

pixel coordinates ũf in the second by the following equation:

ũ✶f ✲ Hsũf (5)

where Hs is has the form:

Hs ✬ ✮✯αs 0 u0s

0 αs v0s

0 0 1

✰✱ (6)

Here αs is the scale factor and ✳u0s v0s ✴✵ is the translation in pixels.

Finally, let the horizon line be defined as the line of intersection of the horizontal

plane defined by the camera’s optical centre with the image plane, i.e. the camera’s ‘eye

level’. In canonical views, the horizon line is a horizontal line that passes through the

point Kf ✳0 0 1 ✴✵ (see Figure 1).

2.2 Feature detection and characterisation

Because the canonical views are free from perspective distortion, it is simple to detect and

characterise image features in a way that is invariant with changes of viewpoint.

Firstly, interest points are located at the maxima of the Harris corner response, which

is given by det✷C✸ ✹ 0 ✺05trace2 ✷C✸ with:

C✷u ✻σ ✻σ ✸ ✬ G✷u ✻σ ✸ ✼ ✽ L2
u ✷u ✻σ ✸ LuLv ✷u ✻σ ✸

LuLv ✷u ✻σ ✸ L2
v ✷u ✻σ ✸ ✾ (7)

where G✷u ✻σ ✸ is a symmetric 2D Gaussian with standard deviation σ , and Lu and Lv

are image derivatives in the u and v directions respectively [5]. Differentiation is carried

out by convolution with the differential of another symmetric 2D Gaussian with standard

deviation σ . Here, smoothing and detection scales σ and σ are set to 1.5 and 1.0 pixels

respectively.

Next, local image regions in the vicinity of the interest points are characterised by

sampling RGB pixel values in a square grid pattern centred on the interest point. Good

results have been obtained using a grid with dimensions 8 ✫8 and a spacing of 2 pixels.

Some amount of robustness to scale variation and feature localisation error is achieved by

sampling the pixels from a version of the image that has been smoothed by convolution

with a 2D Gaussian of standard deviation 2 pixels.



(a) (b) (c)

Figure 1: Obtaining canonical views. (a) Straight line segments are detected in left and

right views and dominant vanishing points are recovered automatically. Line segments

associated with the horizontal and vertical vanishing points are shown in (b). Finally, the

images are transformed into a canonical frame corresponding to a rectified view of the

dominant plane (c). In the rectified views, the horizon line is horizontal.

To account for larger changes of scale, feature detection is repeated at multiple im-

age scales like in [3]. Here, the detector described above is applied to each level of a

pyramid of scaled images. The base of the pyramid is the original image and successive

levels are obtained from their predecessors by bicubic interpolation. Good results have

been obtained using a pyramid with 5 levels, with each level 1 ✿2 times smaller than its

predecessor.

In the subsequent matching stage (Section 2.3, below), features are compared by eval-

uating the sum of squared differences between RGB pixel intensities [6]. To achieve

robustness to lighting variation, pixel intensities Iuv ❀ ❁R G B ❂❃ are first normalized

according to the following equation:

Îuv ❀ Iuv ❄ Ī❅
1
N ∑u❆v ❇Iuv ❄ Ī ❇2 (8)

where Îuv is the normalised value, Ī is the mean, and N is the number of pixels (64 in

this case). To compare features efficiently, a coarse-to-fine approach is used (after Burt

and Adelson [1]). The idea is that a large proportion of candidate matches can be rejected

within comparatively few operations by correlating smaller versions of the full-size tem-

plate.

2.3 Feature matching

A robust, multi-scale matching approach is used, similar to the one described by Dufour-

naud et al. [3]. The idea is to match features detected at one scale in the first image with



features detected at another scale in the second, repeating matching for a succession of

candidate scale relationships.

The complete matching algorithm is outlined below. Without loss of generality, the

second image is considered to be the higher resolution one. In case the first image is the

higher resolution one, this sequence is repeated with the first and second images reversed:

1. Detect and characterise features in the first image at a single scale s ❈ 1. Detect

and characterise features in the second image at a range of scales s ❈ 1 ❉2❊ρ , where

detection level ρ ❋ ●0 ❍ ❉❉❉❍4■ (see Section 2.2).

2. Match features detected at level 0 in the first image with features detected at a

candidate level ρc in the second, where ρc ❋ ●0 ❍ ❉❉❉❍4■.

3. For each candidate level, use RANSAC [4] robustly to estimate the scale-plus-

translation transformation Hs. Redo matching constrained by this estimate. Count

matches.

4. Finally, select the estimated transformation with the most matches.

At step 3, an initial set of correspondences could be obtained by unguided matching.

However, computational efficiency can be improved by an order of magnitude by assum-

ing that the views have been obtained from similar heights. This assumption is sufficient

to fix one of the degrees of freedom of Hs since the horizon lines must be aligned. Thus,

for a particular candidate scale relationship, the search for a match in the second image

can be restricted to a narrow margin surrounding a 1D scan line. In consequence, the

proportion of outliers is usually greatly reduced.

3 Database formulation

The basis of our global localisation system is a database of views of building facades. At

present, database views are obtained by photographing buildings with a hand-held digital

camera3. Because our wide-baseline matching algorithm is effective despite significant

changes of viewpoint, a single view of each facade is sufficient to localise query views

obtained from a wide range of viewpoints.

Building facades in the database are associated with a meaningful 3D coordinate sys-

tem using readily available map data. A point on the facade ❏XF YF 0 1 ❑▲ may be

related to pixel coordinates ũf in the rectified view by a simple scale-plus-translation

transformation:

ũf ▼ Ha ❏XF YF 1 ❑▲ (9)

where

Ha ❈ ◆❖αa 0 u0a

0 αa v0a

0 0 1

P◗ (10)

Here αa is a scale factor and ❏u0a v0a ❑▲ is the translation. We find Ha by identifying two

vertical lines in each rectified view and their corresponding points on a map (see Figure

3We anticipate that this process could be automated by attaching a camera to a vehicle equipped with an

inertial car navigation system. A navigation system could be used to provide camera pose and the map to

provide the positions of building facades.
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Figure 2: Building facades in the database are associated with a meaningful coordinate

system using a map. (a) Two vertical lines are identified manually in each database view

(the horizon line is also shown). (b) These lines correspond to points on the map (circles).

The point u0f is the projection of origin of the facade coordinate system XFYFZF.

2). Then αa ❪ D❫d and ❴u0a v0a 1 ❵❛ is the projection of the origin of the facade’s

coordinate system XFYF.

4 Global localisation

Having registered a set of database views, the pose of a query view can be determined

automatically using the homography that relates it to a building facade in the database.

Database retrieval. The first step is to identify a nearby database view. Our system

works by conducting two-view matching between the query view and each database view

in turn using the method described in Section 2. We select the database view with the

most robustly estimated matches in common with the query view. By assuming that a

nearby database view has been obtained from a similar height to the query view, two-view

matching may be conducted efficiently using the scan line constraint described in Section

2.3. To increase the speed of the database retrieval, rectification and feature detection is

conducted in advance for database views. In our mobile telephone navigation application,

prior knowledge of handset position (e.g. from cell location) could be used to constrain

the database search to a few hundreds of views.

Pose determination. Having determined the scale-plus-translation transformation Hs

that relates a building facade between the database and query views, all that remains is to

find the pose of the query. In the local facade coordinate system, the required projection

matrix PF relates 3D points ❴XF YF ZF 1 ❵❛ to pixel coordinates ũ:

ũ ❜ PF ❴XF YF ZF 1 ❵❛ (11)

Combining equations 3, 5, and 10, it is possible to write the following relationship be-

tween XF ❝YF coordinates in the local coordinate system and image coordinates in the

original query view:

ũ ❜ Hf❞1HsHa ❴XF YF 1 ❵❛ (12)



where Ha relates points in the facade coordinate system to pixel coordinates in the rectified

view, Hs relates the dominant plane between the query and database views, and Hf❡1

relates pixel coordinates in the canonical view to pixels coordinates in the original view.

Comparing equation 12 with equation 11, we can see that that it defines three columns

of the projection matrix PF (up to a single unknown scale factor). Since K and RF are

known, it is simple to recover the remaining column (up to the same scale factor). Finally,

the camera pose estimate RF, TF can be related from the facade’s coordinate system to

the map coordinate system by applying a coordinate system transformation.

5 Evaluation

To test our global localisation system, we constructed a database of views by photograph-

ing all the buildings in the main shopping street in Cambridge’s city centre, as well as a

number of other buildings of interest from around the city. Our database comprises 200

views in total (one per building typically) and spans at least 2 km of building facades.

The area covered by the database spans an area several times greater than the positional

uncertainty associated with existing mobile positioning systems.

We also revisited the area at different times of day and obtained query views from a

variety of viewpoints. Compared to the database views, the query views were obtained

at different distances from the dominant building facades and/or with different camera

orientation. Usually distance differed by at least 30% and orientation by at least 30❢.
There were 97 query views in total. Many of our query images contained significant

clutter (pedestrians, traffic, etc.) representative of that experienced in a city centre urban

environment.

Using the framework described earlier, we attempted to determine the pose of each

of 97 query views. Each query took around 10 s using a 1.4 GHz desktop PC (although

our present implementation is not especially efficient). Pose determination results were

verified by sketching building facade outlines in the database views and projecting them

into the query views using recovered homographies (since camera focal length is known,

this method gives a good indication of the accuracy of the pose estimates). Overall, 93

out of 97 queries were registered correctly. Representative results are shown in Figure

3. Because of our robust matching strategy, usually only one or two matches were found

between a query view and incorrect database views. When the system did fail, this was

because the database contains some photographs of buildings (or parts of buildings) that

are virtually identical to each other.

6 Conclusions

We have described the prototype of a system designed to allow a user to navigate in

an urban environment using a mobile telephone equipped with a camera. The system

facilitates efficient determination of the pose of a query view by reference to a database

of views of building facades.

One limitation is that some buildings (and parts of buildings) are very similar. This

means that the system might be unable to distinguish between some viewpoints without

more information, e.g. extra query views. Another limitation is that conducting two-

view matching between the query view and every nearby database view is slow. A more
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Figure 3: Illustrative database retrieval results. The first rows show query views. The

second and third rows show the best and second best database retrieval results together

with the number of robustly estimated correspondences. The first six images (a-f) show

correct database retrieval results. Transferred building outlines demonstrate the accuracy

of the recovered pose estimates. In (g), the correct database view has been recovered

but the scale-plus-translation transformation is wrong. In (h), the wrong view has been

retrieved because the two buildings are identical.



efficient strategy might be to use more ‘global’ image properties such as most frequent

colours to eliminate unlikely database views in advance.

In this paper, camera intrinsic parameters have been assumed known. In recent work,

we have extended our system to compute the focal length and coefficients of radial distor-

tion for the query view automatically using vanishing points. In future research, we will

explore the possibility of acquiring database views using a camera attached to a moving

vehicle. Using an inertial car navigation system, it should be possible to register views

automatically in the world coordinate system. Then Ordnance Survey map data could be

used to provide the approximate location of dominant building facades.
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